abinit/tests/v9/Refs/t202.abo

1213 lines
70 KiB
Plaintext

.Version 10.1.6.7 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 27 Sep 2024.
- ( at 11h09 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/baguetl_cprj-in-memory-forces/tests/TestBot_MPI1/v9_t202/t202.abi
- output file -> t202.abo
- root for input files -> t202i
- root for output files -> t202o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 10 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 7 xclevel = 1
- mband = 16 mffmem = 1 mkmem = 1
mpw = 40 nfft = 1000 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 16 nfftf = 4096
================================================================================
P This job should need less than 3.608 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 10 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 7 xclevel = 1
- mband = 16 mffmem = 1 mkmem = 1
mpw = 40 nfft = 1000 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 16 nfftf = 4096
================================================================================
P This job should need less than 3.608 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 3 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 10 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 7 xclevel = 1
- mband = 16 mffmem = 1 mkmem = 1
mpw = 40 nfft = 1000 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 16 nfftf = 4096
================================================================================
P This job should need less than 3.608 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.9200000000E+00 7.9200000000E+00 7.9200000000E+00 Bohr
amu 5.86900000E+01 1.59994000E+01
bandpp 8
chksymbreak 0
ecut 4.00000000E+00 Hartree
- fftalg 512
istwfk 1
ixc 7
jdtset 1 2 3
kpt 5.00000000E-01 5.00000000E-01 5.00000000E-01
kptrlatt 1 0 0 0 1 0 0 0 1
kptrlen 5.60028571E+00
P mkmem 1
natom 2
nband 16
ndtset 3
ngfft 10 10 10
ngfftdg 16 16 16
nkpt 1
nblock_lobpcg 2
nstep 100
nsym 48
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
0.000000 0.000000 0.000000 0.000000
occopt 7
pawecutdg 8.00000000E+00 Hartree
prtvol 5
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs 1.00000000E-10
tolwfr1 0.00000000E+00
tolwfr2 0.00000000E+00
tolwfr3 1.00000000E-15
tolwfr_diago1 0.00000000E+00
tolwfr_diago2 1.00000000E-18
tolwfr_diago3 1.00000000E-18
tsmear 5.00000000E-03 Hartree
typat 1 2
useylm 1
wfoptalg 114
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0955417460E+00 2.0955417460E+00 2.0955417460E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.9600000000E+00 3.9600000000E+00 3.9600000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 28.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 16, nsppol: 1, nspinor: 1, nspden: 1, mpw: 40, }
cutoff_energies: {ecut: 4.0, pawecutdg: 8.0, }
electrons: {nelect: 2.40000000E+01, charge: 0.00000000E+00, occopt: 7.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9600000 3.9600000 G(1)= -0.1262626 0.1262626 0.1262626
R(2)= 3.9600000 0.0000000 3.9600000 G(2)= 0.1262626 -0.1262626 0.1262626
R(3)= 3.9600000 3.9600000 0.0000000 G(3)= 0.1262626 0.1262626 -0.1262626
Unit cell volume ucvol= 1.2419827E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 10 10 10
ecut(hartree)= 4.000 => boxcut(ratio)= 2.00306
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 8.000 => boxcut(ratio)= 2.24388
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 10.069997 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/baguetl_cprj-in-memory-forces/tests/Pspdir/28ni.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/baguetl_cprj-in-memory-forces/tests/Pspdir/28ni.paw
- Paw atomic data for element Ni - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.0.5
- 28.00000 18.00000 20061204 znucl, zion, pspdat
7 7 2 0 350 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 5 (lmn_size= 13), orbitals= 0 0 1 1 2
Spheres core radius: rc_sph= 2.30000000
3 radial meshes are used:
- mesh 1: r(i)=AA*exp(BB*(i-2)), size= 350 , AA= 0.11804E-04 BB= 0.35000E-01
- mesh 2: r(i)=step*(i-1), size= 921 , step= 0.25000E-02
- mesh 3: r(i)=AA*exp(BB*(i-2)), size= 391 , AA= 0.11804E-04 BB= 0.35000E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 3
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/baguetl_cprj-in-memory-forces/tests/Pspdir/8o.2.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/baguetl_cprj-in-memory-forces/tests/Pspdir/8o.2.paw
- Paw atomic data extracted from US-psp (D.Vanderbilt): Oxygen
- 8.00000 6.00000 20050722 znucl, zion, pspdat
7 11 2 0 489 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 1.21105161
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 489 , AA= 0.30984E-03 BB= 0.16949E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 548 , AA= 0.30984E-03 BB= 0.16949E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 509 , AA= 0.30984E-03 BB= 0.16949E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 613 , AA= 0.30984E-03 BB= 0.16949E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
1.33188396E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 16 bands with npw= 40 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 40.000 40.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 100, nline: 4, wfoptalg: 114, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -177.04146538414 -1.770E+02 2.530E-12 3.257E+01
ETOT 2 -173.87581233315 3.166E+00 8.368E-14 3.942E+00
ETOT 3 -173.71458637477 1.612E-01 1.922E-10 1.079E-01
ETOT 4 -173.71028667089 4.300E-03 3.620E-11 4.664E-03
ETOT 5 -173.71008537153 2.013E-04 2.765E-12 5.703E-05
ETOT 6 -173.71008142315 3.948E-06 8.828E-15 1.428E-06
ETOT 7 -173.71008154431 -1.212E-07 1.615E-15 3.372E-08
ETOT 8 -173.71008160169 -5.738E-08 2.633E-17 7.379E-10
ETOT 9 -173.71008162031 -1.862E-08 6.089E-19 1.124E-11
At SCF step 9 nres2 = 1.12E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.55109092E-01 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.55109092E-01 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.55109092E-01 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.9600000, 3.9600000, ]
- [ 3.9600000, 0.0000000, 3.9600000, ]
- [ 3.9600000, 3.9600000, 0.0000000, ]
lattice_lengths: [ 5.60029, 5.60029, 5.60029, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2419827E+02
convergence: {deltae: -1.862E-08, res2: 1.124E-11, residm: 6.089E-19, diffor: null, }
etotal : -1.73710082E+02
entropy : 0.00000000E+00
fermie : 2.49946215E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.55109092E-01, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.55109092E-01, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.55109092E-01, ]
pressure_GPa: -4.5635E+03
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ni]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.30000 17.46632626
2 1.21105 2.19730974
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 8.781576190848128
Compensation charge over fine fft grid = 8.781958808787305
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-4.10354 -1.41318 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-1.41318 -0.68852 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69980 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 ...
... only 12 components have been written...
Atom # 2
0.71127 1.20331 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
1.20331 2.03284 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 ...
... only 12 components have been written...
Augmentation waves occupancies Rhoij:
Atom # 1
1.46753 0.50076 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.50076 0.40034 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.12901 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 ...
... only 12 components have been written...
Atom # 2
5.27656 -1.40608 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-1.40608 0.37768 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37362 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 ...
... only 12 components have been written...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 62.504E-21; max= 60.888E-20
0.5000 0.5000 0.5000 1 6.08881E-19 kpt; spin; max resid(k); each band:
1.44E-21 1.90E-21 1.03E-22 1.54E-22 2.38E-23 3.38E-19 6.09E-19 3.34E-20
1.40E-21 1.19E-21 3.86E-21 4.08E-21 4.01E-22 1.03E-22 3.20E-21 1.73E-21
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.09554174601640 2.09554174601640 2.09554174601640
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.920000000000 7.920000000000 7.920000000000 bohr
= 4.191083492033 4.191083492033 4.191083492033 angstroms
prteigrs : about to open file t202o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.24995 Average Vxc (hartree)= -0.55902
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 16, wtk= 1.00000, kpt= 0.5000 0.5000 0.5000 (reduced coord)
-4.83596 -3.22600 -3.22600 -3.03556 -0.70872 -0.41125 -0.41125 -0.27873
-0.03732 -0.03732 0.19838 0.24995 0.24995 0.69061 1.04683 1.04683
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 1.00000 1.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 1.4102E+00 at reduced coord. 0.0000 0.0000 0.0000
)Next maximum= 1.3181E+00 at reduced coord. 0.0000 0.0625 0.9375
) Minimum= 6.0602E-03 at reduced coord. 0.2500 0.2500 0.2500
)Next minimum= 6.0602E-03 at reduced coord. 0.7500 0.7500 0.7500
Integrated= 2.4000E+01
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.34811555494400E+01
hartree : 1.70464186407223E+01
xc : -1.43224001198829E+01
Ewald energy : -1.19061404659597E+02
psp_core : 1.07238525879687E+01
local_psp : -5.59287542643213E+01
spherical_terms : -3.56433067210529E+01
internal : -1.73704438986723E+02
'-kT*entropy' : -5.64189583547796E-03
total_energy : -1.73710080882559E+02
total_energy_eV : -4.72689169124695E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -3.15195844007783E+01
Ewald energy : -1.19061404659597E+02
psp_core : 1.07238525879687E+01
xc_dc : -1.25848149920196E+01
spherical_terms : -2.12624882600503E+01
internal : -1.73704439724476E+02
'-kT*entropy' : -5.64189583547796E-03
total_energy_dc : -1.73710081620312E+02
total_energy_dc_eV : -4.72689171132224E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.55109092E-01 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.55109092E-01 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.55109092E-01 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -4.5635E+03 GPa]
- sigma(1 1)= 4.56346627E+03 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 4.56346627E+03 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.56346627E+03 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 16, nsppol: 1, nspinor: 1, nspden: 1, mpw: 40, }
cutoff_energies: {ecut: 4.0, pawecutdg: 8.0, }
electrons: {nelect: 2.40000000E+01, charge: 0.00000000E+00, occopt: 7.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9600000 3.9600000 G(1)= -0.1262626 0.1262626 0.1262626
R(2)= 3.9600000 0.0000000 3.9600000 G(2)= 0.1262626 -0.1262626 0.1262626
R(3)= 3.9600000 3.9600000 0.0000000 G(3)= 0.1262626 0.1262626 -0.1262626
Unit cell volume ucvol= 1.2419827E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 10 10 10
ecut(hartree)= 4.000 => boxcut(ratio)= 2.00306
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 8.000 => boxcut(ratio)= 2.24388
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 10.069997 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
P newkpt: treating 16 bands with npw= 40 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 40.000 40.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 100, nline: 4, wfoptalg: 114, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -177.04146538414 -1.770E+02 2.530E-12 3.257E+01
ETOT 2 -173.87581233315 3.166E+00 8.368E-14 3.942E+00
ETOT 3 -173.71458637477 1.612E-01 1.922E-10 1.079E-01
ETOT 4 -173.71028667089 4.300E-03 3.620E-11 4.664E-03
ETOT 5 -173.71008537153 2.013E-04 2.765E-12 5.703E-05
ETOT 6 -173.71008142315 3.948E-06 8.828E-15 1.428E-06
ETOT 7 -173.71008154431 -1.212E-07 1.615E-15 3.372E-08
ETOT 8 -173.71008160169 -5.738E-08 2.633E-17 7.379E-10
ETOT 9 -173.71008162031 -1.862E-08 6.089E-19 1.124E-11
At SCF step 9 nres2 = 1.12E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.55109092E-01 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.55109092E-01 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.55109092E-01 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.9600000, 3.9600000, ]
- [ 3.9600000, 0.0000000, 3.9600000, ]
- [ 3.9600000, 3.9600000, 0.0000000, ]
lattice_lengths: [ 5.60029, 5.60029, 5.60029, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2419827E+02
convergence: {deltae: -1.862E-08, res2: 1.124E-11, residm: 6.089E-19, diffor: null, }
etotal : -1.73710082E+02
entropy : 0.00000000E+00
fermie : 2.49946215E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.55109092E-01, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.55109092E-01, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.55109092E-01, ]
pressure_GPa: -4.5635E+03
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ni]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.30000 17.46632626
2 1.21105 2.19730974
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 8.781576190848128
Compensation charge over fine fft grid = 8.781958808775263
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-4.10354 -1.41318 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-1.41318 -0.68852 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69980 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 ...
... only 12 components have been written...
Atom # 2
0.71127 1.20331 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
1.20331 2.03284 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 ...
... only 12 components have been written...
Augmentation waves occupancies Rhoij:
Atom # 1
1.46753 0.50076 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.50076 0.40034 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.12901 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 ...
... only 12 components have been written...
Atom # 2
5.27656 -1.40608 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-1.40608 0.37768 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37362 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 ...
... only 12 components have been written...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 84.118E-21; max= 60.888E-20
0.5000 0.5000 0.5000 1 6.08881E-19 kpt; spin; max resid(k); each band:
1.44E-21 1.90E-21 1.03E-22 1.54E-22 2.38E-23 3.38E-19 6.09E-19 3.34E-20
1.40E-21 1.19E-21 4.03E-20 4.08E-21 4.01E-22 3.51E-20 1.95E-19 8.40E-20
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.09554174601640 2.09554174601640 2.09554174601640
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.920000000000 7.920000000000 7.920000000000 bohr
= 4.191083492033 4.191083492033 4.191083492033 angstroms
prteigrs : about to open file t202o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.24995 Average Vxc (hartree)= -0.55902
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 16, wtk= 1.00000, kpt= 0.5000 0.5000 0.5000 (reduced coord)
-4.83596 -3.22600 -3.22600 -3.03556 -0.70872 -0.41125 -0.41125 -0.27873
-0.03732 -0.03732 0.19838 0.24995 0.24995 0.69061 1.04683 1.04683
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 1.00000 1.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 1.4102E+00 at reduced coord. 0.0000 0.0000 0.0000
)Next maximum= 1.3181E+00 at reduced coord. 0.0000 0.0625 0.9375
) Minimum= 6.0602E-03 at reduced coord. 0.2500 0.2500 0.2500
)Next minimum= 6.0602E-03 at reduced coord. 0.7500 0.7500 0.7500
Integrated= 2.4000E+01
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 2.34811555496874E+01
hartree : 1.70464186407223E+01
xc : -1.43224001198829E+01
Ewald energy : -1.19061404659597E+02
psp_core : 1.07238525879687E+01
local_psp : -5.59287542643213E+01
spherical_terms : -3.56433067210529E+01
internal : -1.73704438986476E+02
'-kT*entropy' : -5.64189583547796E-03
total_energy : -1.73710080882311E+02
total_energy_eV : -4.72689169124022E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -3.15195844007784E+01
Ewald energy : -1.19061404659597E+02
psp_core : 1.07238525879687E+01
xc_dc : -1.25848149920196E+01
spherical_terms : -2.12624882600503E+01
internal : -1.73704439724477E+02
'-kT*entropy' : -5.64189583547796E-03
total_energy_dc : -1.73710081620312E+02
total_energy_dc_eV : -4.72689171132224E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.55109092E-01 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.55109092E-01 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.55109092E-01 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -4.5635E+03 GPa]
- sigma(1 1)= 4.56346627E+03 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 4.56346627E+03 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.56346627E+03 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 1, mband: 16, nsppol: 1, nspinor: 1, nspden: 1, mpw: 40, }
cutoff_energies: {ecut: 4.0, pawecutdg: 8.0, }
electrons: {nelect: 2.40000000E+01, charge: 0.00000000E+00, occopt: 7.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.9600000 3.9600000 G(1)= -0.1262626 0.1262626 0.1262626
R(2)= 3.9600000 0.0000000 3.9600000 G(2)= 0.1262626 -0.1262626 0.1262626
R(3)= 3.9600000 3.9600000 0.0000000 G(3)= 0.1262626 0.1262626 -0.1262626
Unit cell volume ucvol= 1.2419827E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 10 10 10
ecut(hartree)= 4.000 => boxcut(ratio)= 2.00306
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 8.000 => boxcut(ratio)= 2.24388
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 10.069997 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
P newkpt: treating 16 bands with npw= 40 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 40.000 40.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 17, nstep: 100, nline: 4, wfoptalg: 114, }
tolerances: {tolwfr: 1.00E-15, tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -177.04146538414 -1.770E+02 2.530E-12 3.257E+01
ETOT 2 -173.87581233315 3.166E+00 8.368E-14 3.942E+00
ETOT 3 -173.71458637477 1.612E-01 1.922E-10 1.079E-01
ETOT 4 -173.71028667089 4.300E-03 3.620E-11 4.664E-03
ETOT 5 -173.71008537153 2.013E-04 2.765E-12 5.703E-05
ETOT 6 -173.71008142315 3.948E-06 8.828E-15 1.428E-06
ETOT 7 -173.71008154431 -1.212E-07 1.615E-15 3.372E-08
ETOT 8 -173.71008160169 -5.738E-08 2.633E-17 7.379E-10
ETOT 9 -173.71008162031 -1.862E-08 6.089E-19 1.124E-11
At SCF step 9 max residual= 6.09E-19 < tolwfr= 1.00E-15 AND nres2 = 1.12E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.55109092E-01 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.55109092E-01 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.55109092E-01 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.9600000, 3.9600000, ]
- [ 3.9600000, 0.0000000, 3.9600000, ]
- [ 3.9600000, 3.9600000, 0.0000000, ]
lattice_lengths: [ 5.60029, 5.60029, 5.60029, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2419827E+02
convergence: {deltae: -1.862E-08, res2: 1.124E-11, residm: 6.089E-19, diffor: null, }
etotal : -1.73710082E+02
entropy : 0.00000000E+00
fermie : 2.49946215E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.55109092E-01, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.55109092E-01, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.55109092E-01, ]
pressure_GPa: -4.5635E+03
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ni]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.30000 17.46632626
2 1.21105 2.19730974
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 8.781576190848128
Compensation charge over fine fft grid = 8.781958808775263
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-4.10354 -1.41318 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-1.41318 -0.68852 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -3.82823 0.00000 0.00000 -0.89403 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.89403 0.00000 0.00000 -0.40371 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69980 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.69840 ...
... only 12 components have been written...
Atom # 2
0.71127 1.20331 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
1.20331 2.03284 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.48756 0.00000 0.00000 -0.61160 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.61160 0.00000 0.00000 -0.74301 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.02731 ...
... only 12 components have been written...
Augmentation waves occupancies Rhoij:
Atom # 1
1.46753 0.50076 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.50076 0.40034 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.05085 0.00000 0.00000 1.06267 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.06267 0.00000 0.00000 1.08649 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.12901 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.22940 ...
... only 12 components have been written...
Atom # 2
5.27656 -1.40608 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-1.40608 0.37768 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 7.65207 0.00000 0.00000 -4.32747 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -4.32747 0.00000 0.00000 2.48449 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.37362 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05636 ...
... only 12 components have been written...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 84.118E-21; max= 60.888E-20
0.5000 0.5000 0.5000 1 6.08881E-19 kpt; spin; max resid(k); each band:
1.44E-21 1.90E-21 1.03E-22 1.54E-22 2.38E-23 3.38E-19 6.09E-19 3.34E-20
1.40E-21 1.19E-21 4.03E-20 4.08E-21 4.01E-22 3.51E-20 1.95E-19 8.40E-20
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.09554174601640 2.09554174601640 2.09554174601640
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.920000000000 7.920000000000 7.920000000000 bohr
= 4.191083492033 4.191083492033 4.191083492033 angstroms
prteigrs : about to open file t202o_DS3_EIG
Fermi (or HOMO) energy (hartree) = 0.24995 Average Vxc (hartree)= -0.55902
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 16, wtk= 1.00000, kpt= 0.5000 0.5000 0.5000 (reduced coord)
-4.83596 -3.22600 -3.22600 -3.03556 -0.70872 -0.41125 -0.41125 -0.27873
-0.03732 -0.03732 0.19838 0.24995 0.24995 0.69061 1.04683 1.04683
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 1.00000 1.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 1.4102E+00 at reduced coord. 0.0000 0.0000 0.0000
)Next maximum= 1.3181E+00 at reduced coord. 0.0000 0.0625 0.9375
) Minimum= 6.0602E-03 at reduced coord. 0.2500 0.2500 0.2500
)Next minimum= 6.0602E-03 at reduced coord. 0.7500 0.7500 0.7500
Integrated= 2.4000E+01
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 2.34811555496874E+01
hartree : 1.70464186407223E+01
xc : -1.43224001198829E+01
Ewald energy : -1.19061404659597E+02
psp_core : 1.07238525879687E+01
local_psp : -5.59287542643213E+01
spherical_terms : -3.56433067210529E+01
internal : -1.73704438986476E+02
'-kT*entropy' : -5.64189583547796E-03
total_energy : -1.73710080882311E+02
total_energy_eV : -4.72689169124022E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 3, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -3.15195844007784E+01
Ewald energy : -1.19061404659597E+02
psp_core : 1.07238525879687E+01
xc_dc : -1.25848149920196E+01
spherical_terms : -2.12624882600503E+01
internal : -1.73704439724477E+02
'-kT*entropy' : -5.64189583547796E-03
total_energy_dc : -1.73710081620312E+02
total_energy_dc_eV : -4.72689171132224E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.55109092E-01 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.55109092E-01 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.55109092E-01 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -4.5635E+03 GPa]
- sigma(1 1)= 4.56346627E+03 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 4.56346627E+03 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.56346627E+03 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.9200000000E+00 7.9200000000E+00 7.9200000000E+00 Bohr
amu 5.86900000E+01 1.59994000E+01
bandpp 8
chksymbreak 0
ecut 4.00000000E+00 Hartree
etotal1 -1.7371008162E+02
etotal2 -1.7371008162E+02
etotal3 -1.7371008162E+02
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
- fftalg 512
istwfk 1
ixc 7
jdtset 1 2 3
kpt 5.00000000E-01 5.00000000E-01 5.00000000E-01
kptrlatt 1 0 0 0 1 0 0 0 1
kptrlen 5.60028571E+00
P mkmem 1
natom 2
nband 16
ndtset 3
ngfft 10 10 10
ngfftdg 16 16 16
nkpt 1
nblock_lobpcg 2
nstep 100
nsym 48
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 1.000000
1.000000 0.000000 0.000000 0.000000
occopt 7
pawecutdg 8.00000000E+00 Hartree
prtvol 5
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
strten1 1.5510909185E-01 1.5510909185E-01 1.5510909185E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 1.5510909185E-01 1.5510909185E-01 1.5510909185E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 1.5510909185E-01 1.5510909185E-01 1.5510909185E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs 1.00000000E-10
tolwfr1 0.00000000E+00
tolwfr2 0.00000000E+00
tolwfr3 1.00000000E-15
tolwfr_diago1 0.00000000E+00
tolwfr_diago2 1.00000000E-18
tolwfr_diago3 1.00000000E-18
tsmear 5.00000000E-03 Hartree
typat 1 2
useylm 1
wfoptalg 114
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0955417460E+00 2.0955417460E+00 2.0955417460E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.9600000000E+00 3.9600000000E+00 3.9600000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 28.00000 8.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 1.3 wall= 1.4
================================================================================
Calculation completed.
.Delivered 1 WARNINGs and 10 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.3 wall= 1.4