abinit/tests/v9/Refs/t216.abo

407 lines
16 KiB
Plaintext

******************************************************************************************
Welcome to MULTIBINIT,
a software platform designed for the construction and use of second-principles models
for lattice, spin and electron degrees of freedom.
.Version 10.3.6.2 of MULTIBINIT
.(MPI version, prepared for a x86_64_linux_gnu11.4 computer)
.Copyright (C) 1998-2025 ABINIT group .
MULTIBINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
MULTIBINIT is a software project of the University of Liege
(PHYTHEMA & NANOMAT groups), in collaboration with other partners.
-----------------------------------------------------------------------------------------
MULTIBINIT - LATTICE MODELS
Project initiated and coordinated by Philippe GHOSEZ and his group at ULiege
(Philippe.Ghosez@uliege.be).
Main contributors: Alexandre MARTIN, Jordan BIEDER, Michael Marcus SCHMITT,
Louis BASTOGNE, Xu HE, Alireza SASANI, Huazhang ZHANG, Subhadeep BANDYOPADHYAY,
Philippe GHOSEZ.
Technical support: Xu HE (X.He@uliege.be)
*****************************************************************************************
.Starting date : Mon 31 Mar 2025.
- ( at 16h25 )
- The starting date is more than 2 years after the initial release
- of this version of ABINIT, namely Jul 2022.
- Note that the use beyond 3 years after the release will not be supported.
- Action: please, switch to a more recent version of ABINIT.
- nproc = 1
================================================================================
Read the information in the reference structure in
-/home/hexu/projects/abinit_git/abinit_diff/tests/v9/Input/t216_ddb.in
to initialize the multibinit input
================================================================================
-outvars_multibinit: echo values of input variables ----------------------
Flags :
ifcflag 1
prt_model 2
strcpli -1
Fit the coefficients :
fit_coeff 1
fit_generateCoeff 1
fit_initializeDat 0
fit_weight_T 2.00000000E+02
fit_cutoff 5.40000000E+00
fit_droprat 0.00000000E+00
fit_option 0
fit_iatom 0
fit_ncoeff 6
fit_grid 1 1 1
ts_option 0
fit_rangePower 3 3
fit_dispterms 1
fit_anhaStrain 1
fit_SPCoupling 1
fit_SPC_maxS 2
fit_max_nbody 999
Miscellaneous information :
asr 2
Interatomic Force Constants Inputs :
dipdip 0
dipdip_prt 1
ifcana 0
ifcout 2000000
natifc 5
atifc 1 2 3 4 5
Description of grid 1 :
brav 1
ngqpt 1 1 1
nqshft 1
q1shft
0.00000000E+00 0.00000000E+00 0.00000000E+00
First list of wavevector (reduced coord.) :
nph1l 1
qph1l
0.00000000E+00 0.00000000E+00 0.00000000E+00 0.000E+00
================================================================================
Read the DDB information of the reference system and perform some checks
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.4265196 0.0000000 0.0000000 G(1)= 0.1346526 0.0000000 0.0000000
R(2)= 0.0000000 7.4265196 0.0000000 G(2)= 0.0000000 0.1346526 0.0000000
R(3)= 0.0000000 0.0000000 7.4265196 G(3)= 0.0000000 0.0000000 0.1346526
Unit cell volume ucvol= 4.0959627E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Sr
2) 0.5000000 0.5000000 0.5000000 Ru
3) 0.0000000 0.5000000 0.5000000 O
4) 0.5000000 0.0000000 0.5000000 O
5) 0.5000000 0.5000000 0.0000000 O
DDB file with 5 blocks has been read.
================================================================================
Extraction of the energy of the structure (unit: Hartree)
Energy = -1.735221724034E+02
================================================================================
Extraction of the stress tensor (unit: GPa) and forces (unit: Ha/bohr)
--- !WARNING:
The stress tensor of the reference structure is not specify
The stress tensor will be set to zero
---
================================================================================
Extraction of the clamped elastic tensor (unit:10^2GPa)
3.1281435 1.0182533 1.0182548 -0.0000004 -0.0000033 -0.0000014
1.0182569 3.1281493 1.0182548 -0.0000007 -0.0000003 -0.0000014
1.0182569 1.0182533 3.1281273 -0.0000007 -0.0000033 0.0000003
0.0000000 0.0000000 -0.0000000 0.6540901 0.0000000 0.0000000
0.0000000 0.0000000 -0.0000000 0.0000000 0.6540918 0.0000000
0.0000000 -0.0000000 -0.0000000 0.0000000 0.0000000 0.6540936
================================================================================
Calculation of acoustic sum rule
================================================================================
Calculation of the interatomic forces from DDB
Homogeneous q point set in the B.Z.
Grid q points : 1
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
The interatomic forces have been obtained
================================================================================
Calculation of dynamical matrix for each ph1l points
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 4.398082E-04 4.398082E-04
4.398082E-04 5.833102E-04 5.833102E-04 5.833102E-04 8.700324E-04
8.700324E-04 8.700324E-04 2.744572E-03 2.744572E-03 2.744572E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 9.652673E+01 9.652673E+01
- 9.652673E+01 1.280218E+02 1.280218E+02 1.280218E+02 1.909500E+02
- 1.909500E+02 1.909500E+02 6.023639E+02 6.023639E+02 6.023639E+02
================================================================================
Calculation of the internal-strain tensor
Force-response internal strain tensor(Unit:Hartree/bohr)
Atom dir strainxx strainyy strainzz strainyz strainxz strainxy
1 x 0.0000000 -0.0000000 -0.0000000 0.0000000 -0.0000000 -0.0000000
1 y 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000 0.0000000
1 z 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000 0.0000000
2 x -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000 0.0000000
2 y 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 -0.0000000
2 z 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 -0.0000000
3 x 0.0000000 0.0000000 0.0000000 0.0000000 -0.0000000 -0.0000000
3 y -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
3 z -0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
4 x 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 -0.0000000
4 y -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000
4 z 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000 -0.0000000
5 x 0.0000000 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000
5 y 0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000
5 z -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.0000000 -0.0000000
Bound for ifc SR:
x=[ -1 1], y=[ -1 1] and z=[ -1 1]
================================================================================
Impose acoustic sum rule on total ifc
================================================================================
================================================================================
There is no file for the coefficients from polynomial fitting
================================================================================
-Reading the training-set file :
-/home/hexu/projects/abinit_git/abinit_diff/tests/v9/Input/t216_HIST
================================================================================
Starting Fit Iterations
-----------------------
Select in total fit_ncoeff = 6 coefficients
In 1 iterations
Over 3 irreducible atoms
Selecting 2 coefficients per atom in each iteration
--------------------------------------------------------------------------------
Start Iteration ( 1/ 1)
--------------------------------------------------------------------------------
Starting Fit process
--------------------------------------------------------------------------------
The coefficients for the fit around atom 1: Sr, will be generated
307 coefficients generated
Weighted Goal function values at the begining of the fit process (eV^2/A^2):
Energy : 4.1940807384840558E-07
Forces+Stresses : 5.1787745161779896E-04
Forces : 1.1297734330100945E-04
Stresses : 4.0490010831678954E-04
Goal function values at the begining of the fit process (eV^2/A^2):
Energy : 4.0372994902680415E-05
Forces+Stresses : 7.5067033726562843E-03
Forces : 7.3678370383277398E-03
Stresses : 1.3886633432854463E-04
N Selecting MSDE MSDFS MSDF MSDS
Coefficient (eV^2/A^2) (eV^2/A^2) (eV^2/A^2) (eV^2/A^2)
1 56 4.1986403261E-07 5.1393322948E-04 1.1383649510E-04 4.0009673438E-04
2 101 3.7836968137E-07 5.1034880567E-04 1.1024320278E-04 4.0010560289E-04
Fitted coefficients at the end of the fit process:
56 => 1.9567146499E+01 (Sr_x-O1_x)^1(Sr_y-O2_y)^1(eta_1)^1
101 => -4.8366372421E-02 (Sr_x-O1_x)^1(Sr_y-O1_y[0 -1 0])^1(Sr_y-O3_y[-1 -1 0])^1
Weighted goal function values at the end of the fit process (eV^2/A^2):
Energy : 3.7836968136619577E-07
Forces+Stresses : 5.1034880567091820E-04
Forces : 1.1024320277653815E-04
Stresses : 4.0010560289438008E-04
Goal function values at the end of the fit process (eV^2/A^2):
Energy : 3.6311662181489402E-05
Forces+Stresses : 7.3429837587468180E-03
Forces : 7.0868947803666878E-03
Stresses : 2.5608897838013051E-04
--------------------------------------------------------------------------------
Starting Fit process
--------------------------------------------------------------------------------
The coefficients present in the effective potential will be used for the fit
The coefficients for the fit around atom 2: Ru, will be generated
52 coefficients generated
Weighted Goal function values at the begining of the fit process (eV^2/A^2):
Energy : 4.1940807384840558E-07
Forces+Stresses : 5.1787745161779896E-04
Forces : 1.1297734330100945E-04
Stresses : 4.0490010831678954E-04
Goal function values at the begining of the fit process (eV^2/A^2):
Energy : 4.0372994902680415E-05
Forces+Stresses : 7.5067033726562843E-03
Forces : 7.3678370383277398E-03
Stresses : 1.3886633432854463E-04
N Selecting MSDE MSDFS MSDF MSDS
Coefficient (eV^2/A^2) (eV^2/A^2) (eV^2/A^2) (eV^2/A^2)
3 5 2.6514796589E-07 4.9820319243E-04 9.8119308668E-05 4.0008388376E-04
4 7 2.4409391029E-07 4.9596875340E-04 9.5845743557E-05 4.0012300984E-04
Fitted coefficients at the end of the fit process:
1 => 1.9954864208E+01 (Sr_x-O1_x)^1(Sr_y-O2_y)^1(eta_1)^1
2 => -4.9459137690E-02 (Sr_x-O1_x)^1(Sr_y-O1_y[0 -1 0])^1(Sr_y-O3_y[-1 -1 0])^1
5 => -1.4275624463E-01 (Ru_x-O1_x)^1(Ru_y-O2_y)^1(Ru_y-O1_y[1 0 0])^1
7 => 8.2295094041E-02 (Ru_x-O1_x)^1(Ru_y-O1_y)^2
Weighted goal function values at the end of the fit process (eV^2/A^2):
Energy : 2.4409391028889632E-07
Forces+Stresses : 4.9596875339855595E-04
Forces : 9.5845743557184507E-05
Stresses : 4.0012300984137148E-04
Goal function values at the end of the fit process (eV^2/A^2):
Energy : 2.3153407746619241E-05
Forces+Stresses : 6.2419552405644282E-03
Forces : 5.9740404708668341E-03
Stresses : 2.6791476969759381E-04
--------------------------------------------------------------------------------
Starting Fit process
--------------------------------------------------------------------------------
The coefficients present in the effective potential will be used for the fit
The coefficients for the fit around atom 3: O1, will be generated
552 coefficients generated
Weighted Goal function values at the begining of the fit process (eV^2/A^2):
Energy : 4.1940807384840558E-07
Forces+Stresses : 5.1787745161779896E-04
Forces : 1.1297734330100945E-04
Stresses : 4.0490010831678954E-04
Goal function values at the begining of the fit process (eV^2/A^2):
Energy : 4.0372994902680415E-05
Forces+Stresses : 7.5067033726562843E-03
Forces : 7.3678370383277398E-03
Stresses : 1.3886633432854463E-04
N Selecting MSDE MSDFS MSDF MSDS
Coefficient (eV^2/A^2) (eV^2/A^2) (eV^2/A^2) (eV^2/A^2)
5 23 1.9513509249E-07 4.8886201678E-04 8.8695487760E-05 4.0016652902E-04
6 130 1.2862096243E-07 4.8256536957E-04 8.2358485749E-05 4.0020688382E-04
Fitted coefficients at the end of the fit process:
1 => 1.9755802322E+01 (Sr_x-O1_x)^1(Sr_y-O2_y)^1(eta_1)^1
2 => -5.1069894162E-02 (Sr_x-O1_x)^1(Sr_y-O1_y[0 -1 0])^1(Sr_y-O3_y[-1 -1 0])^1
3 => -1.7261068052E-01 (Ru_x-O1_x)^1(Ru_y-O2_y)^1(Ru_y-O1_y[1 0 0])^1
4 => 8.7275617695E-02 (Ru_x-O1_x)^1(Ru_y-O1_y)^2
23 => 1.4828506049E-01 (O1_x-Ru_x)^1(O1_y-Ru_y[-1 0 0])^1(O1_x-O2_x[-1 1 0])^1
130 => 8.6828096983E-02 (O1_y-Ru_y)^1(O1_x-Sr_x)^1(O1_z-Sr_z[0 1 1])^1
Weighted goal function values at the end of the fit process (eV^2/A^2):
Energy : 1.2862096242594692E-07
Forces+Stresses : 4.8256536957330361E-04
Forces : 8.2358485749242560E-05
Stresses : 4.0020688382406104E-04
Goal function values at the end of the fit process (eV^2/A^2):
Energy : 1.1781847916971001E-05
Forces+Stresses : 5.1194505022300113E-03
Forces : 4.8471324295318993E-03
Stresses : 2.7231807269811198E-04
================================================================================
Generation of the xml file for the model in t216_sys.xml
Generation of the xml file for the fitted polynomial in t216_coeffs.xml
================================================================================
-
- Proc. 0 individual time (sec): cpu= 1.5 wall= 1.5
================================================================================
+Total cpu time 1.520 and wall time 1.521 sec
multibinit : the run completed succesfully.
- [ALL OK] MEMORY CONSUMPTION REPORT FOR C CODE:
- There were 0 allocations and 0 deallocations in C code
- [ALL OK] MEMORY CONSUMPTION REPORT FOR FORTRAN CODE:
- There were 1184115 allocations and 1184115 deallocations in Fortran
- Remaining memory at the end of the calculation is 0