abinit/tests/v9/Refs/t147.abo

2367 lines
112 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h17 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v9_t147/t147.abi
- output file -> t147.abo
- root for input files -> t147i
- root for output files -> t147o
DATASET 1 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 9
lnmax = 3 mgfft = 36 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 1
mpw = 2383 nfft = 46656 nkpt = 1
================================================================================
P This job should need less than 16.002 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.147 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
DATASET 2 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = -3 lmnmax = 9 lnmax = 3
mgfft = 36 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 8 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 2383
nfft = 46656 nkpt = 4
================================================================================
P This job should need less than 14.953 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.584 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
DATASET 3 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = -3 lmnmax = 9 lnmax = 3
mgfft = 36 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 8 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 2383
nfft = 46656 nkpt = 4
================================================================================
P This job should need less than 14.953 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.584 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
DATASET 4 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 9 lnmax = 3
mgfft = 36 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 8 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 2383
nfft = 46656 nkpt = 4
================================================================================
P This job should need less than 18.799 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.584 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
DATASET 5 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 9
lnmax = 3 mgfft = 36 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
mpw = 2383 nfft = 46656 nkpt = 4
================================================================================
P This job should need less than 17.013 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.584 Mbytes ; DEN or POT disk file : 0.358 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.5000000000E+01 1.5000000000E+01 1.5000000000E+01 Bohr
amu 1.00794000E+00 1.89984032E+01
diemac 2.00000000E+00
ecut 6.00000000E+00 Hartree
- fftalg 512
getddk1 0
getddk2 0
getddk3 2
getddk4 2
getddk5 2
getdkdk1 0
getdkdk2 0
getdkdk3 0
getdkdk4 0
getdkdk5 3
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
get1den1 0
get1den2 0
get1den3 0
get1den4 0
get1den5 4
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 4
iscf1 7
iscf2 -3
iscf3 -3
iscf4 7
iscf5 7
ixc 7
jdtset 1 2 3 4 5
kpt1 2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt2 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt3 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt4 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt5 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptopt5 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 3.00000000E+04
lw_qdrpl1 0
lw_qdrpl2 0
lw_qdrpl3 0
lw_qdrpl4 0
lw_qdrpl5 1
P mkmem1 1
P mkmem2 4
P mkmem3 4
P mkmem4 4
P mkmem5 4
P mkqmem1 1
P mkqmem2 4
P mkqmem3 4
P mkqmem4 4
P mkqmem5 4
P mk1mem1 1
P mk1mem2 4
P mk1mem3 4
P mk1mem4 4
P mk1mem5 4
natom 2
nband1 4
nband2 4
nband3 4
nband4 4
nband5 4
ndtset 5
ngfft 36 36 36
nkpt1 1
nkpt2 4
nkpt3 4
nkpt4 4
nkpt5 4
nqpt1 0
nqpt2 1
nqpt3 1
nqpt4 1
nqpt5 1
nstep 80
nsym 8
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
occ5 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 1
optdriver3 1
optdriver4 1
optdriver5 10
prepalw1 0
prepalw2 0
prepalw3 0
prepalw4 2
prepalw5 0
prtpot1 0
prtpot2 1
prtpot3 1
prtpot4 1
prtpot5 0
rfelfd1 0
rfelfd2 2
rfelfd3 0
rfelfd4 3
rfelfd5 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 0
rf2_dkdk1 0
rf2_dkdk2 0
rf2_dkdk3 3
rf2_dkdk4 0
rf2_dkdk5 0
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 99
symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 1
1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 -1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1 0 1 0
1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 -1 0
tolvrs1 1.00000000E-18
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 1.00000000E-08
tolvrs5 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-20
tolwfr3 1.00000000E-20
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
typat 1 2
useylm 1
wtk1 1.00000
wtk2 0.25000 0.25000 0.25000 0.25000
wtk3 0.25000 0.25000 0.25000 0.25000
wtk4 0.25000 0.25000 0.25000 0.25000
wtk5 0.25000 0.25000 0.25000 0.25000
xangst -4.5847913352E-01 0.0000000000E+00 0.0000000000E+00
4.5847913352E-01 0.0000000000E+00 0.0000000000E+00
xcart -8.6640000000E-01 0.0000000000E+00 0.0000000000E+00
8.6640000000E-01 0.0000000000E+00 0.0000000000E+00
xred -5.7760000000E-02 0.0000000000E+00 0.0000000000E+00
5.7760000000E-02 0.0000000000E+00 0.0000000000E+00
znucl 1.00000 9.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 2383, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 15.0000000 0.0000000 0.0000000 G(1)= 0.0666667 0.0000000 0.0000000
R(2)= 0.0000000 15.0000000 0.0000000 G(2)= 0.0000000 0.0666667 0.0000000
R(3)= 0.0000000 0.0000000 15.0000000 G(3)= 0.0000000 0.0000000 0.0666667
Unit cell volume ucvol= 3.3750000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/h.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/h.fhi
- N standard fhi98 ini: Troullier-Martins scheme, llocal= 2
- 1.00000 1.00000 20191111 znucl, zion, pspdat
6 7 0 0 387 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.024700 amesh (Hamman grid)
Note: local psp for atom with Z= 1.0
pspatm : epsatm= -0.00585208
--- l ekb(1:nproj) -->
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/f.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/f.fhi
- F standard fhi98 ini: Troullier-Martins scheme, llocal= 2
- 9.00000 7.00000 20201102 znucl, zion, pspdat
6 7 2 2 477 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.024700 amesh (Hamman grid)
pspatm : epsatm= 3.96133470
--- l ekb(1:nproj) -->
0 2.753113
1 -3.755035
pspatm: atomic psp has been read and splines computed
3.16438610E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 2383.000 2383.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-18, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -15.958947444243 -1.596E+01 1.378E-03 4.018E+03
ETOT 2 -20.867313880545 -4.908E+00 4.569E-01 1.340E+03
ETOT 3 -21.345368126909 -4.781E-01 2.109E-03 3.281E+02
ETOT 4 -21.408593458462 -6.323E-02 1.220E-05 1.797E+02
ETOT 5 -21.470525621489 -6.193E-02 2.381E-05 3.570E+01
ETOT 6 -21.486710970313 -1.619E-02 7.906E-06 1.236E+00
ETOT 7 -21.487316121107 -6.052E-04 5.676E-06 6.958E-02
ETOT 8 -21.487332710103 -1.659E-05 1.436E-06 5.187E-02
ETOT 9 -21.487377988863 -4.528E-05 2.125E-07 3.759E-04
ETOT 10 -21.487378319699 -3.308E-07 1.529E-09 3.039E-05
ETOT 11 -21.487378351085 -3.139E-08 3.258E-11 7.855E-07
ETOT 12 -21.487378351394 -3.098E-10 1.504E-12 1.358E-07
ETOT 13 -21.487378351490 -9.568E-11 4.333E-14 1.448E-09
ETOT 14 -21.487378351492 -1.410E-12 2.036E-14 4.426E-11
ETOT 15 -21.487378351490 1.481E-12 9.225E-18 9.068E-13
ETOT 16 -21.487378351490 -2.949E-13 1.729E-18 1.188E-14
ETOT 17 -21.487378351491 -6.040E-13 3.805E-19 6.297E-16
ETOT 18 -21.487378351491 8.171E-14 4.346E-21 4.542E-17
ETOT 19 -21.487378351491 -3.553E-14 1.829E-21 2.637E-18
ETOT 20 -21.487378351491 -1.386E-13 1.938E-22 5.667E-20
At SCF step 20 vres2 = 5.67E-20 < tolvrs= 1.00E-18 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.23967461E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.81801780E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.81801780E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 15.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 15.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 15.0000000, ]
lattice_lengths: [ 15.00000, 15.00000, 15.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.3750000E+03
convergence: {deltae: -1.386E-13, res2: 5.667E-20, residm: 1.938E-22, diffor: null, }
etotal : -2.14873784E+01
entropy : 0.00000000E+00
fermie : -3.09338918E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.23967461E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.81801780E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 5.81801780E-04, ]
pressure_GPa: -1.4589E+01
xred :
- [ -5.7760E-02, 0.0000E+00, 0.0000E+00, H]
- [ 5.7760E-02, 0.0000E+00, 0.0000E+00, F]
cartesian_forces: # hartree/bohr
- [ -2.33652927E-01, -0.00000000E+00, -0.00000000E+00, ]
- [ 2.33652927E-01, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 2.33652927E-01, max: 2.33652927E-01, mean: 2.33652927E-01, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 3.94457603
2 2.00000 6.71498771
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 96.884E-24; max= 19.381E-23
reduced coordinates (array xred) for 2 atoms
-0.057760000000 0.000000000000 0.000000000000
0.057760000000 0.000000000000 0.000000000000
rms dE/dt= 2.0235E+00; max dE/dt= 3.5048E+00; dE/dt below (all hartree)
1 3.504793673457 0.000000000000 0.000000000000
2 -3.504794143839 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -0.45847913352238 0.00000000000000 0.00000000000000
2 0.45847913352238 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.23365292724317 -0.00000000000000 -0.00000000000000
2 0.23365292724317 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.3489958E-01 2.3365293E-01 1.568E-08 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -12.01491558974651 -0.00000000000000 -0.00000000000000
2 12.01491558974651 -0.00000000000000 -0.00000000000000
frms,max,avg= 6.9368148E+00 1.2014916E+01 8.063E-07 0.000E+00 0.000E+00 e/A
length scales= 15.000000000000 15.000000000000 15.000000000000 bohr
= 7.937658128850 7.937658128850 7.937658128850 angstroms
prteigrs : about to open file t147o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.30934 Average Vxc (hartree)= -0.04703
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 4, wtk= 1.00000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-1.80657 -0.51893 -0.30984 -0.30934
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.00478664649274E+01
hartree : 1.48515882941036E+01
xc : -4.01113551991429E+00
Ewald energy : -1.99989469875513E+00
psp_core : 9.37595880166218E-03
local_psp : -4.16267542576000E+01
non_local_psp : 1.24157540694565E+00
total_energy : -2.14873783514910E+01
total_energy_eV : -5.84701300467477E+02
band_energy : -5.88935022011777E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.23967461E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.81801780E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.81801780E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.4589E+01 GPa]
- sigma(1 1)= 9.53145017E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.71171965E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.71171965E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 2383, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 15.0000000 0.0000000 0.0000000 G(1)= 0.0666667 0.0000000 0.0000000
R(2)= 0.0000000 15.0000000 0.0000000 G(2)= 0.0000000 0.0666667 0.0000000
R(3)= 0.0000000 0.0000000 15.0000000 G(3)= 0.0000000 0.0000000 0.0666667
Unit cell volume ucvol= 3.3750000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -1.2322233931264 -1.232E+00 3.605E-04 0.000E+00
ETOT 2 -1.2326488132262 -4.254E-04 9.920E-08 0.000E+00
ETOT 3 -1.2326489015519 -8.833E-08 6.334E-11 0.000E+00
ETOT 4 -1.2326489016595 -1.076E-10 1.566E-13 0.000E+00
ETOT 5 -1.2326489016598 -2.220E-13 2.705E-16 0.000E+00
ETOT 6 -1.2326489016598 5.107E-15 8.542E-19 0.000E+00
ETOT 7 -1.2326489016598 -8.882E-16 2.395E-21 0.000E+00
At SCF step 7 max residual= 2.39E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.528E-22; max= 23.948E-22
dfpt_looppert : ek2= 2.8073541408E+00
f-sum rule ratio= 9.0481301754E-01
prteigrs : about to open file t147t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.00009 -0.00024 0.00071 -0.00025
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.87691816E+00 eigvalue= 6.94764029E-01 local= -1.36831217E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.54013057E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.92788846E-02 enl1= 7.48327681E-02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.23264890E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1232648902E+01 Ha. Also 2DEtotal= -0.335420824277E+02 eV
( non-var. 2DEtotal : -1.2326489016E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -1.2179902795310 -1.218E+00 4.100E-04 0.000E+00
ETOT 2 -1.2186440880151 -6.538E-04 9.003E-07 0.000E+00
ETOT 3 -1.2186449873898 -8.994E-07 7.324E-10 0.000E+00
ETOT 4 -1.2186449888847 -1.495E-09 1.971E-12 0.000E+00
ETOT 5 -1.2186449888875 -2.764E-12 2.224E-15 0.000E+00
ETOT 6 -1.2186449888875 -2.665E-15 6.547E-18 0.000E+00
ETOT 7 -1.2186449888875 6.439E-15 8.024E-21 0.000E+00
At SCF step 7 max residual= 8.02E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 51.818E-22; max= 80.240E-22
dfpt_looppert : ek2= 2.8073541408E+00
f-sum rule ratio= 8.9083359830E-01
prteigrs : about to open file t147t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.00020 0.00018 -0.00006 -0.00079
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.54309015E+00 eigvalue= 5.41561255E-01 local= -9.04898317E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.50088539E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.88919010E-02 enl1= 6.35954132E-02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.21864499E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1218644989E+01 Ha. Also 2DEtotal= -0.331610165817E+02 eV
( non-var. 2DEtotal : -1.2186449889E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -1.2179902795170 -1.218E+00 4.100E-04 0.000E+00
ETOT 2 -1.2186440880011 -6.538E-04 9.003E-07 0.000E+00
ETOT 3 -1.2186449873758 -8.994E-07 7.324E-10 0.000E+00
ETOT 4 -1.2186449888707 -1.495E-09 1.971E-12 0.000E+00
ETOT 5 -1.2186449888735 -2.761E-12 2.224E-15 0.000E+00
ETOT 6 -1.2186449888735 -3.553E-15 6.547E-18 0.000E+00
ETOT 7 -1.2186449888735 -2.220E-15 8.024E-21 0.000E+00
At SCF step 7 max residual= 8.02E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 51.818E-22; max= 80.240E-22
dfpt_looppert : ek2= 2.8073541408E+00
f-sum rule ratio= 8.9083359829E-01
prteigrs : about to open file t147t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.00020 0.00018 -0.00006 -0.00079
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.54309015E+00 eigvalue= 5.41561255E-01 local= -9.04898317E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.50088539E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.88919010E-02 enl1= 6.35954132E-02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.21864499E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1218644989E+01 Ha. Also 2DEtotal= -0.331610165813E+02 eV
( non-var. 2DEtotal : -1.2186449889E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 0.5869609967 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 0.0000000000 0.0000000000
2 2 0.5384945991 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 0.5384945991 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 2383, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getddk/=0, take file _1WF from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 15.0000000 0.0000000 0.0000000 G(1)= 0.0666667 0.0000000 0.0000000
R(2)= 0.0000000 15.0000000 0.0000000 G(2)= 0.0000000 0.0666667 0.0000000
R(3)= 0.0000000 0.0000000 15.0000000 G(3)= 0.0000000 0.0000000 0.0666667
Unit cell volume ucvol= 3.3750000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 1 idir2 = 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF7
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.42741638135283 -4.274E-01 4.130E-21 0.000E+00
At SCF step 1 max residual= 4.13E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 17.878E-22; max= 41.302E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.76831232E-01 eigvalue= 3.88956581E-01 local= -3.13181702E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.36102586E-04 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 2 idir2 = 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF8
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.39346564281474 -3.935E-01 2.462E-21 0.000E+00
At SCF step 1 max residual= 2.46E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 14.290E-22; max= 24.624E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.59247782E-01 eigvalue= 3.23835368E-01 local= -1.77444351E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 5.05617849E-04 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 3 idir2 = 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF9
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.39346564280543 -3.935E-01 2.462E-21 0.000E+00
At SCF step 1 max residual= 2.46E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 14.290E-22; max= 24.624E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.59247782E-01 eigvalue= 3.23835368E-01 local= -1.77444351E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 5.05617849E-04 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 2 idir2 = 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF8
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF9
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.17752966072487 -1.775E-01 3.783E-21 0.000E+00
At SCF step 1 max residual= 3.78E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.248E-22; max= 37.825E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.12872063E-01 eigvalue= 1.24109551E-01 local= -7.39110133E-02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -5.84558218E-04 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 1 idir2 = 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF7
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF9
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.20365035902012 -2.037E-01 6.327E-21 0.000E+00
At SCF step 1 max residual= 6.33E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 45.800E-22; max= 63.266E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.56292326E-01 eigvalue= 1.27431245E-01 local= -1.03600989E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.19285381E-03 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 1 idir2 = 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF7
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF8
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.20365035902201 -2.037E-01 6.327E-21 0.000E+00
At SCF step 1 max residual= 6.33E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 45.800E-22; max= 63.266E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.56292326E-01 eigvalue= 1.27431245E-01 local= -1.03600989E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.19285381E-03 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 3 idir2 = 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF9
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF8
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.17752966072319 -1.775E-01 3.783E-21 0.000E+00
At SCF step 1 max residual= 3.78E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.248E-22; max= 37.825E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.12872063E-01 eigvalue= 1.24109551E-01 local= -7.39110133E-02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -5.84558218E-04 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 3 idir2 = 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF9
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF7
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.19085775359177 -1.909E-01 7.838E-21 0.000E+00
At SCF step 1 max residual= 7.84E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.200E-22; max= 78.376E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.21801058E-01 eigvalue= 1.40591369E-01 local= -9.52724069E-02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.40281011E-03 enl1= 0.00000000E+00
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : 2nd derivative wrt k, idir1 = 2 idir2 = 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF8
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF7
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.19085775359525 -1.909E-01 7.838E-21 0.000E+00
At SCF step 1 max residual= 7.84E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.200E-22; max= 78.376E-22
One components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.21801058E-01 eigvalue= 1.40591369E-01 local= -9.52724069E-02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 0.00000000E+00 Hartree= 0.00000000E+00 xc= 0.00000000E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.40281011E-03 enl1= 0.00000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 2383, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getddk/=0, take file _1WF from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 15.0000000 0.0000000 0.0000000 G(1)= 0.0666667 0.0000000 0.0000000
R(2)= 0.0000000 15.0000000 0.0000000 G(2)= 0.0000000 0.0666667 0.0000000
R(3)= 0.0000000 0.0000000 15.0000000 G(3)= 0.0000000 0.0000000 0.0666667
Unit cell volume ucvol= 3.3750000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 1 ipert= 2
4) idir= 2 ipert= 2
5) idir= 1 ipert= 4
6) idir= 2 ipert= 4
The following reducible perturbations will also be
explicitly calculated for a correct subsequent
execution of the longwave driver:
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 350.51231423148 -1.273E+02 1.059E-01 1.619E+04
ETOT 2 321.76982719217 -2.874E+01 3.998E-02 3.563E+03
ETOT 3 310.28689307858 -1.148E+01 4.863E-03 7.017E+01
ETOT 4 310.19675042329 -9.014E-02 3.569E-05 4.351E+00
ETOT 5 310.18609965942 -1.065E-02 2.477E-06 6.106E-01
ETOT 6 310.18564758525 -4.521E-04 3.277E-07 1.418E-02
ETOT 7 310.18564334034 -4.245E-06 1.076E-09 2.048E-03
ETOT 8 310.18564194324 -1.397E-06 7.487E-10 2.468E-05
ETOT 9 310.18564193946 -3.785E-09 1.492E-12 4.149E-07
ETOT 10 310.18564193936 -9.962E-11 2.636E-14 4.924E-08
ETOT 11 310.18564193933 -2.569E-11 1.603E-14 4.183E-10
At SCF step 11 vres2 = 4.18E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t147o_DS2_1WF7
-open ddk wf file :t147o_DS2_1WF8
-open ddk wf file :t147o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 77.998E-16; max= 16.032E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.95704669E+02 eigvalue= 6.36368690E+01 local= -1.19346461E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.35213565E+02 Hartree= 5.19479867E+01 xc= -2.00735757E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -4.26270421E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.67606781E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -1.29828071E+02 fr.nonlo= 0.00000000E+00 Ewald= 6.07620494E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.3101856419E+03 Ha. Also 2DEtotal= 0.844058057067E+04 eV
(2DErelax= -1.6760678097E+02 Ha. 2DEnonrelax= 4.7779242291E+02 Ha)
( non-var. 2DEtotal : 3.1018564036E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 2
Found 2 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -15.576748041480 -1.221E+02 1.353E-01 6.533E+03
ETOT 2 -28.614867980523 -1.304E+01 6.287E-03 4.344E+02
ETOT 3 -30.416191707598 -1.801E+00 8.888E-04 2.711E+01
ETOT 4 -30.440468748367 -2.428E-02 7.267E-06 6.771E-01
ETOT 5 -30.440657007284 -1.883E-04 1.965E-07 1.420E-02
ETOT 6 -30.440657509254 -5.020E-07 2.073E-10 6.016E-04
ETOT 7 -30.440657647909 -1.387E-07 1.177E-10 1.837E-05
ETOT 8 -30.440657649391 -1.482E-09 7.596E-13 3.939E-07
ETOT 9 -30.440657649425 -3.476E-11 2.535E-14 7.303E-09
At SCF step 9 vres2 = 7.30E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t147o_DS2_1WF7
-open ddk wf file :t147o_DS2_1WF8
-open ddk wf file :t147o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 14.231E-15; max= 25.350E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.50589114E+02 eigvalue= 3.75042506E+01 local= -6.92307090E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.73976163E+02 Hartree= 3.12131275E+01 xc= -1.44203393E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.33263825E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.36988082E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 4.07425518E+02 fr.nonlo= 0.00000000E+00 Ewald= -3.00878094E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= -0.3044065765E+02 Ha. Also 2DEtotal= -0.828332420249E+03 eV
(2DErelax= -1.3698808152E+02 Ha. 2DEnonrelax= 1.0654742387E+02 Ha)
( non-var. 2DEtotal : -3.0440657803E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 3031.5081198545 -1.778E+03 1.725E+00 9.428E+05
ETOT 2 1022.8481947036 -2.009E+03 2.402E+00 1.846E+05
ETOT 3 316.06755980281 -7.068E+02 2.681E-01 3.113E+03
ETOT 4 310.49751681173 -5.570E+00 3.955E-03 3.201E+02
ETOT 5 310.18599565189 -3.115E-01 1.481E-04 2.162E+00
ETOT 6 310.18553918324 -4.565E-04 2.106E-07 1.317E-01
ETOT 7 310.18552293519 -1.625E-05 1.541E-09 5.971E-03
ETOT 8 310.18552048544 -2.450E-06 1.315E-09 1.131E-04
ETOT 9 310.18552046398 -2.146E-08 1.234E-11 1.923E-06
ETOT 10 310.18552046337 -6.048E-10 1.359E-13 9.754E-08
ETOT 11 310.18552046314 -2.292E-10 1.840E-14 3.659E-09
At SCF step 11 vres2 = 3.66E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t147o_DS2_1WF7
-open ddk wf file :t147o_DS2_1WF8
-open ddk wf file :t147o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.106E-15; max= 18.401E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.05311135E+03 eigvalue= 8.48997768E+02 local= -2.19762509E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -8.77369920E+03 Hartree= 2.15125170E+03 xc= -4.09196194E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 5.28191635E+01 enl1= -2.25018275E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.49935877E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 4.09950934E+03 fr.nonlo= 1.02414456E+02 Ewald= 6.07620494E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.3101855205E+03 Ha. Also 2DEtotal= 0.844057726514E+04 eV
(2DErelax= -4.4993587731E+03 Ha. 2DEnonrelax= 4.8095442936E+03 Ha)
( non-var. 2DEtotal : 3.1018555655E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 2
Found 2 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1861.0226985444 -2.428E+03 3.686E+00 7.136E+05
ETOT 2 227.13652373737 -1.634E+03 8.349E-01 6.493E+04
ETOT 3 -29.377349153027 -2.565E+02 1.081E-01 1.175E+03
ETOT 4 -30.435838070793 -1.058E+00 5.872E-04 1.183E+01
ETOT 5 -30.438043576037 -2.206E-03 1.110E-06 4.618E-01
ETOT 6 -30.438079677112 -3.610E-05 3.257E-08 2.536E-02
ETOT 7 -30.438081191137 -1.514E-06 1.376E-09 8.266E-04
ETOT 8 -30.438081214702 -2.357E-08 2.592E-11 1.104E-05
ETOT 9 -30.438081216865 -2.163E-09 1.553E-12 1.587E-07
ETOT 10 -30.438081217227 -3.629E-10 3.482E-15 2.344E-09
At SCF step 10 vres2 = 2.34E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t147o_DS2_1WF7
-open ddk wf file :t147o_DS2_1WF8
-open ddk wf file :t147o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.136E-16; max= 34.818E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.85037112E+03 eigvalue= 7.13343609E+02 local= -1.85292333E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -8.21719109E+03 Hartree= 1.93770282E+03 xc= -3.83462647E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 5.40344189E+01 enl1= -4.20940975E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.31906607E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 4.32769843E+03 fr.nonlo= 2.61807657E+02 Ewald= -3.00878094E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= -0.3043808122E+02 Ha. Also 2DEtotal= -0.828262311964E+03 eV
(2DErelax= -4.3190660730E+03 Ha. 2DEnonrelax= 4.2886279918E+03 Ha)
( non-var. 2DEtotal : -3.0438039937E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF7
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -0.84054085882765 -8.405E-01 8.259E-04 2.795E+02
ETOT 2 -1.4178427033645 -5.773E-01 3.935E-04 8.018E+01
ETOT 3 -1.6942633505414 -2.764E-01 3.008E-04 3.976E-01
ETOT 4 -1.6952672303876 -1.004E-03 1.620E-07 2.794E-02
ETOT 5 -1.6953028894381 -3.566E-05 4.521E-08 1.983E-03
ETOT 6 -1.6953046950322 -1.806E-06 1.483E-09 8.102E-05
ETOT 7 -1.6953047793100 -8.428E-08 4.825E-11 6.185E-06
ETOT 8 -1.6953047794398 -1.298E-10 6.483E-14 2.585E-07
ETOT 9 -1.6953047795473 -1.074E-10 2.578E-14 2.412E-08
ETOT 10 -1.6953047795722 -2.496E-11 1.908E-14 2.653E-10
At SCF step 10 vres2 = 2.65E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t147o_DS2_1WF7
-open ddk wf file :t147o_DS2_1WF8
-open ddk wf file :t147o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 71.476E-16; max= 19.084E-15
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.11302670E+00 eigvalue= 9.36310704E-01 local= -8.43963422E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -3.39061023E+00 Hartree= 7.11225182E-01 xc= -2.46553995E-01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.52602845E-02 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.69530478E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1695304780E+01 Ha. Also 2DEtotal= -0.461315891166E+02 eV
( non-var. 2DEtotal : -1.6953051151E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t147o_DS2_1WF8
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 80, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -1.3604942916083 -1.360E+00 2.272E-03 1.920E+02
ETOT 2 -1.7991265547254 -4.386E-01 3.273E-04 2.332E+01
ETOT 3 -1.8703971167598 -7.127E-02 3.748E-05 2.746E-01
ETOT 4 -1.8707197962856 -3.227E-04 1.724E-07 2.483E-02
ETOT 5 -1.8707261336511 -6.337E-06 2.150E-09 7.553E-04
ETOT 6 -1.8707268297007 -6.960E-07 3.072E-10 5.692E-06
ETOT 7 -1.8707268318545 -2.154E-09 2.331E-12 2.253E-07
ETOT 8 -1.8707268319109 -5.636E-11 1.622E-14 6.678E-09
At SCF step 8 vres2 = 6.68E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t147o_DS2_1WF7
-open ddk wf file :t147o_DS2_1WF8
-open ddk wf file :t147o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.220E-15; max= 16.223E-15
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.13118378E+00 eigvalue= 1.16478693E+00 local= -9.14257885E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -3.74145661E+00 Hartree= 7.34405441E-01 xc= -3.18954852E-01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 7.35663629E-02 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.87072683E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1870726832E+01 Ha. Also 2DEtotal= -0.509050659203E+02 eV
( non-var. 2DEtotal : -1.8707283057E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 0.761494 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 0.873343 0.000000
2 3 0.000000 0.000000
3 1 0.000000 0.000000
3 2 0.000000 0.000000
3 3 0.873343 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 -1.251754E-01 0.000000E+00 0.000000E+00
1 2 0.000000E+00 -1.875038E-01 0.000000E+00
1 3 0.000000E+00 0.000000E+00 -1.875038E-01
2 1 1.251754E-01 0.000000E+00 0.000000E+00
2 2 0.000000E+00 1.875038E-01 0.000000E+00
2 3 0.000000E+00 0.000000E+00 1.875038E-01
Now, the imaginary part of the dynamical matrix is zeroed
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 310.1856403596 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -310.1855456395 -0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 -0.0000000000
1 1 1 4 -4.6773820503 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 -30.4406578027 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 30.4407306713 -0.0000000000
2 1 3 2 -0.0000000000 -0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -4.7176198893 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 -30.4406578027 0.0000000000
3 1 1 2 0.0000000000 -0.0000000000
3 1 2 2 -0.0000000000 -0.0000000000
3 1 3 2 30.4407306713 -0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 -4.7176198893 0.0000000000
1 2 1 1 -310.1855395789 0.0000000000
1 2 2 1 0.0000000000 -0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 310.1855565458 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
1 2 1 4 -40.8034935114 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 -0.0000000000
2 2 2 1 30.4407187356 0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 -30.4380399373 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
2 2 2 4 -40.0604889962 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 0.0000000000
3 2 3 1 30.4407187356 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 -30.4380399373 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
3 2 3 4 -40.0604889962 0.0000000000
1 4 1 1 -4.6773822358 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 2 -40.8034733062 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 1 4 -1.6953051151 0.0000000000
1 4 2 4 0.0000000000 0.0000000000
1 4 3 4 0.0000000000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 -4.7176144247 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 2 2 -40.0604241622 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 0.0000000000 0.0000000000
2 4 2 4 -1.8707283057 0.0000000000
2 4 3 4 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 -4.7176144247 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -40.0604241622 0.0000000000
3 4 1 4 0.0000000000 0.0000000000
3 4 2 4 0.0000000000 0.0000000000
3 4 3 4 -1.8707283057 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 1.3786024251 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -1.3786024251 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 -0.1352921363 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.1352921363 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 -0.1352921363 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 0.1352921363 0.0000000000
1 2 1 1 -1.3786023981 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 1.3786023981 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.1352920833 0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 -0.1352920833 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 0.0000000000
3 2 3 1 0.1352920833 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 -0.1352920833 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 1.0359754919 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 1.0396980876 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 1.0396980876 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.1251753931 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 0.1251753931 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 -0.1875038393 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 0.1875038393 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 3 4 -0.1875038393 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 0.1875038393 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -0.1251770158 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -0.1875085638 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -0.1875085638 0.0000000000
1 4 1 2 0.1251770158 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 0.1875085638 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 0.1875085638 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-8.805706E-03 -8.805706E-03 0.000000E+00 0.000000E+00 0.000000E+00
2.810913E-02
Phonon frequencies in cm-1 :
- -1.932629E+03 -1.932629E+03 0.000000E+00 0.000000E+00 0.000000E+00
- 6.169241E+03
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
-8.805706E-03 -8.805706E-03 0.000000E+00 0.000000E+00 0.000000E+00
2.810971E-02
Phonon frequencies in cm-1 :
- -1.932629E+03 -1.932629E+03 0.000000E+00 0.000000E+00 0.000000E+00
- 6.169367E+03
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
-8.805706E-03 -8.801608E-03 0.000000E+00 0.000000E+00 0.000000E+00
2.810913E-02
Phonon frequencies in cm-1 :
- -1.932629E+03 -1.931730E+03 0.000000E+00 0.000000E+00 0.000000E+00
- 6.169241E+03
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
-8.805706E-03 -8.801608E-03 0.000000E+00 0.000000E+00 0.000000E+00
2.810913E-02
Phonon frequencies in cm-1 :
- -1.932629E+03 -1.931730E+03 0.000000E+00 0.000000E+00 0.000000E+00
- 6.169241E+03
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 2383, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 10, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : get1wf/=0, take file _1WF from output of DATASET 4.
mkfilename : getddk/=0, take file _1WF from output of DATASET 2.
mkfilename : getdkdk/=0, take file _1WF from output of DATASET 3.
mkfilename : get1den/=0, take file _DEN from output of DATASET 4.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 15.0000000 0.0000000 0.0000000 G(1)= 0.0666667 0.0000000 0.0000000
R(2)= 0.0000000 15.0000000 0.0000000 G(2)= 0.0000000 0.0666667 0.0000000
R(3)= 0.0000000 0.0000000 15.0000000 G(3)= 0.0000000 0.0000000 0.0666667
Unit cell volume ucvol= 3.3750000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
The list of irreducible elements of the spatial-dispersion third-order energy derivatives is:
(in reduced coordinates except for strain pert.)
i1dir i1pert i2dir i2pert i3dir i3pert
1) 1 4 1 1 1 10
2) 2 4 2 1 1 10
3) 1 4 1 2 1 10
4) 2 4 2 2 1 10
5) 2 4 1 1 2 10
6) 1 4 2 1 2 10
7) 2 4 1 2 2 10
8) 1 4 2 2 2 10
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t147o_DS1_WFK
================================================================================
==> Compute spatial-dispersion 3rd-order energy derivatives <==
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF10
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF1
LONGWAVE : perts : 4.1 / 1.1 / 10.1
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF2
LONGWAVE : perts : 4.1 / 1.2 / 10.2
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF4
LONGWAVE : perts : 4.1 / 2.1 / 10.1
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF5
LONGWAVE : perts : 4.1 / 2.2 / 10.2
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF11
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF1
LONGWAVE : perts : 4.2 / 1.1 / 10.2
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF2
LONGWAVE : perts : 4.2 / 1.2 / 10.1
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF4
LONGWAVE : perts : 4.2 / 2.1 / 10.2
-inwffil : will read wavefunctions from disk file t147o_DS4_1WF5
LONGWAVE : perts : 4.2 / 2.2 / 10.1
-- Spatial-dispersion 3rd-order derivatives completed --
First real-space moment of the polarization response
to an atomic displacementatom, in cartesian coordinates,
(1/ucvol factor not included),
efidir atom atdir qgrdir real part imaginary part
1 1 1 1 0.2096031943 -0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
1 2 1 1 -0.6533569569 -0.0000000000
1 2 2 1 0.0000000000 -0.0000000000
1 2 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 -0.6784774174 -0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
2 2 1 1 0.0000000000 -0.0000000000
2 2 2 1 0.6171797686 -0.0000000000
2 2 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 -0.0000000000
3 1 3 1 -0.6784774174 -0.0000000000
3 2 1 1 0.0000000000 -0.0000000000
3 2 2 1 0.0000000000 -0.0000000000
3 2 3 1 0.6171797686 -0.0000000000
1 1 1 2 0.0000000000 -0.0000000000
1 1 2 2 0.0876575140 -0.0000000000
1 1 3 2 0.0000000000 -0.0000000000
1 2 1 2 0.0000000000 -0.0000000000
1 2 2 2 -0.3213315177 -0.0000000000
1 2 3 2 0.0000000000 -0.0000000000
2 1 1 2 0.3753238508 -0.0000000000
2 1 2 2 0.0000000000 -0.0000000000
2 1 3 2 0.0000000000 -0.0000000000
2 2 1 2 -0.4790271123 -0.0000000000
2 2 2 2 0.0000000000 -0.0000000000
2 2 3 2 0.0000000000 -0.0000000000
3 1 1 2 0.0000000000 -0.0000000000
3 1 2 2 0.0000000000 -0.0000000000
3 1 3 2 0.0000000000 -0.0000000000
3 2 1 2 0.0000000000 -0.0000000000
3 2 2 2 0.0000000000 -0.0000000000
3 2 3 2 0.0000000000 -0.0000000000
1 1 1 3 0.0000000000 -0.0000000000
1 1 2 3 0.0000000000 -0.0000000000
1 1 3 3 0.0876575140 -0.0000000000
1 2 1 3 0.0000000000 -0.0000000000
1 2 2 3 0.0000000000 -0.0000000000
1 2 3 3 -0.3213315177 -0.0000000000
2 1 1 3 0.0000000000 -0.0000000000
2 1 2 3 0.0000000000 -0.0000000000
2 1 3 3 0.0000000000 -0.0000000000
2 2 1 3 0.0000000000 -0.0000000000
2 2 2 3 0.0000000000 -0.0000000000
2 2 3 3 0.0000000000 -0.0000000000
3 1 1 3 0.3753238508 -0.0000000000
3 1 2 3 0.0000000000 -0.0000000000
3 1 3 3 0.0000000000 -0.0000000000
3 2 1 3 -0.4790271123 -0.0000000000
3 2 2 3 0.0000000000 -0.0000000000
3 2 3 3 0.0000000000 -0.0000000000
Quadrupole tensor, in cartesian coordinates,
efidir atom atdir qgrdir real part imaginary part
1 1 1 1 0.4192063885 -0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
1 2 1 1 -1.3067139138 -0.0000000000
1 2 2 1 0.0000000000 -0.0000000000
1 2 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 -0.5908199034 -0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
2 2 1 1 0.0000000000 -0.0000000000
2 2 2 1 0.2958482509 -0.0000000000
2 2 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 -0.0000000000
3 1 3 1 -0.5908199034 -0.0000000000
3 2 1 1 0.0000000000 -0.0000000000
3 2 2 1 0.0000000000 -0.0000000000
3 2 3 1 0.2958482509 -0.0000000000
1 1 1 2 0.0000000000 -0.0000000000
1 1 2 2 -0.5908199034 -0.0000000000
1 1 3 2 0.0000000000 -0.0000000000
1 2 1 2 0.0000000000 -0.0000000000
1 2 2 2 0.2958482509 -0.0000000000
1 2 3 2 0.0000000000 -0.0000000000
2 1 1 2 0.7506477016 -0.0000000000
2 1 2 2 0.0000000000 -0.0000000000
2 1 3 2 0.0000000000 -0.0000000000
2 2 1 2 -0.9580542246 -0.0000000000
2 2 2 2 0.0000000000 -0.0000000000
2 2 3 2 0.0000000000 -0.0000000000
3 1 1 2 0.0000000000 -0.0000000000
3 1 2 2 0.0000000000 -0.0000000000
3 1 3 2 0.0000000000 -0.0000000000
3 2 1 2 0.0000000000 -0.0000000000
3 2 2 2 0.0000000000 -0.0000000000
3 2 3 2 0.0000000000 -0.0000000000
1 1 1 3 0.0000000000 -0.0000000000
1 1 2 3 0.0000000000 -0.0000000000
1 1 3 3 -0.5908199034 -0.0000000000
1 2 1 3 0.0000000000 -0.0000000000
1 2 2 3 0.0000000000 -0.0000000000
1 2 3 3 0.2958482509 -0.0000000000
2 1 1 3 0.0000000000 -0.0000000000
2 1 2 3 0.0000000000 -0.0000000000
2 1 3 3 0.0000000000 -0.0000000000
2 2 1 3 0.0000000000 -0.0000000000
2 2 2 3 0.0000000000 -0.0000000000
2 2 3 3 0.0000000000 -0.0000000000
3 1 1 3 0.7506477016 -0.0000000000
3 1 2 3 0.0000000000 -0.0000000000
3 1 3 3 0.0000000000 -0.0000000000
3 2 1 3 -0.9580542246 -0.0000000000
3 2 2 3 0.0000000000 -0.0000000000
3 2 3 3 0.0000000000 -0.0000000000
Electronic (clamped-ion) contribution to the piezoelectric tensor,
in cartesian coordinates, (from sum rule of dynamic quadrupoles or P^1 tensor)
efidir atdir qgrdir real part imaginary part
1 1 1 0.0001314826 -0.0000000000
1 2 1 -0.0000000000 -0.0000000000
1 3 1 -0.0000000000 -0.0000000000
2 1 1 -0.0000000000 -0.0000000000
2 2 1 0.0000181623 -0.0000000000
2 3 1 -0.0000000000 -0.0000000000
3 1 1 -0.0000000000 -0.0000000000
3 2 1 -0.0000000000 -0.0000000000
3 3 1 0.0000181623 -0.0000000000
1 1 2 -0.0000000000 -0.0000000000
1 2 2 0.0000692367 -0.0000000000
1 3 2 -0.0000000000 -0.0000000000
2 1 2 0.0000307269 -0.0000000000
2 2 2 -0.0000000000 -0.0000000000
2 3 2 -0.0000000000 -0.0000000000
3 1 2 -0.0000000000 -0.0000000000
3 2 2 -0.0000000000 -0.0000000000
3 3 2 -0.0000000000 -0.0000000000
1 1 3 -0.0000000000 -0.0000000000
1 2 3 -0.0000000000 -0.0000000000
1 3 3 0.0000692367 -0.0000000000
2 1 3 -0.0000000000 -0.0000000000
2 2 3 -0.0000000000 -0.0000000000
2 3 3 -0.0000000000 -0.0000000000
3 1 3 0.0000307269 -0.0000000000
3 2 3 -0.0000000000 -0.0000000000
3 3 3 -0.0000000000 -0.0000000000
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.5000000000E+01 1.5000000000E+01 1.5000000000E+01 Bohr
amu 1.00794000E+00 1.89984032E+01
diemac 2.00000000E+00
ecut 6.00000000E+00 Hartree
etotal1 -2.1487378351E+01
etotal2 -1.2186449889E+00
etotal3 -1.9085775360E-01
etotal4 -1.8707268319E+00
etotal5 0.0000000000E+00
fcart1 -2.3365292724E-01 -0.0000000000E+00 -0.0000000000E+00
2.3365292724E-01 -0.0000000000E+00 -0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddk1 0
getddk2 0
getddk3 2
getddk4 2
getddk5 2
getdkdk1 0
getdkdk2 0
getdkdk3 0
getdkdk4 0
getdkdk5 3
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
get1den1 0
get1den2 0
get1den3 0
get1den4 0
get1den5 4
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 4
iscf1 7
iscf2 -3
iscf3 -3
iscf4 7
iscf5 7
ixc 7
jdtset 1 2 3 4 5
kpt1 2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt2 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt3 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt4 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt5 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptopt5 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 3.00000000E+04
lw_qdrpl1 0
lw_qdrpl2 0
lw_qdrpl3 0
lw_qdrpl4 0
lw_qdrpl5 1
P mkmem1 1
P mkmem2 4
P mkmem3 4
P mkmem4 4
P mkmem5 4
P mkqmem1 1
P mkqmem2 4
P mkqmem3 4
P mkqmem4 4
P mkqmem5 4
P mk1mem1 1
P mk1mem2 4
P mk1mem3 4
P mk1mem4 4
P mk1mem5 4
natom 2
nband1 4
nband2 4
nband3 4
nband4 4
nband5 4
ndtset 5
ngfft 36 36 36
nkpt1 1
nkpt2 4
nkpt3 4
nkpt4 4
nkpt5 4
nqpt1 0
nqpt2 1
nqpt3 1
nqpt4 1
nqpt5 1
nstep 80
nsym 8
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
occ5 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 1
optdriver3 1
optdriver4 1
optdriver5 10
prepalw1 0
prepalw2 0
prepalw3 0
prepalw4 2
prepalw5 0
prtpot1 0
prtpot2 1
prtpot3 1
prtpot4 1
prtpot5 0
rfelfd1 0
rfelfd2 2
rfelfd3 0
rfelfd4 3
rfelfd5 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 0
rf2_dkdk1 0
rf2_dkdk2 0
rf2_dkdk3 3
rf2_dkdk4 0
rf2_dkdk5 0
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 99
strten1 3.2396746113E-04 5.8180178019E-04 5.8180178019E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 1
1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 -1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1 0 1 0
1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 -1 0
tolvrs1 1.00000000E-18
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 1.00000000E-08
tolvrs5 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-20
tolwfr3 1.00000000E-20
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
typat 1 2
useylm 1
wtk1 1.00000
wtk2 0.25000 0.25000 0.25000 0.25000
wtk3 0.25000 0.25000 0.25000 0.25000
wtk4 0.25000 0.25000 0.25000 0.25000
wtk5 0.25000 0.25000 0.25000 0.25000
xangst -4.5847913352E-01 0.0000000000E+00 0.0000000000E+00
4.5847913352E-01 0.0000000000E+00 0.0000000000E+00
xcart -8.6640000000E-01 0.0000000000E+00 0.0000000000E+00
8.6640000000E-01 0.0000000000E+00 0.0000000000E+00
xred -5.7760000000E-02 0.0000000000E+00 0.0000000000E+00
5.7760000000E-02 0.0000000000E+00 0.0000000000E+00
znucl 1.00000 9.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] First-Principles Theory of Spatial Dispersion: Dynamical Quadrupoles and Flexoelectricity,
- M. Royo and M. Stengel, Phys. Rev. X 9, 021050 (2019).
- Comment : Flexoelectricity (see lw_flexo) or dynamical quadrupoles (see lw_qdrpl) have been computed.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#royo2019
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [4] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [5] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 9.1 wall= 9.1
================================================================================
Calculation completed.
.Delivered 43 WARNINGs and 19 COMMENTs to log file.
+Overall time at end (sec) : cpu= 9.1 wall= 9.1