abinit/tests/v9/Refs/t45.abo

640 lines
34 KiB
Plaintext

.Version 9.5.1 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Thu 29 Apr 2021.
- ( at 00h36 )
- input file -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Test_suite/v9_t45/t45.abi
- output file -> t45.abo
- root for input files -> t45i
- root for output files -> t45o
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
Symmetries : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need of the present run
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 32
mpw = 150 nfft = 4096 nkpt = 32
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 4.514 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.295 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0300896971E+01 1.0300896971E+01 1.0300896971E+01 Bohr
amu 3.09737620E+01 2.69815390E+01
ecut 5.00000000E+00 Hartree
- fftalg 312
ixc -101130
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.06017939E+01
P mkmem 32
natom 2
nband 4
ngfft 16 16 16
ngfftdg 18 18 18
nkpt 32
nsym 1
ntypat 2
nucdipmom 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.0000000000E+00 0.0000000000E+00 0.0000000000E+00
occ 2.000000 2.000000 2.000000 2.000000
optforces 0
optstress 0
orbmag -2
pawcpxocc 2
pawecutdg 6.00000000E+00 Hartree
prtden 0
prteig 0
prtwf 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
symmorphi 0
tolvrs 1.00000000E-16
typat 1 2
usexcnhat 0
useylm 1
wtk 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
xangst 1.3627499763E+00 1.3627499763E+00 1.3627499763E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart 2.5752242428E+00 2.5752242428E+00 2.5752242428E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
znucl 15.00000 13.00000
================================================================================
chkinp: Checking input parameters for consistency.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: 6.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1504485 5.1504485 G(1)= -0.0970789 0.0970789 0.0970789
R(2)= 5.1504485 0.0000000 5.1504485 G(2)= 0.0970789 -0.0970789 0.0970789
R(3)= 5.1504485 5.1504485 0.0000000 G(3)= 0.0970789 0.0970789 -0.0970789
Unit cell volume ucvol= 2.7325313E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.18228
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.24806
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 7.580664 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/P.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90690075
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.40634E-03 BB= 0.60952E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60765221
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1773 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/jzwanzig_develop/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90363307
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.46377E-03 BB= 0.60291E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60786206
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1771 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
-2.65993774E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 146.250 146.234
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 30, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -8.7881875378280 -8.788E+00 4.024E-02 2.978E-01
ETOT 2 -8.7992887868981 -1.110E-02 9.718E-05 4.735E-02
ETOT 3 -8.7983805533837 9.082E-04 6.272E-06 2.215E-03
ETOT 4 -8.7984993517350 -1.188E-04 7.039E-08 2.228E-04
ETOT 5 -8.7985365569071 -3.721E-05 1.628E-08 1.664E-05
ETOT 6 -8.7985407333543 -4.176E-06 8.997E-10 8.072E-07
ETOT 7 -8.7985409279082 -1.946E-07 4.114E-10 1.667E-08
ETOT 8 -8.7985409296376 -1.729E-09 2.542E-11 3.512E-09
ETOT 9 -8.7985409303391 -7.015E-10 4.287E-12 5.835E-10
ETOT 10 -8.7985409304507 -1.116E-10 1.141E-13 1.016E-10
ETOT 11 -8.7985409304692 -1.852E-11 1.957E-13 4.978E-12
ETOT 12 -8.7985409304694 -2.132E-13 4.219E-15 1.527E-12
ETOT 13 -8.7985409304695 -4.263E-14 5.051E-15 1.004E-13
ETOT 14 -8.7985409304694 1.776E-14 1.392E-16 2.516E-14
ETOT 15 -8.7985409304694 -1.776E-15 3.706E-17 5.829E-16
ETOT 16 -8.7985409304695 -1.776E-14 7.485E-19 5.092E-17
At SCF step 16 nres2 = 5.09E-17 < tolvrs= 1.00E-16 =>converged.
====================================================
Orbital magnetic moment computed with Finite Difference derivative wavefunctions
Orbital magnetic moment, Cartesian directions :
-1.36185896E-03 -4.59517095E-09 -6.82673709E-09
Integral of Berry curvature, Cartesian directions :
2.55455347E-03 1.11890235E-08 -5.63931484E-09
Fermie energy : 1.86491421E-01
Orbital magnetic moment, Term-by-term breakdown :
Conduction space : -1.60120438E-03 -5.09871709E-09 -6.89756540E-09
Valence space IIb : 9.23800887E-05 5.03820146E-10 6.55091162E-11
Valence space Ia+IIa+IIIa : 2.48703132E-09 -7.52673033E-18 -7.16332851E-18
Valence space Ib : 1.34680203E-06 -2.46814071E-13 5.31817255E-12
S(1) PAW overlap : -8.60186705E-07 -6.86683235E-16 -3.98561535E-17
H(1) cprj : 1.36777864E-04 -3.38161916E-14 2.52557093E-16
H(1) on-site 1/2 L_R.B : 7.26613294E-06 7.40786535E-15 8.39534654E-16
H(1) on-site A0.An : 2.43223203E-06 -8.86039761E-17 -2.40425298E-17
Berry curvature : 2.55455347E-03 1.11890235E-08 -5.63931484E-09
====================================================
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1504485, 5.1504485, ]
- [ 5.1504485, 0.0000000, 5.1504485, ]
- [ 5.1504485, 5.1504485, 0.0000000, ]
lattice_lengths: [ 7.28383, 7.28383, 7.28383, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7325313E+02
convergence: {deltae: -1.776E-14, res2: 5.092E-17, residm: 7.485E-19, diffor: 0.000E+00, }
etotal : -8.79854093E+00
entropy : 0.00000000E+00
fermie : 1.86491421E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, P]
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90690 2.53642897
2 1.90363 0.77709585
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.545922034024871
Compensation charge over fine fft grid = -0.545806271339603
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
=== REAL PART:
1.37432 0.02610 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02610 28.09379 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000
0.00000 0.00000 0.26949 0.00000 0.00000 0.00972 0.00000 0.00000
0.00000 0.00000 0.00000 0.26949 0.00000 0.00000 0.00972 0.00000
0.00000 0.00000 0.00000 0.00000 0.26949 0.00000 0.00000 0.00972
0.00000 0.00000 0.00972 0.00000 0.00000 17.75674 -0.00000 0.00000
0.00000 -0.00000 0.00000 0.00972 0.00000 -0.00000 17.75674 0.00000
0.00000 0.00000 0.00000 0.00000 0.00972 0.00000 0.00000 17.75674
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2
=== REAL PART:
0.32753 -0.04464 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.04464 39.58546 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000
0.00000 0.00000 0.07334 0.00000 0.00000 -0.13857 0.00000 0.00000
0.00000 0.00000 0.00000 0.07334 0.00000 0.00000 -0.13857 0.00000
0.00000 0.00000 0.00000 0.00000 0.07334 0.00000 0.00000 -0.13857
0.00000 -0.00000 -0.13857 0.00000 0.00000 23.84199 0.00000 0.00000
0.00000 -0.00000 0.00000 -0.13857 0.00000 0.00000 23.84199 0.00000
0.00000 0.00000 0.00000 0.00000 -0.13857 0.00000 0.00000 23.84199
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00013 -0.00000 -0.00000 -0.00213 -0.00000
0.00000 0.00000 -0.00013 -0.00000 -0.00000 0.00213 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00213 0.00000 -0.00000 0.03220 -0.00000
0.00000 0.00000 0.00213 0.00000 0.00000 -0.03220 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Augmentation waves occupancies Rhoij:
Atom # 1
=== REAL PART:
1.66488 0.00548 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
0.00548 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.15684 0.00000 0.00000 0.00644 -0.00000 0.00000
0.00000 0.00000 0.00000 1.15684 0.00000 -0.00000 0.00644 0.00000
-0.00000 0.00000 0.00000 0.00000 1.15684 0.00000 0.00000 0.00644
0.00000 0.00000 0.00644 -0.00000 0.00000 0.00004 -0.00000 0.00000
0.00000 0.00000 -0.00000 0.00644 0.00000 -0.00000 0.00004 0.00000
0.00000 0.00000 0.00000 0.00000 0.00644 0.00000 0.00000 0.00004
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00006 -0.00000 -0.00000 0.00000 -0.00000
-0.00000 0.00000 -0.00006 -0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
Atom # 2
=== REAL PART:
1.19616 -0.00130 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00130 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00000 0.00000 0.85328 -0.00000 0.00000 -0.00071 0.00000 0.00000
0.00000 0.00000 -0.00000 0.85328 0.00000 0.00000 -0.00071 0.00000
0.00000 0.00000 0.00000 0.00000 0.85328 0.00000 0.00000 -0.00071
0.00000 0.00000 -0.00071 0.00000 0.00000 0.00000 -0.00000 0.00000
0.00000 0.00000 0.00000 -0.00071 0.00000 -0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00071 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00283 0.00000 -0.00000 0.00001 -0.00000
0.00000 0.00000 -0.00283 -0.00000 -0.00000 -0.00001 0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00001 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00001 -0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.768E-20; max= 74.854E-20
reduced coordinates (array xred) for 2 atoms
0.250000000000 0.250000000000 0.250000000000
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 1.36274997628497 1.36274997628497 1.36274997628497
2 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 10.300896971100 10.300896971100 10.300896971100 bohr
= 5.450999905140 5.450999905140 5.450999905140 angstroms
Fermi (or HOMO) energy (hartree) = 0.18649 Average Vxc (hartree)= -0.33355
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.15240 0.02061 0.10378 0.14530
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.59017229872957E+00
hartree : 9.18139447303792E-01
xc : -3.11556169381945E+00
Ewald energy : -8.73435537339883E+00
psp_core : -9.73433600340962E-02
local_psp : -3.09152854800784E+00
spherical_terms : 1.73193631462108E+00
nucl. magn. dipoles : -1.90608155441983E-08
total_energy : -8.79854093366658E+00
total_energy_eV : -2.39420474753924E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.04822369726956E-01
Ewald energy : -8.73435537339883E+00
psp_core : -9.73433600340962E-02
xc_dc : -3.52366581485075E-01
spherical_terms : 8.07020147215871E-02
total_energy_dc : -8.79854093046946E+00
total_energy_dc_eV : -2.39420474666926E+02
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0300896971E+01 1.0300896971E+01 1.0300896971E+01 Bohr
amu 3.09737620E+01 2.69815390E+01
ecut 5.00000000E+00 Hartree
etotal -8.7985409305E+00
fcart 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
- fftalg 312
ixc -101130
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.06017939E+01
P mkmem 32
natom 2
nband 4
ngfft 16 16 16
ngfftdg 18 18 18
nkpt 32
nsym 1
ntypat 2
nucdipmom 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.0000000000E+00 0.0000000000E+00 0.0000000000E+00
occ 2.000000 2.000000 2.000000 2.000000
optforces 0
optstress 0
orbmag -2
pawcpxocc 2
pawecutdg 6.00000000E+00 Hartree
prtden 0
prteig 0
prtwf 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
strten 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
symmorphi 0
tolvrs 1.00000000E-16
typat 1 2
usexcnhat 0
useylm 1
wtk 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
xangst 1.3627499763E+00 1.3627499763E+00 1.3627499763E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart 2.5752242428E+00 2.5752242428E+00 2.5752242428E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
znucl 15.00000 13.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 7.2 wall= 7.2
================================================================================
Calculation completed.
.Delivered 5 WARNINGs and 5 COMMENTs to log file.
+Overall time at end (sec) : cpu= 7.2 wall= 7.2