abinit/tests/v9/Refs/t60.abo

3535 lines
175 KiB
Plaintext

.Version 10.2.4.2 of ABINIT, released Nov 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Tue 19 Nov 2024.
- ( at 19h56 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_EOF-10.2/tests/TestBot_MPI1/v9_t57-t58-t59-t60-t61/t60.abi
- output file -> t60.abo
- root for input files -> t60i
- root for output files -> t60o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 3 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 4 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 5 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 6 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 7 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 7.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 8 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 8.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 9 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 9.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 10 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 10.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.010 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 11 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 11.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 3 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.742 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 12 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 12.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 3 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 8
mpw = 1131 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 5.742 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.763 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0000000000E+00 1.0000000000E+00 1.0000000000E+00 Bohr
amu 6.94100000E+00 1.89984032E+01
boxcutmin 1.10000000E+00
ddb_ngqpt 2 2 2
ecut 3.50000000E+01 Hartree
eph_phwinfact1 1.10000000E+00
eph_phwinfact2 1.10000000E+00
eph_phwinfact3 1.10000000E+00
eph_phwinfact4 1.10000000E+00
eph_phwinfact5 1.10000000E+00
eph_phwinfact6 3.90000000E+00
eph_phwinfact7 1.10000000E+00
eph_phwinfact8 1.10000000E+00
eph_phwinfact9 1.10000000E+00
eph_phwinfact10 1.10000000E+00
eph_phwinfact11 1.10000000E+00
eph_phwinfact12 1.10000000E+00
eph_extrael1 0.00000000E+00
eph_extrael2 0.00000000E+00
eph_extrael3 0.00000000E+00
eph_extrael4 0.00000000E+00
eph_extrael5 0.00000000E+00
eph_extrael6 0.00000000E+00
eph_extrael7 0.00000000E+00
eph_extrael8 0.00000000E+00
eph_extrael9 0.00000000E+00
eph_extrael10 0.00000000E+00
eph_extrael11 -1.69326306E-03
eph_extrael12 -1.69326306E-03
eph_intmeth1 1
eph_intmeth2 2
eph_intmeth3 1
eph_intmeth4 2
eph_intmeth5 2
eph_intmeth6 2
eph_intmeth7 2
eph_intmeth8 1
eph_intmeth9 2
eph_intmeth10 2
eph_intmeth11 1
eph_intmeth12 1
eph_ngqpt_fine1 0 0 0
eph_ngqpt_fine2 4 4 4
eph_ngqpt_fine3 4 4 4
eph_ngqpt_fine4 4 4 4
eph_ngqpt_fine5 0 0 0
eph_ngqpt_fine6 4 4 4
eph_ngqpt_fine7 4 4 4
eph_ngqpt_fine8 4 4 4
eph_ngqpt_fine9 0 0 0
eph_ngqpt_fine10 0 0 0
eph_ngqpt_fine11 4 4 4
eph_ngqpt_fine12 4 4 4
eph_phrange_w1 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w2 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w3 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w4 0.00000000E+00 3.67493254E-03 Hartree
eph_phrange_w5 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w6 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w7 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w8 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w9 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w10 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w11 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w12 0.00000000E+00 0.00000000E+00 Hartree
eph_prtscratew1 0
eph_prtscratew2 0
eph_prtscratew3 0
eph_prtscratew4 1
eph_prtscratew5 0
eph_prtscratew6 0
eph_prtscratew7 0
eph_prtscratew8 0
eph_prtscratew9 0
eph_prtscratew10 0
eph_prtscratew11 0
eph_prtscratew12 0
eph_restart 1
eph_task1 4
eph_task2 5
eph_task3 4
eph_task4 -4
eph_task5 -5
eph_task6 -4
eph_task7 -4
eph_task8 4
eph_task9 15
eph_task10 -15
eph_task11 4
eph_task12 9
eph_tols_idelta1 1.00000000E-12 1.00000000E-12
eph_tols_idelta2 1.00000000E-12 1.00000000E-12
eph_tols_idelta3 1.00000000E-12 1.00000000E-12
eph_tols_idelta4 1.00000000E-12 1.00000000E-12
eph_tols_idelta5 1.00000000E-12 1.00000000E-12
eph_tols_idelta6 1.00000000E-06 1.00000000E-06
eph_tols_idelta7 1.00000000E-06 1.00000000E-06
eph_tols_idelta8 1.00000000E-12 1.00000000E-12
eph_tols_idelta9 1.00000000E-12 1.00000000E-12
eph_tols_idelta10 1.00000000E-12 1.00000000E-12
eph_tols_idelta11 1.00000000E-12 1.00000000E-12
eph_tols_idelta12 1.00000000E-12 1.00000000E-12
- fftalg 512
freqspmax 7.34986508E-02 Hartree
freqspmin -7.34986508E-02 Hartree
getdvdb1 0
getdvdb2 0
getdvdb3 2
getdvdb4 2
getdvdb5 2
getdvdb6 2
getdvdb7 20
getdvdb8 20
getdvdb9 0
getdvdb10 0
getdvdb11 0
getdvdb12 0
gw_qprange1 4
gw_qprange2 0
gw_qprange3 4
gw_qprange4 4
gw_qprange5 0
gw_qprange6 0
gw_qprange7 0
gw_qprange8 4
gw_qprange9 0
gw_qprange10 0
gw_qprange11 0
gw_qprange12 0
istwfk 2 0 3 0 0 0 7 0
jdtset 1 2 3 4 5 6 7 8 9 10
11 12
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 2.50000000E-01
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen 2.17873965E+01
mixprec 1
P mkmem 8
natom 2
nband1 20
nband2 20
nband3 20
nband4 20
nband5 20
nband6 20
nband7 20
nband8 20
nband9 20
nband10 20
nband11 20
nband12 20
ndtset 12
nfreqsp 135
ngfft 16 16 16
nkpt 8
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ2 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ7 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ8 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ9 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ10 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ11 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ12 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occopt1 1
occopt2 1
occopt3 1
occopt4 1
occopt5 1
occopt6 1
occopt7 1
occopt8 1
occopt9 1
occopt10 1
occopt11 3
occopt12 3
optdriver 7
ph_nqpath1 3
ph_nqpath2 3
ph_nqpath3 3
ph_nqpath4 3
ph_nqpath5 5
ph_nqpath6 3
ph_nqpath7 3
ph_nqpath8 3
ph_nqpath9 5
ph_nqpath10 3
ph_nqpath11 3
ph_nqpath12 3
prteliash 1
prtphdos 0
rifcsph1 0.00000000E+00
rifcsph2 0.00000000E+00
rifcsph3 1.00000000E+01
rifcsph4 0.00000000E+00
rifcsph5 0.00000000E+00
rifcsph6 0.00000000E+00
rifcsph7 0.00000000E+00
rifcsph8 0.00000000E+00
rifcsph9 0.00000000E+00
rifcsph10 0.00000000E+00
rifcsph11 0.00000000E+00
rifcsph12 0.00000000E+00
rprim 0.0000000000E+00 3.8515039575E+00 3.8515039575E+00
3.8515039575E+00 0.0000000000E+00 3.8515039575E+00
3.8515039575E+00 3.8515039575E+00 0.0000000000E+00
sigma_bsum_range1 0 0
sigma_bsum_range2 0 0
sigma_bsum_range3 2 4
sigma_bsum_range4 0 0
sigma_bsum_range5 0 0
sigma_bsum_range6 0 0
sigma_bsum_range7 0 0
sigma_bsum_range8 2 4
sigma_bsum_range9 0 0
sigma_bsum_range10 0 0
sigma_bsum_range11 0 0
sigma_bsum_range12 0 0
sigma_erange1 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange2 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange3 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange4 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange5 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange6 1.83746627E-02 1.83746627E-02 Hartree
sigma_erange7 1.83746627E-02 1.83746627E-02 Hartree
sigma_erange8 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange9 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange10 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange11 3.67493254E-02 3.67493254E-02 Hartree
sigma_erange12 3.67493254E-02 3.67493254E-02 Hartree
sigma_ngkpt1 2 2 2
sigma_ngkpt2 0 0 0
sigma_ngkpt3 2 2 2
sigma_ngkpt4 2 2 2
sigma_ngkpt5 0 0 0
sigma_ngkpt6 2 2 2
sigma_ngkpt7 2 2 2
sigma_ngkpt8 2 2 2
sigma_ngkpt9 0 0 0
sigma_ngkpt10 0 0 0
sigma_ngkpt11 0 0 0
sigma_ngkpt12 0 0 0
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symv1scf 1
tolcum1 0.00000000E+00
tolcum2 0.00000000E+00
tolcum3 0.00000000E+00
tolcum4 0.00000000E+00
tolcum5 0.00000000E+00
tolcum6 0.00000000E+00
tolcum7 0.00000000E+00
tolcum8 0.00000000E+00
tolcum9 0.00000000E+00
tolcum10 0.00000000E+00
tolcum11 0.00000000E+00
tolcum12 1.00000000E-03
tolwfr 1.00000000E-16
tmesh1 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh2 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh3 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh4 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh5 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh6 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh7 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh8 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh9 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh10 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh11 3.00000000E+03 1.00000000E+00 1.00000000E+00
tmesh12 3.00000000E+03 1.00000000E+00 1.00000000E+00
typat 1 2
wtk 0.01563 0.12500 0.06250 0.09375 0.37500 0.18750
0.04688 0.09375
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0381281131E+00 2.0381281131E+00 2.0381281131E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.8515039575E+00 3.8515039575E+00 3.8515039575E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 3.00000 9.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 9.
chkinp: Checking input parameters for consistency, jdtset= 10.
chkinp: Checking input parameters for consistency, jdtset= 11.
chkinp: Checking input parameters for consistency, jdtset= 12.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_EOF-10.2/tests/Pspdir/03-Li.psp
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_EOF-10.2/tests/Pspdir/03-Li.psp
- Troullier-Martins psp for element Li Thu Oct 27 17:29:06 EDT 1994
- 3.00000 1.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 2.534 6.726 1 2.4315963 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 3.283 5.836 0 2.4315963 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2.44451305764117 0.01373030920382 0.17502673260160 rchrg,fchrg,qchrg
pspatm : epsatm= -1.77437869
--- l ekb(1:nproj) -->
0 1.242797
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_EOF-10.2/tests/Pspdir/09-F.psp
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_EOF-10.2/tests/Pspdir/09-F.psp
- Troullier-Martins psp for element F Thu Oct 27 17:30:08 EDT 1994
- 9.00000 7.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 6.771 17.439 1 1.3876018 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 24.372 32.350 0 1.3876018 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.49406148701180 6.36128955091623 0.66947621353748 rchrg,fchrg,qchrg
pspatm : epsatm= 1.80528525
--- l ekb(1:nproj) -->
0 6.310228
pspatm: atomic psp has been read and splines computed
2.47252491E-01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
0.0 0.000 3.561 3.754 4.782
300.0 0.026 3.173 3.366 5.170
Number of bands in e-ph self-energy sum: 20
From bsum_start: 1 to bsum_stop: 20
Symsigma: 1 Timrev: 1
Imaginary shift in the denominator (zcut): 0.100 [eV]
Method for q-space integration: Standard quadrature
Both Real and Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 2 From: 0.000000E+00 to 3.000000E+02 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [2, 2, 2]
Number of q-points in the IBZ: 3
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 3
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 8
2 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 1 8
3 1 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 1 9
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 1 up to my_bsum_stop: 20
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 3 of 3
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 3 of 3
DVDB file contains all q-points in the IBZ --> Reading DFPT potentials from file.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.735 -19.851 -0.116 -0.154 -0.037 0.751 -0.465 0.310 0.000 0.000
2 -0.193 -0.094 0.099 0.149 -0.064 0.661 -0.302 0.451 19.542 19.757
3 -0.193 -0.094 0.099 0.149 -0.064 0.661 -0.302 0.451 0.000 0.000
4 -0.193 -0.094 0.099 0.149 -0.064 0.661 -0.302 0.451 0.000 0.000
5 8.342 8.258 -0.085 -0.086 -0.002 0.985 -0.021 -0.065 8.536 8.352
6 22.864 22.862 -0.002 -0.002 -0.028 0.789 -0.524 0.522 14.521 14.604
7 22.864 22.862 -0.002 -0.002 -0.028 0.789 -0.524 0.522 0.000 0.000
8 22.864 22.862 -0.002 -0.002 -0.028 0.789 -0.524 0.522 0.000 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 8.352 (OTMS: 8.300)
QP_gap - KS_gap: -0.183 (OTMS: -0.235)
============================================================================================
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.735 -19.856 -0.121 -0.165 -0.041 0.729 -0.734 0.569 0.000 0.000
2 -0.193 -0.075 0.118 0.190 -0.082 0.621 -0.646 0.836 19.542 19.781
3 -0.193 -0.075 0.118 0.190 -0.082 0.621 -0.646 0.836 0.000 0.000
4 -0.193 -0.075 0.118 0.190 -0.082 0.621 -0.646 0.836 0.000 0.000
5 8.342 8.219 -0.123 -0.126 -0.002 0.976 -0.007 -0.119 8.536 8.295
6 22.864 22.845 -0.018 -0.026 -0.041 0.718 -0.787 0.761 14.521 14.626
7 22.864 22.845 -0.018 -0.026 -0.041 0.718 -0.787 0.761 0.000 0.000
8 22.864 22.845 -0.018 -0.026 -0.041 0.718 -0.787 0.761 0.000 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 8.295 (OTMS: 8.220)
QP_gap - KS_gap: -0.241 (OTMS: -0.316)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.234 -19.361 -0.127 -0.220 -0.137 0.578 -0.526 0.306 0.000 0.000
2 -2.697 -2.574 0.124 0.137 -0.012 0.902 -0.311 0.448 16.537 16.788
3 -0.415 -0.508 -0.093 -0.114 -0.094 0.817 -0.529 0.416 2.282 2.066
4 -0.415 -0.508 -0.093 -0.114 -0.094 0.817 -0.529 0.416 0.000 0.000
5 10.027 10.008 -0.018 -0.019 -0.002 0.976 -0.086 0.067 10.441 10.516
6 15.827 15.820 -0.007 0.020 -0.647 -0.332 -0.390 0.410 5.800 5.812
7 17.971 18.212 0.241 0.284 -0.018 0.849 0.040 0.245 2.144 2.392
8 17.971 18.212 0.241 0.284 -0.018 0.849 0.040 0.245 0.000 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
QP gap: 10.516 (OTMS: 10.537)
QP_gap - KS_gap: 0.075 (OTMS: 0.095)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.234 -19.368 -0.134 -0.243 -0.149 0.553 -0.805 0.562 0.000 0.000
2 -2.697 -2.497 0.200 0.227 -0.015 0.880 -0.589 0.816 16.537 16.871
3 -0.415 -0.548 -0.133 -0.155 -0.116 0.855 -0.917 0.762 2.282 1.950
4 -0.415 -0.548 -0.133 -0.155 -0.116 0.855 -0.917 0.762 0.000 0.000
5 10.027 10.004 -0.023 -0.024 -0.004 0.962 -0.095 0.071 10.441 10.551
6 15.827 15.796 -0.031 0.122 -0.961 -0.251 -0.632 0.755 5.800 5.792
7 17.971 18.286 0.315 0.402 -0.028 0.784 0.077 0.325 2.144 2.490
8 17.971 18.286 0.315 0.402 -0.028 0.784 0.077 0.325 0.000 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
QP gap: 10.551 (OTMS: 10.573)
QP_gap - KS_gap: 0.110 (OTMS: 0.132)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -18.981 -18.864 0.117 0.178 -0.062 0.659 -0.129 0.307 0.000 0.000
2 -3.149 -3.188 -0.039 -0.048 -0.023 0.829 -0.406 0.358 15.833 15.676
3 -1.171 -1.340 -0.169 -0.181 -0.023 0.934 -0.520 0.339 1.978 1.848
4 -1.171 -1.340 -0.169 -0.181 -0.023 0.934 -0.520 0.339 0.000 0.000
5 13.987 14.047 0.060 0.067 -0.012 0.892 -0.611 0.678 15.158 15.387
6 15.747 15.438 -0.309 -0.534 -0.407 0.578 -0.406 -0.128 1.760 1.391
7 16.382 16.312 -0.070 -0.114 -0.065 0.619 -0.002 -0.112 0.635 0.874
8 19.258 19.480 0.222 0.249 -0.015 0.893 -0.228 0.476 2.876 3.169
9 19.258 19.480 0.222 0.249 -0.015 0.893 -0.228 0.476 0.000 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
QP gap: 15.387 (OTMS: 15.406)
QP_gap - KS_gap: 0.229 (OTMS: 0.248)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -18.981 -18.857 0.124 0.199 -0.076 0.622 -0.367 0.566 0.000 0.000
2 -3.149 -3.160 -0.011 -0.014 -0.027 0.808 -0.671 0.658 15.833 15.697
3 -1.171 -1.439 -0.268 -0.278 -0.034 0.965 -0.895 0.618 1.978 1.721
4 -1.171 -1.439 -0.268 -0.278 -0.034 0.965 -0.895 0.618 0.000 0.000
5 13.987 14.071 0.084 0.100 -0.019 0.843 -1.054 1.155 15.158 15.511
6 15.747 12.126 -3.620 -0.835 -0.804 4.337 -0.624 -0.211 1.760 -1.945
7 16.382 16.306 -0.076 -0.144 -0.093 0.530 0.049 -0.193 0.635 4.179
8 19.258 19.564 0.306 0.365 -0.025 0.839 -0.377 0.742 2.876 3.258
9 19.258 19.564 0.306 0.365 -0.025 0.839 -0.377 0.742 0.000 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
QP gap: 15.511 (OTMS: 15.536)
QP_gap - KS_gap: 0.353 (OTMS: 0.378)
============================================================================================
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 5, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename: getdvdb from: t60o_DS20_DVDB
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
Interpolation of the electron-phonon coupling potential
From coarse q-mesh: [2, 2, 2] to: [4, 4, 4]
Number of q-points found in input DVDB: 3
Number of q-points requiring Fourier interpolation 5
Interpolation of the electron-phonon coupling potential completed
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename : getdvdb/=0, take file _DVDB from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS2_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
0.0 0.000 3.561 3.754 4.782
300.0 0.026 3.173 3.366 5.170
Number of bands in e-ph self-energy sum: 3
From bsum_start: 2 to bsum_stop: 4
Symsigma: 1 Timrev: 1
Imaginary shift in the denominator (zcut): 0.100 [eV]
Method for q-space integration: Standard quadrature
Both Real and Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 2 From: 0.000000E+00 to 3.000000E+02 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [4, 4, 4]
Number of q-points in the IBZ: 8
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 3
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 8
2 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 1 8
3 1 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 1 9
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 2 up to my_bsum_stop: 4
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 8 of 8
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 3 of 3
DVDB file contains all q-points in the IBZ --> Reading DFPT potentials from file.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.735 -19.743 -0.007 -0.008 -0.002 0.982 -0.348 0.340 0.000 0.000
2 -0.193 -0.028 0.165 0.268 -0.095 0.616 0.268 0.000 19.542 19.715
3 -0.193 -0.028 0.165 0.268 -0.095 0.616 0.268 0.000 0.000 0.000
4 -0.193 -0.028 0.165 0.268 -0.095 0.616 0.268 0.000 0.000 0.000
5 8.342 8.295 -0.048 -0.048 -0.001 0.993 0.070 -0.118 8.536 8.323
6 22.864 22.865 0.001 0.001 -0.000 1.000 0.001 -0.000 14.521 14.570
7 22.864 22.865 0.001 0.001 -0.000 1.000 0.001 -0.000 0.000 0.000
8 22.864 22.865 0.001 0.001 -0.000 1.000 0.001 -0.000 0.000 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 8.323 (OTMS: 8.220)
QP_gap - KS_gap: -0.213 (OTMS: -0.316)
============================================================================================
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.735 -19.743 -0.007 -0.007 -0.004 0.965 -0.673 0.665 0.000 0.000
2 -0.193 0.005 0.198 0.316 -0.124 0.626 0.316 0.000 19.542 19.747
3 -0.193 0.005 0.198 0.316 -0.124 0.626 0.316 0.000 0.000 0.000
4 -0.193 0.005 0.198 0.316 -0.124 0.626 0.316 0.000 0.000 0.000
5 8.342 8.268 -0.074 -0.075 -0.002 0.985 0.144 -0.220 8.536 8.264
6 22.864 22.866 0.002 0.002 -0.000 1.000 0.002 -0.000 14.521 14.597
7 22.864 22.866 0.002 0.002 -0.000 1.000 0.002 -0.000 0.000 0.000
8 22.864 22.866 0.002 0.002 -0.000 1.000 0.002 -0.000 0.000 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 8.264 (OTMS: 8.145)
QP_gap - KS_gap: -0.272 (OTMS: -0.391)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.234 -19.240 -0.006 -0.006 -0.002 0.980 -0.354 0.348 0.000 0.000
2 -2.697 -2.965 -0.267 -0.241 -0.192 1.110 -0.241 0.000 16.537 16.275
3 -0.415 -3.276 -2.861 0.136 -0.252 -21.000 0.136 -0.000 2.282 -0.312
4 -0.415 -3.276 -2.861 0.136 -0.252 -21.000 0.136 -0.000 0.000 0.000
5 10.027 10.026 -0.000 -0.000 -0.001 0.991 0.096 -0.096 10.441 13.302
6 15.827 15.829 0.003 0.003 -0.000 1.000 0.003 -0.000 5.800 5.803
7 17.971 17.979 0.008 0.009 -0.001 0.994 0.110 -0.101 2.144 2.150
8 17.971 17.979 0.008 0.009 -0.001 0.994 0.110 -0.101 0.000 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
QP gap: 13.302 (OTMS: 10.305)
QP_gap - KS_gap: 2.861 (OTMS: -0.136)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.234 -19.237 -0.003 -0.003 -0.004 0.963 -0.685 0.682 0.000 0.000
2 -2.697 -2.990 -0.293 -0.275 -0.209 1.067 -0.275 0.000 16.537 16.247
3 -0.415 -1.714 -1.300 0.156 -0.288 -8.328 0.156 -0.000 2.282 1.275
4 -0.415 -1.714 -1.300 0.156 -0.288 -8.328 0.156 -0.000 0.000 0.000
5 10.027 10.022 -0.005 -0.005 -0.002 0.983 0.187 -0.191 10.441 11.736
6 15.827 15.831 0.004 0.004 -0.000 1.000 0.004 -0.000 5.800 5.809
7 17.971 17.979 0.008 0.008 -0.001 0.989 0.211 -0.203 2.144 2.148
8 17.971 17.979 0.008 0.008 -0.001 0.989 0.211 -0.203 0.000 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
QP gap: 11.736 (OTMS: 10.281)
QP_gap - KS_gap: 1.295 (OTMS: -0.161)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -18.981 -18.997 -0.016 -0.016 -0.002 0.980 -0.357 0.341 0.000 0.000
2 -3.149 -3.268 -0.119 -0.141 -0.020 0.843 -0.141 0.000 15.833 15.729
3 -1.171 -1.191 -0.020 -0.035 -0.118 0.580 -0.035 -0.000 1.978 2.076
4 -1.171 -1.191 -0.020 -0.035 -0.118 0.580 -0.035 -0.000 0.000 0.000
5 13.987 13.988 0.001 0.001 -0.000 1.000 0.001 -0.000 15.158 15.179
6 15.747 15.726 -0.020 -0.021 -0.001 0.992 0.132 -0.152 1.760 1.739
7 16.382 16.327 -0.056 -0.056 -0.001 0.993 0.127 -0.183 0.635 0.600
8 19.258 19.259 0.001 0.001 -0.000 1.000 0.001 -0.000 2.876 2.933
9 19.258 19.259 0.001 0.001 -0.000 1.000 0.001 -0.000 0.000 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
QP gap: 15.179 (OTMS: 15.194)
QP_gap - KS_gap: 0.021 (OTMS: 0.036)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -18.981 -18.998 -0.017 -0.017 -0.004 0.962 -0.689 0.672 0.000 0.000
2 -3.149 -3.284 -0.135 -0.163 -0.022 0.827 -0.163 0.000 15.833 15.715
3 -1.171 -1.183 -0.012 -0.023 -0.151 0.538 -0.023 -0.000 1.978 2.100
4 -1.171 -1.183 -0.012 -0.023 -0.151 0.538 -0.023 -0.000 0.000 0.000
5 13.987 13.988 0.001 0.001 -0.000 1.000 0.001 -0.000 15.158 15.172
6 15.747 15.716 -0.031 -0.032 -0.002 0.985 0.258 -0.289 1.760 1.727
7 16.382 16.304 -0.078 -0.080 -0.001 0.986 0.254 -0.334 0.635 0.588
8 19.258 19.260 0.002 0.002 -0.000 1.000 0.002 -0.000 2.876 2.956
9 19.258 19.260 0.002 0.002 -0.000 1.000 0.002 -0.000 0.000 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
QP gap: 15.172 (OTMS: 15.182)
QP_gap - KS_gap: 0.014 (OTMS: 0.024)
============================================================================================
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: -4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename : getdvdb/=0, take file _DVDB from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS2_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
0.0 0.000 3.561 3.754 4.782
300.0 0.026 3.173 3.366 5.170
Number of bands in e-ph self-energy sum: 9
From bsum_start: 1 to bsum_stop: 9
Symsigma: 1 Timrev: 1
Method for q-space integration: Tetrahedron method
Tolerance for integration weights < 1.000000E-12 1.000000E-12
eph_phwinfact: 1.10
Only the Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 2 From: 0.000000E+00 to 3.000000E+02 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [4, 4, 4]
Number of q-points in the IBZ: 8
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 3
Including all final {mk+q} states inside energy window: [***** ***** ] [eV]
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 8
2 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 1 8
3 1 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 1 9
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 1 up to my_bsum_stop: 9
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 8 of 8
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 3 of 3
DVDB file contains all q-points in the IBZ --> Reading DFPT potentials from file.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
1 -19.735 0.002 147.9 0.000
2 -0.193 0.000 999999.0 19.542
3 -0.193 0.000 999999.0 0.000
4 -0.193 0.000 999999.0 0.000
5 8.342 0.000 999999.0 8.536
6 22.864 0.061 5.4 14.521
7 22.864 0.061 5.4 0.000
8 22.864 0.061 5.4 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
1 -19.735 0.002 140.7 0.000
2 -0.193 0.001 241.8 19.542
3 -0.193 0.001 241.8 0.000
4 -0.193 0.001 241.8 0.000
5 8.342 0.000 999999.0 8.536
6 22.864 0.091 3.6 14.521
7 22.864 0.091 3.6 0.000
8 22.864 0.091 3.6 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
1 -19.234 1.708 0.2 0.000
2 -2.697 0.088 3.7 16.537
3 -0.415 0.151 2.2 2.282
4 -0.415 0.151 2.2 0.000
5 10.027 0.032 10.4 10.441
6 15.827 0.130 2.5 5.800
7 17.971 0.606 0.5 2.144
8 17.971 0.606 0.5 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
1 -19.234 1.883 0.2 0.000
2 -2.697 0.097 3.4 16.537
3 -0.415 0.187 1.8 2.282
4 -0.415 0.187 1.8 0.000
5 10.027 0.047 7.0 10.441
6 15.827 0.208 1.6 5.800
7 17.971 0.888 0.4 2.144
8 17.971 0.888 0.4 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
1 -18.981 0.000 999999.0 0.000
2 -3.149 0.000 4359.5 15.833
3 -1.171 0.117 2.8 1.978
4 -1.171 0.117 2.8 0.000
5 13.987 0.005 67.8 15.158
6 15.747 0.190 1.7 1.760
7 16.382 0.102 3.2 0.635
8 19.258 0.183 1.8 2.876
9 19.258 0.183 1.8 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
1 -18.981 0.061 5.4 0.000
2 -3.149 0.000 4130.8 15.833
3 -1.171 0.147 2.2 1.978
4 -1.171 0.147 2.2 0.000
5 13.987 0.007 47.4 15.158
6 15.747 0.273 1.2 1.760
7 16.382 0.146 2.3 0.635
8 19.258 0.280 1.2 2.876
9 19.258 0.280 1.2 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
============================================================================================
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: -5, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename : getdvdb/=0, take file _DVDB from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS2_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
Interpolation of the electron-phonon coupling potential
Using list of q-points specified by ph_qpath with 5 qpoints
Number of q-points found in input DVDB: 3
Number of q-points requiring Fourier interpolation 2
Interpolation of the electron-phonon coupling potential completed
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: -4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename : getdvdb/=0, take file _DVDB from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS2_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
0.0 0.000 3.561 3.754 4.782
300.0 0.026 3.173 3.366 5.170
Number of bands in e-ph self-energy sum: 4
From bsum_start: 2 to bsum_stop: 5
Symsigma: 1 Timrev: 1
Method for q-space integration: Tetrahedron method
Tolerance for integration weights < 1.000000E-06 1.000000E-06
eph_phwinfact: 3.90
Only the Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 2 From: 0.000000E+00 to 3.000000E+02 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [4, 4, 4]
Number of q-points in the IBZ: 8
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 2
sigma_erange: 0.500 0.500 (eV)
Including all final {mk+q} states inside energy window: [-.503 8.431 ] [eV]
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 2 5
2 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 3 4
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 2 up to my_bsum_stop: 5
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 8 of 8
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 2 of 2
DVDB file contains all q-points in the IBZ --> Reading DFPT potentials from file.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
2 -0.193 0.000 999999.0 0.000
3 -0.193 0.000 999999.0 0.000
4 -0.193 0.000 999999.0 0.000
5 8.342 0.000 999999.0 8.536
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
2 -0.193 0.001 242.2 0.000
3 -0.193 0.001 242.2 0.000
4 -0.193 0.001 242.2 0.000
5 8.342 0.000 999999.0 8.536
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
3 -0.415 0.150 2.2 0.000
4 -0.415 0.150 2.2 0.000
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
3 -0.415 0.185 1.8 0.000
4 -0.415 0.185 1.8 0.000
============================================================================================
Entering transport RTA computation driver.
- Reading carrier lifetimes from: t60o_DS6_SIGEPH.nc
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Computing integrals with downsampled sigma_ngkpt: [2, 2, 2]
=== Computation of DOS, VV_DOS and VVTAU_DOS ===
Linear tetrahedron method.
Mesh step: 27.2 (meV) with npts: 351
From emin: -0.7 to emax: 8.8 (eV)
Number of k-points in the IBZ: 3
edos%ief == 0 --> Cannot print quantities at the Fermi level.
Transport (RTA) calculation results:
Cartesian component of SERTA mobility tensor: xx
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of SERTA mobility tensor: yy
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of SERTA mobility tensor: zz
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of MRTA mobility tensor: xx
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of MRTA mobility tensor: yy
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of MRTA mobility tensor: zz
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
- Writing RTA transport results to: t60o_DS6_RTA.nc
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: -4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename : getdvdb/=0, take file _DVDB from output of DATASET 20.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
0.0 0.000 3.561 3.754 4.782
300.0 0.026 3.173 3.366 5.170
Number of bands in e-ph self-energy sum: 4
From bsum_start: 2 to bsum_stop: 5
Symsigma: 1 Timrev: 1
Method for q-space integration: Tetrahedron method
Tolerance for integration weights < 1.000000E-06 1.000000E-06
eph_phwinfact: 1.10
Only the Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 2 From: 0.000000E+00 to 3.000000E+02 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [4, 4, 4]
Number of q-points in the IBZ: 8
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 2
sigma_erange: 0.500 0.500 (eV)
Including all final {mk+q} states inside energy window: [-.503 8.431 ] [eV]
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 2 5
2 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 3 4
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 2 up to my_bsum_stop: 5
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 8 of 8
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 2 of 2
Cannot find eph_ngqpt_fine q-points in DVDB --> Activating Fourier interpolation.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
2 -0.193 0.000 999999.0 0.000
3 -0.193 0.000 999999.0 0.000
4 -0.193 0.000 999999.0 0.000
5 8.342 0.000 999999.0 8.536
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
2 -0.193 0.001 247.1 0.000
3 -0.193 0.001 247.1 0.000
4 -0.193 0.001 247.1 0.000
5 8.342 0.000 999999.0 8.536
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS SE2(eKS) TAU(eKS) DeKS
3 -0.415 0.140 2.4 0.000
4 -0.415 0.140 2.4 0.000
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS SE2(eKS) TAU(eKS) DeKS
3 -0.415 0.166 2.0 0.000
4 -0.415 0.166 2.0 0.000
============================================================================================
Entering transport RTA computation driver.
- Reading carrier lifetimes from: t60o_DS7_SIGEPH.nc
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Computing integrals with downsampled sigma_ngkpt: [2, 2, 2]
=== Computation of DOS, VV_DOS and VVTAU_DOS ===
Linear tetrahedron method.
Mesh step: 27.2 (meV) with npts: 351
From emin: -0.7 to emax: 8.8 (eV)
Number of k-points in the IBZ: 3
edos%ief == 0 --> Cannot print quantities at the Fermi level.
Transport (RTA) calculation results:
Cartesian component of SERTA mobility tensor: xx
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of SERTA mobility tensor: yy
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of SERTA mobility tensor: zz
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of MRTA mobility tensor: xx
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of MRTA mobility tensor: yy
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
Cartesian component of MRTA mobility tensor: zz
Temperature [K] e/h density [cm^-3] e/h mobility [cm^2/Vs]
0.00 0.00E+00 0.00E+00 0.00 0.00
300.00 0.21E-64 0.00E+00 0.00 0.00
- Writing RTA transport results to: t60o_DS7_RTA.nc
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename : getdvdb/=0, take file _DVDB from output of DATASET 20.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
0.0 0.000 3.561 3.754 4.782
300.0 0.026 3.173 3.366 5.170
Number of bands in e-ph self-energy sum: 3
From bsum_start: 2 to bsum_stop: 4
Symsigma: 1 Timrev: 1
Imaginary shift in the denominator (zcut): 0.100 [eV]
Method for q-space integration: Standard quadrature
Both Real and Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 2 From: 0.000000E+00 to 3.000000E+02 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [4, 4, 4]
Number of q-points in the IBZ: 8
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 3
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 8
2 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 1 8
3 1 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 1 9
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 2 up to my_bsum_stop: 4
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 8 of 8
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 3 of 3
Cannot find eph_ngqpt_fine q-points in DVDB --> Activating Fourier interpolation.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.735 -19.743 -0.007 -0.008 -0.002 0.982 -0.348 0.340 0.000 0.000
2 -0.193 -0.029 0.164 0.266 -0.095 0.617 0.266 0.000 19.542 19.714
3 -0.193 -0.029 0.164 0.266 -0.095 0.617 0.266 0.000 0.000 0.000
4 -0.193 -0.029 0.164 0.266 -0.095 0.617 0.266 0.000 0.000 0.000
5 8.342 8.295 -0.047 -0.048 -0.001 0.993 0.070 -0.118 8.536 8.324
6 22.864 22.865 0.001 0.001 -0.000 1.000 0.001 -0.000 14.521 14.570
7 22.864 22.865 0.001 0.001 -0.000 1.000 0.001 -0.000 0.000 0.000
8 22.864 22.865 0.001 0.001 -0.000 1.000 0.001 -0.000 0.000 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 8.324 (OTMS: 8.221)
QP_gap - KS_gap: -0.212 (OTMS: -0.314)
============================================================================================
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.735 -19.743 -0.007 -0.008 -0.004 0.965 -0.673 0.665 0.000 0.000
2 -0.193 0.003 0.196 0.313 -0.124 0.628 0.313 0.000 19.542 19.746
3 -0.193 0.003 0.196 0.313 -0.124 0.628 0.313 0.000 0.000 0.000
4 -0.193 0.003 0.196 0.313 -0.124 0.628 0.313 0.000 0.000 0.000
5 8.342 8.269 -0.074 -0.075 -0.002 0.985 0.145 -0.219 8.536 8.266
6 22.864 22.866 0.002 0.002 -0.000 1.000 0.002 -0.000 14.521 14.597
7 22.864 22.866 0.002 0.002 -0.000 1.000 0.002 -0.000 0.000 0.000
8 22.864 22.866 0.002 0.002 -0.000 1.000 0.002 -0.000 0.000 0.000
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 8.266 (OTMS: 8.148)
QP_gap - KS_gap: -0.270 (OTMS: -0.388)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.234 -19.240 -0.006 -0.006 -0.002 0.981 -0.354 0.348 0.000 0.000
2 -2.697 -2.963 -0.266 -0.239 -0.191 1.112 -0.239 0.000 16.537 16.277
3 -0.415 -4.498 -4.083 0.136 -0.248 -30.011 0.136 -0.000 2.282 -1.535
4 -0.415 -4.498 -4.083 0.136 -0.248 -30.011 0.136 -0.000 0.000 0.000
5 10.027 10.027 -0.000 -0.000 -0.001 0.991 0.096 -0.096 10.441 14.524
6 15.827 15.829 0.003 0.003 -0.000 1.000 0.003 -0.000 5.800 5.803
7 17.971 17.979 0.008 0.009 -0.001 0.994 0.110 -0.101 2.144 2.150
8 17.971 17.979 0.008 0.009 -0.001 0.994 0.110 -0.101 0.000 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
QP gap: 14.524 (OTMS: 10.305)
QP_gap - KS_gap: 4.083 (OTMS: -0.136)
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -19.234 -19.236 -0.002 -0.002 -0.004 0.963 -0.685 0.682 0.000 0.000
2 -2.697 -2.987 -0.290 -0.271 -0.208 1.069 -0.271 0.000 16.537 16.249
3 -0.415 -2.024 -1.609 0.155 -0.283 -10.350 0.155 -0.000 2.282 0.964
4 -0.415 -2.024 -1.609 0.155 -0.283 -10.350 0.155 -0.000 0.000 0.000
5 10.027 10.022 -0.004 -0.004 -0.002 0.983 0.187 -0.191 10.441 12.046
6 15.827 15.831 0.004 0.004 -0.000 1.000 0.004 -0.000 5.800 5.808
7 17.971 17.979 0.008 0.009 -0.001 0.989 0.211 -0.203 2.144 2.149
8 17.971 17.979 0.008 0.009 -0.001 0.989 0.211 -0.203 0.000 0.000
KS gap: 10.441 (assuming bval:4 ==> bcond:5)
QP gap: 12.046 (OTMS: 10.282)
QP_gap - KS_gap: 1.604 (OTMS: -0.160)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 0.0 [K], mu_e: 3.561
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -18.981 -18.997 -0.016 -0.016 -0.002 0.980 -0.358 0.342 0.000 0.000
2 -3.149 -3.267 -0.118 -0.140 -0.020 0.843 -0.140 0.000 15.833 15.730
3 -1.171 -1.191 -0.020 -0.035 -0.116 0.579 -0.035 -0.000 1.978 2.075
4 -1.171 -1.191 -0.020 -0.035 -0.116 0.579 -0.035 -0.000 0.000 0.000
5 13.987 13.988 0.001 0.001 -0.000 1.000 0.001 -0.000 15.158 15.179
6 15.747 15.727 -0.020 -0.020 -0.001 0.992 0.132 -0.152 1.760 1.739
7 16.382 16.327 -0.055 -0.056 -0.001 0.993 0.127 -0.183 0.635 0.600
8 19.258 19.259 0.001 0.001 -0.000 1.000 0.001 -0.000 2.876 2.933
9 19.258 19.259 0.001 0.001 -0.000 1.000 0.001 -0.000 0.000 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
QP gap: 15.179 (OTMS: 15.194)
QP_gap - KS_gap: 0.021 (OTMS: 0.036)
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 300.0 [K], mu_e: 3.173
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
1 -18.981 -18.998 -0.017 -0.017 -0.004 0.962 -0.690 0.672 0.000 0.000
2 -3.149 -3.282 -0.133 -0.161 -0.022 0.827 -0.161 0.000 15.833 15.716
3 -1.171 -1.183 -0.012 -0.023 -0.148 0.536 -0.023 -0.000 1.978 2.099
4 -1.171 -1.183 -0.012 -0.023 -0.148 0.536 -0.023 -0.000 0.000 0.000
5 13.987 13.988 0.001 0.001 -0.000 1.000 0.001 -0.000 15.158 15.171
6 15.747 15.716 -0.031 -0.031 -0.002 0.985 0.258 -0.289 1.760 1.728
7 16.382 16.304 -0.078 -0.079 -0.001 0.986 0.255 -0.334 0.635 0.588
8 19.258 19.260 0.002 0.002 -0.000 1.000 0.002 -0.000 2.876 2.956
9 19.258 19.260 0.002 0.002 -0.000 1.000 0.002 -0.000 0.000 0.000
KS gap: 15.158 (assuming bval:4 ==> bcond:5)
QP gap: 15.171 (OTMS: 15.182)
QP_gap - KS_gap: 0.013 (OTMS: 0.024)
============================================================================================
================================================================================
== DATASET 9 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 9, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 15, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename: getdvdb from: t60o_DS20_DVDB
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
Computing average over the unit cell of the periodic part of the DFPT potentials
Using list of q-points specified by ph_qpath with 5 qpoints
- Results stored in: t60o_DS9_V1QAVG.nc
Use `abiopen.py out_V1QAVG.nc -e` to visualize results
================================================================================
== DATASET 10 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 10, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: -15, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename: getdvdb from: t60o_DS20_DVDB
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
Computing average over the unit cell of the periodic part of the DFPT potentials
Using list of q-points found in the DVDB file
- Results stored in: t60o_DS10_V1QAVG.nc
Use `abiopen.py out_V1QAVG.nc -e` to visualize results
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 4, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
Changing occupation scheme as input occopt and tsmear differ from those read from WFK file.
From WFK file: occopt = 1, tsmear = 0.010000
From input: occopt = 3, tsmear = 0.010000
Adding eph_extrael: -1.693263E-03 to input nelect: 8.000000E+00
Old fermi level: 1.659170E-01, with nelect: 8.000000E+00
New fermi level: 5.528197E-02, with nelect: 7.998307E+00
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
=== Gaps, band edges and relative position wrt Fermi level ===
Direct band gap semiconductor
Fundamental gap: 8.536 (eV)
VBM: -0.193 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 8.342 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Direct gap: 8.536 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
Position of CBM/VBM with respect to the Fermi level:
Notations: mu_e = Fermi level, D_v = (mu_e - VBM), D_c = (CBM - mu_e)
T(K) kT (eV) mu_e (eV) D_v (eV) D_c (eV)
3000.0 0.259 1.407 1.601 6.935
Number of bands in e-ph self-energy sum: 20
From bsum_start: 1 to bsum_stop: 20
Symsigma: 1 Timrev: 1
Imaginary shift in the denominator (zcut): 0.100 [eV]
Method for q-space integration: Standard quadrature
Both Real and Imaginary part of Sigma will be computed.
Number of frequencies along the real axis: 135 , Step: 0.015 [eV]
Number of frequency in generalized Eliashberg functions: 841
Number of temperatures: 1 From: 3.000000E+03 to 3.000000E+03 [K]
Ab-initio q-mesh from DDB file: [2, 2, 2]
Q-mesh used for self-energy integration [ngqpt]: [4, 4, 4]
Number of q-points in the IBZ: 8
asr: 1 chneut: 1
dipdip: 1 symdynmat: 1
Number of k-points for self-energy corrections: 8
sigma_erange: 1.000 1.000 (eV)
List of k-points for self-energy corrections:
1 1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 2 5
2 1 [ 2.5000E-01, 0.0000E+00, 0.0000E+00] 3 4
3 1 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 3 4
4 1 [ 2.5000E-01, 2.5000E-01, 0.0000E+00] 3 4
5 1 [ 5.0000E-01, 2.5000E-01, 0.0000E+00] 4 4
6 1 [-2.5000E-01, 2.5000E-01, 0.0000E+00] 4 4
7 1 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 4
8 1 [-2.5000E-01, 5.0000E-01, 2.5000E-01] 4 4
=== MPI parallelism ===
P Allocating and summing bands from my_bsum_start: 1 up to my_bsum_stop: 20
P Number of CPUs for parallelism over perturbations: 1
P Number of perturbations treated by this CPU: 6
P Number of CPUs for parallelism over q-points: 1
P Number of q-points in the IBZ treated by this proc: 8 of 8
P Number of CPUs for parallelism over bands: 1
P Number of CPUs for parallelism over spins: 1
P Number of CPUs for parallelism over k-points: 1
P Number of k-point in Sigma_nk treated by this proc: 8 of 8
Cannot find eph_ngqpt_fine q-points in DVDB --> Activating Fourier interpolation.
================================================================================
Final results in eV.
Notations:
eKS: Kohn-Sham energy. eQP: quasi-particle energy.
eQP - eKS: Difference between the QP and the KS energy.
SE1(eKS): Real part of the self-energy computed at the KS energy, SE2 for imaginary part.
Z(eKS): Renormalization factor.
FAN: Real part of the Fan term at eKS. DW: Debye-Waller term.
DeKS: KS energy difference between this band and band-1, DeQP same meaning but for eQP.
OTMS: On-the-mass-shell approximation with eQP ~= eKS + Sigma(omega=eKS)
TAU(eKS): Lifetime in femtoseconds computed at the KS energy.
mu_e: Fermi level for given (T, nelect)
K-point: [ 0.0000E+00, 0.0000E+00, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
2 -0.193 -3.707 -3.514 2.618 -1.468 -1.342 -6.642 9.260 0.000 0.000
3 -0.193 -3.707 -3.514 2.618 -1.468 -1.342 -6.642 9.260 0.000 0.000
4 -0.193 -3.707 -3.514 2.618 -1.468 -1.342 -6.642 9.260 0.000 0.000
5 8.342 7.303 -1.040 -1.529 -0.047 0.680 -0.213 -1.316 8.536 11.010
KS gap: 8.536 (assuming bval:4 ==> bcond:5)
QP gap: 11.010 (OTMS: 4.388)
QP_gap - KS_gap: 2.474 (OTMS: -4.148)
============================================================================================
K-point: [ 2.5000E-01, 0.0000E+00, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
3 -0.306 -0.095 0.211 -0.789 -1.917 -0.268 -7.337 6.548 0.000 0.000
4 -0.306 -0.095 0.211 -0.789 -1.917 -0.268 -7.337 6.548 0.000 0.000
============================================================================================
K-point: [ 5.0000E-01, 0.0000E+00, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
3 -0.415 -0.607 -0.192 0.421 -1.685 -0.456 -8.015 8.436 0.000 0.000
4 -0.415 -0.607 -0.192 0.421 -1.685 -0.456 -8.015 8.436 0.000 0.000
============================================================================================
K-point: [ 2.5000E-01, 2.5000E-01, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
3 -0.689 -1.781 -1.092 -1.529 -1.617 0.714 -7.856 6.327 0.000 0.000
4 -0.689 -1.781 -1.092 -1.529 -1.617 0.714 -7.856 6.327 0.000 0.000
============================================================================================
K-point: [ 5.0000E-01, 2.5000E-01, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
4 -0.804 0.374 1.178 -1.724 -1.912 -0.683 -8.180 6.457 0.000 0.000
============================================================================================
K-point: [-2.5000E-01, 2.5000E-01, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
4 -0.426 -1.350 -0.924 1.474 -1.742 -0.627 -8.076 9.549 0.000 0.000
============================================================================================
K-point: [ 5.0000E-01, 5.0000E-01, 0.0000E+00], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
3 -1.171 -1.325 -0.154 -0.957 -1.200 0.161 -7.767 6.811 0.000 0.000
4 -1.171 -1.325 -0.154 -0.957 -1.200 0.161 -7.767 6.811 0.000 0.000
============================================================================================
K-point: [-2.5000E-01, 5.0000E-01, 2.5000E-01], T: 3000.0 [K], mu_e: 1.407
B eKS eQP eQP-eKS SE1(eKS) SE2(eKS) Z(eKS) FAN(eKS) DW DeKS DeQP
4 -0.977 -0.586 0.391 2.340 -1.365 0.167 -8.632 10.972 0.000 0.000
============================================================================================
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 2, nkpt: 8, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1131, }
cutoff_energies: {ecut: 35.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 7, eph_task: 9, }
...
mkfilename: getwfk from: t60o_DS20_WFK
mkfilename: getddb from: t60o_DS20_DDB
mkfilename: getsigeph from: t60o_DS11_SIGEPH.nc
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
- Reading GS states from WFK file: t60o_DS20_WFK
- Reading DDB from file: t60o_DS20_DDB
- Reading DVDB from file: t60o_DS20_DVDB
Changing occupation scheme as input occopt and tsmear differ from those read from WFK file.
From WFK file: occopt = 1, tsmear = 0.010000
From input: occopt = 3, tsmear = 0.010000
Adding eph_extrael: -1.693263E-03 to input nelect: 8.000000E+00
Old fermi level: 1.659170E-01, with nelect: 8.000000E+00
New fermi level: 5.528197E-02, with nelect: 7.998307E+00
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8515040 3.8515040 G(1)= -0.1298194 0.1298194 0.1298194
R(2)= 3.8515040 0.0000000 3.8515040 G(2)= 0.1298194 -0.1298194 0.1298194
R(3)= 3.8515040 3.8515040 0.0000000 G(3)= 0.1298194 0.1298194 -0.1298194
Unit cell volume ucvol= 1.1426706E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Li
2) 0.5000000 0.5000000 0.5000000 F
DDB file with 3 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.004143 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.004143 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 0.004143 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 1.040868E+00 -1.712671E-18 -1.816933E-18
1 2 -1.712671E-18 1.040868E+00 1.608409E-18
1 3 1.712671E-18 1.712671E-18 1.040868E+00
2 1 -1.040868E+00 1.712671E-18 1.816933E-18
2 2 1.712671E-18 -1.040868E+00 -1.608409E-18
2 3 -1.712671E-18 -1.712671E-18 -1.040868E+00
Now, the imaginary part of the dynamical matrix is zeroed
- Found dielectric tensor and Born effective charges in DDB file: t60o_DS20_DDB
- Cannot find quadrupole tensor in DDB file: t60o_DS20_DDB
Values initialized with zeros.
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
--------------------------------------------------------------------------------
Entering cumulant expansion computation driver.
- Reading Sigma results from: t60o_DS11_SIGEPH.nc
Cumulant parameters:
Number of spins: 1
Number of spinor components: 1
Number of k-points computed: 8
Maximum number of bands computed: 4
Number of frequencies in Sigma(w): 135
Number of frequencies in G(w): 135
Number of Temperatures: 1
- Using: 1 MPI procs to distribute: 8 k-points.
- Writing cumulant results to: t60o_DS12_EPH_CUMULANT.nc
Print first 10 frequencies in gw_vals array (re-im) for testing purposes:
spin: 1, ikcalc: 1
gw_vals for itemp:1ib: 1
-2.31377E+00 -2.03942E+00 -1.76068E+00 -1.47812E+00 -1.19231E+00 -9.03825E-01 -6.13243E-01 -3.21156E-01 -2.81548E-02 2.65162E-01
-4.87609E+01 -4.88618E+01 -4.89501E+01 -4.90257E+01 -4.90884E+01 -4.91380E+01 -4.91744E+01 -4.91976E+01 -4.92074E+01 -4.92039E+01
gw_vals for itemp:1ib: 2
-2.31377E+00 -2.03942E+00 -1.76068E+00 -1.47812E+00 -1.19231E+00 -9.03825E-01 -6.13243E-01 -3.21156E-01 -2.81548E-02 2.65162E-01
-4.87609E+01 -4.88618E+01 -4.89501E+01 -4.90257E+01 -4.90884E+01 -4.91380E+01 -4.91744E+01 -4.91976E+01 -4.92074E+01 -4.92039E+01
gw_vals for itemp:1ib: 3
-2.31377E+00 -2.03942E+00 -1.76068E+00 -1.47812E+00 -1.19231E+00 -9.03825E-01 -6.13243E-01 -3.21156E-01 -2.81548E-02 2.65162E-01
-4.87609E+01 -4.88618E+01 -4.89501E+01 -4.90257E+01 -4.90884E+01 -4.91380E+01 -4.91744E+01 -4.91976E+01 -4.92074E+01 -4.92039E+01
gw_vals for itemp:1ib: 4
3.91037E+01 3.73402E+01 3.56474E+01 3.40197E+01 3.24523E+01 3.09408E+01 2.94813E+01 2.80703E+01 2.67046E+01 2.53815E+01
-8.16532E+00 -7.92758E+00 -7.71467E+00 -7.52457E+00 -7.35564E+00 -7.20639E+00 -7.07559E+00 -6.96222E+00 -6.86535E+00 -6.78428E+00
Print first 5 temperatures of diagonal mobility_mu > 1e-6 (with ieh as electrons or holes) for testing purposes:
spin: 1
mobility_mu for itemp:1 ieh: 2 xyz: 1
4.78489E-02
mobility_mu for itemp:1 ieh: 2 xyz: 2
4.78489E-02
mobility_mu for itemp:1 ieh: 2 xyz: 3
4.78489E-02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0000000000E+00 1.0000000000E+00 1.0000000000E+00 Bohr
amu 6.94100000E+00 1.89984032E+01
boxcutmin 1.10000000E+00
ddb_ngqpt 2 2 2
ecut 3.50000000E+01 Hartree
eph_phwinfact1 1.10000000E+00
eph_phwinfact2 1.10000000E+00
eph_phwinfact3 1.10000000E+00
eph_phwinfact4 1.10000000E+00
eph_phwinfact5 1.10000000E+00
eph_phwinfact6 3.90000000E+00
eph_phwinfact7 1.10000000E+00
eph_phwinfact8 1.10000000E+00
eph_phwinfact9 1.10000000E+00
eph_phwinfact10 1.10000000E+00
eph_phwinfact11 1.10000000E+00
eph_phwinfact12 1.10000000E+00
eph_extrael1 0.00000000E+00
eph_extrael2 0.00000000E+00
eph_extrael3 0.00000000E+00
eph_extrael4 0.00000000E+00
eph_extrael5 0.00000000E+00
eph_extrael6 0.00000000E+00
eph_extrael7 0.00000000E+00
eph_extrael8 0.00000000E+00
eph_extrael9 0.00000000E+00
eph_extrael10 0.00000000E+00
eph_extrael11 -1.69326306E-03
eph_extrael12 -1.69326306E-03
eph_intmeth1 1
eph_intmeth2 2
eph_intmeth3 1
eph_intmeth4 2
eph_intmeth5 2
eph_intmeth6 2
eph_intmeth7 2
eph_intmeth8 1
eph_intmeth9 2
eph_intmeth10 2
eph_intmeth11 1
eph_intmeth12 1
eph_ngqpt_fine1 0 0 0
eph_ngqpt_fine2 4 4 4
eph_ngqpt_fine3 4 4 4
eph_ngqpt_fine4 4 4 4
eph_ngqpt_fine5 0 0 0
eph_ngqpt_fine6 4 4 4
eph_ngqpt_fine7 4 4 4
eph_ngqpt_fine8 4 4 4
eph_ngqpt_fine9 0 0 0
eph_ngqpt_fine10 0 0 0
eph_ngqpt_fine11 4 4 4
eph_ngqpt_fine12 4 4 4
eph_phrange_w1 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w2 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w3 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w4 0.00000000E+00 3.67493254E-03 Hartree
eph_phrange_w5 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w6 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w7 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w8 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w9 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w10 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w11 0.00000000E+00 0.00000000E+00 Hartree
eph_phrange_w12 0.00000000E+00 0.00000000E+00 Hartree
eph_prtscratew1 0
eph_prtscratew2 0
eph_prtscratew3 0
eph_prtscratew4 1
eph_prtscratew5 0
eph_prtscratew6 0
eph_prtscratew7 0
eph_prtscratew8 0
eph_prtscratew9 0
eph_prtscratew10 0
eph_prtscratew11 0
eph_prtscratew12 0
eph_restart 1
eph_task1 4
eph_task2 5
eph_task3 4
eph_task4 -4
eph_task5 -5
eph_task6 -4
eph_task7 -4
eph_task8 4
eph_task9 15
eph_task10 -15
eph_task11 4
eph_task12 9
eph_tols_idelta1 1.00000000E-12 1.00000000E-12
eph_tols_idelta2 1.00000000E-12 1.00000000E-12
eph_tols_idelta3 1.00000000E-12 1.00000000E-12
eph_tols_idelta4 1.00000000E-12 1.00000000E-12
eph_tols_idelta5 1.00000000E-12 1.00000000E-12
eph_tols_idelta6 1.00000000E-06 1.00000000E-06
eph_tols_idelta7 1.00000000E-06 1.00000000E-06
eph_tols_idelta8 1.00000000E-12 1.00000000E-12
eph_tols_idelta9 1.00000000E-12 1.00000000E-12
eph_tols_idelta10 1.00000000E-12 1.00000000E-12
eph_tols_idelta11 1.00000000E-12 1.00000000E-12
eph_tols_idelta12 1.00000000E-12 1.00000000E-12
etotal1 0.0000000000E+00
etotal2 0.0000000000E+00
etotal3 0.0000000000E+00
etotal4 0.0000000000E+00
etotal5 0.0000000000E+00
etotal6 0.0000000000E+00
etotal7 0.0000000000E+00
etotal8 0.0000000000E+00
etotal9 0.0000000000E+00
etotal10 0.0000000000E+00
etotal11 0.0000000000E+00
etotal12 0.0000000000E+00
fcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
freqspmax 7.34986508E-02 Hartree
freqspmin -7.34986508E-02 Hartree
getdvdb1 0
getdvdb2 0
getdvdb3 2
getdvdb4 2
getdvdb5 2
getdvdb6 2
getdvdb7 20
getdvdb8 20
getdvdb9 0
getdvdb10 0
getdvdb11 0
getdvdb12 0
gw_qprange1 4
gw_qprange2 0
gw_qprange3 4
gw_qprange4 4
gw_qprange5 0
gw_qprange6 0
gw_qprange7 0
gw_qprange8 4
gw_qprange9 0
gw_qprange10 0
gw_qprange11 0
gw_qprange12 0
jdtset 1 2 3 4 5 6 7 8 9 10
11 12
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen 2.17873965E+01
mixprec 1
P mkmem 8
natom 2
nband1 20
nband2 20
nband3 20
nband4 20
nband5 20
nband6 20
nband7 20
nband8 20
nband9 20
nband10 20
nband11 20
nband12 20
ndtset 12
nfreqsp 135
ngfft 16 16 16
nkpt 8
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ2 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ7 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ8 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ9 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ10 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ11 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ12 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occopt1 1
occopt2 1
occopt3 1
occopt4 1
occopt5 1
occopt6 1
occopt7 1
occopt8 1
occopt9 1
occopt10 1
occopt11 3
occopt12 3
optdriver 7
ph_nqpath1 3
ph_nqpath2 3
ph_nqpath3 3
ph_nqpath4 3
ph_nqpath5 5
ph_nqpath6 3
ph_nqpath7 3
ph_nqpath8 3
ph_nqpath9 5
ph_nqpath10 3
ph_nqpath11 3
ph_nqpath12 3
prteliash 1
prtphdos 0
rifcsph1 0.00000000E+00
rifcsph2 0.00000000E+00
rifcsph3 1.00000000E+01
rifcsph4 0.00000000E+00
rifcsph5 0.00000000E+00
rifcsph6 0.00000000E+00
rifcsph7 0.00000000E+00
rifcsph8 0.00000000E+00
rifcsph9 0.00000000E+00
rifcsph10 0.00000000E+00
rifcsph11 0.00000000E+00
rifcsph12 0.00000000E+00
rprim 0.0000000000E+00 3.8515039575E+00 3.8515039575E+00
3.8515039575E+00 0.0000000000E+00 3.8515039575E+00
3.8515039575E+00 3.8515039575E+00 0.0000000000E+00
sigma_bsum_range1 0 0
sigma_bsum_range2 0 0
sigma_bsum_range3 2 4
sigma_bsum_range4 0 0
sigma_bsum_range5 0 0
sigma_bsum_range6 0 0
sigma_bsum_range7 0 0
sigma_bsum_range8 2 4
sigma_bsum_range9 0 0
sigma_bsum_range10 0 0
sigma_bsum_range11 0 0
sigma_bsum_range12 0 0
sigma_erange1 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange2 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange3 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange4 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange5 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange6 1.83746627E-02 1.83746627E-02 Hartree
sigma_erange7 1.83746627E-02 1.83746627E-02 Hartree
sigma_erange8 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange9 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange10 0.00000000E+00 0.00000000E+00 Hartree
sigma_erange11 3.67493254E-02 3.67493254E-02 Hartree
sigma_erange12 3.67493254E-02 3.67493254E-02 Hartree
sigma_ngkpt1 2 2 2
sigma_ngkpt2 0 0 0
sigma_ngkpt3 2 2 2
sigma_ngkpt4 2 2 2
sigma_ngkpt5 0 0 0
sigma_ngkpt6 2 2 2
sigma_ngkpt7 2 2 2
sigma_ngkpt8 2 2 2
sigma_ngkpt9 0 0 0
sigma_ngkpt10 0 0 0
sigma_ngkpt11 0 0 0
sigma_ngkpt12 0 0 0
spgroup 225
strten1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symv1scf 1
tolcum1 0.00000000E+00
tolcum2 0.00000000E+00
tolcum3 0.00000000E+00
tolcum4 0.00000000E+00
tolcum5 0.00000000E+00
tolcum6 0.00000000E+00
tolcum7 0.00000000E+00
tolcum8 0.00000000E+00
tolcum9 0.00000000E+00
tolcum10 0.00000000E+00
tolcum11 0.00000000E+00
tolcum12 1.00000000E-03
tolwfr 1.00000000E-16
tmesh1 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh2 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh3 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh4 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh5 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh6 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh7 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh8 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh9 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh10 0.00000000E+00 3.00000000E+02 2.00000000E+00
tmesh11 3.00000000E+03 1.00000000E+00 1.00000000E+00
tmesh12 3.00000000E+03 1.00000000E+00 1.00000000E+00
typat 1 2
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0381281131E+00 2.0381281131E+00 2.0381281131E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.8515039575E+00 3.8515039575E+00 3.8515039575E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 3.00000 9.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 7.9 wall= 8.0
================================================================================
Calculation completed.
.Delivered 14 WARNINGs and 24 COMMENTs to log file.
+Overall time at end (sec) : cpu= 7.9 wall= 8.0