abinit/tests/v9/Refs/t142.abo

1250 lines
65 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h17 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v9_t142/t142.abi
- output file -> t142.abo
- root for input files -> t142i
- root for output files -> t142o
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 2 nspinor = 1
nsppol = 2 nsym = 1 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 32
mpw = 150 nfft = 4096 nkpt = 32
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 9.338 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.588 Mbytes ; DEN or POT disk file : 0.213 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = -3 lmnmax = 8 lnmax = 4
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 2 nspden = 2 nspinor = 1 nsppol = 2
nsym = 1 n1xccc = 1 ntypat = 2 occopt = 1
xclevel = 2
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 150
nfft = 4096 nkpt = 32
================================================================================
P This job should need less than 3.920 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.588 Mbytes ; DEN or POT disk file : 0.065 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0300896971E+01 1.0300896971E+01 1.0300896971E+01 Bohr
amu 3.09737620E+01 2.69815390E+01
ecut 5.00000000E+00 Hartree
- fftalg 512
getwfk1 0
getwfk2 -1
iscf1 17
iscf2 -3
ixc -101130
jdtset 1 2
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.06017939E+01
lambsig 0.00000000E+00 7.66760000E-04
P mkmem 32
P mkqmem 32
P mk1mem 32
natom 2
nband 4
ndtset 2
ngfft 16 16 16
ngfftdg 24 24 24
nkpt 32
nspden 2
nsppol 2
nstep 10
nsym 1
ntypat 2
nucdipmom 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.0000000000E+00 0.0000000000E+00 0.0000000000E+00
occ 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
optdriver1 0
optdriver2 1
optforces 0
optstress 0
orbmag1 0
orbmag2 2
pawcpxocc 2
pawecutdg 1.00000000E+01 Hartree
prtden 0
prteig 0
prtpot1 0
prtpot2 1
prtwf1 1
prtwf2 0
rfddk1 0
rfddk2 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
spinmagntarget 0.00000000E+00
symmorphi 0
tolvrs1 1.00000000E-18
tolvrs2 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-20
typat 1 2
usexcnhat 0
useylm 1
wtk 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
xangst 1.3627499763E+00 1.3627499763E+00 1.3627499763E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart 2.5752242428E+00 2.5752242428E+00 2.5752242428E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
znucl 15.00000 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 2.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 2, nspinor: 1, nspden: 2, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1504485 5.1504485 G(1)= -0.0970789 0.0970789 0.0970789
R(2)= 5.1504485 0.0000000 5.1504485 G(2)= 0.0970789 -0.0970789 0.0970789
R(3)= 5.1504485 5.1504485 0.0000000 G(3)= 0.0970789 0.0970789 -0.0970789
Unit cell volume ucvol= 2.7325313E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.18228
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.31465
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 13.394057 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90690075
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.40634E-03 BB= 0.60952E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60765221
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1773 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90363307
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.46377E-03 BB= 0.60291E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60786206
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1771 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
-2.65993774E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 146.250 146.234
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-18, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -8.7885319693499 -8.789E+00 4.023E-02 8.824E-01
ETOT 2 -8.7995960492722 -1.106E-02 9.674E-05 1.402E-01
ETOT 3 -8.7986861219632 9.099E-04 6.266E-06 6.576E-03
ETOT 4 -8.7988042825322 -1.182E-04 6.951E-08 6.592E-04
ETOT 5 -8.7988412447869 -3.696E-05 1.626E-08 4.905E-05
ETOT 6 -8.7988453665850 -4.122E-06 8.878E-10 2.374E-06
ETOT 7 -8.7988455572349 -1.906E-07 4.092E-10 4.867E-08
ETOT 8 -8.7988455588943 -1.659E-09 2.516E-11 1.023E-08
ETOT 9 -8.7988455595755 -6.813E-10 4.241E-12 1.707E-09
ETOT 10 -8.7988455596861 -1.106E-10 1.117E-13 2.978E-10
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
density residual= 2.978E-10 exceeds tolvrs= 1.000E-18
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1504485, 5.1504485, ]
- [ 5.1504485, 0.0000000, 5.1504485, ]
- [ 5.1504485, 5.1504485, 0.0000000, ]
lattice_lengths: [ 7.28383, 7.28383, 7.28383, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7325313E+02
convergence: {deltae: -1.106E-10, res2: 2.978E-10, residm: 1.117E-13, diffor: 0.000E+00, }
etotal : -8.79884556E+00
entropy : 0.00000000E+00
fermie : 1.86474279E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, P]
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 1.90690 1.295536 1.295536 2.591073 -0.000000
2 1.90363 0.388718 0.388718 0.777437 -0.000000
---------------------------------------------------------------------
Sum: 1.684255 1.684255 3.368509 -0.000000
Total magnetization (from the atomic spheres): -0.000000
Total magnetization (exact up - dn): 0.000000
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.546065124780832
Compensation charge over fine fft grid = -0.545952688288552
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1 - Spin component 1
=== REAL PART:
1.37418 0.02590 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
0.02590 28.09307 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 0.26947 0.00000 0.00000 0.00972 0.00000 0.00000
0.00000 -0.00000 0.00000 0.26947 0.00000 0.00000 0.00972 0.00000
-0.00000 0.00000 0.00000 0.00000 0.26947 0.00000 0.00000 0.00972
-0.00000 0.00000 0.00972 0.00000 0.00000 17.75511 0.00000 0.00000
-0.00000 0.00000 0.00000 0.00972 0.00000 0.00000 17.75511 0.00000
0.00000 -0.00000 0.00000 0.00000 0.00972 0.00000 0.00000 17.75511
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 1 - Spin component 2
=== REAL PART:
1.37418 0.02590 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
0.02590 28.09307 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 0.26947 0.00000 0.00000 0.00972 0.00000 0.00000
0.00000 -0.00000 0.00000 0.26947 0.00000 0.00000 0.00972 0.00000
-0.00000 0.00000 0.00000 0.00000 0.26947 0.00000 0.00000 0.00972
-0.00000 0.00000 0.00972 0.00000 0.00000 17.75511 0.00000 0.00000
-0.00000 0.00000 0.00000 0.00972 0.00000 0.00000 17.75511 0.00000
0.00000 -0.00000 0.00000 0.00000 0.00972 0.00000 0.00000 17.75511
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Spin component 1
=== REAL PART:
0.32752 -0.04467 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
-0.04467 39.58583 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 0.07334 -0.00000 0.00000 -0.13862 0.00000 -0.00000
0.00000 -0.00000 -0.00000 0.07334 0.00000 0.00000 -0.13862 -0.00000
-0.00000 0.00000 0.00000 0.00000 0.07334 -0.00000 -0.00000 -0.13862
-0.00000 0.00000 -0.13862 0.00000 -0.00000 23.84380 -0.00000 0.00000
-0.00000 0.00000 0.00000 -0.13862 -0.00000 -0.00000 23.84380 0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.13862 0.00000 0.00000 23.84380
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00007 -0.00000 -0.00000 -0.00106 -0.00000
0.00000 0.00000 -0.00007 -0.00000 -0.00000 0.00106 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00106 0.00000 -0.00000 0.01610 -0.00000
0.00000 0.00000 0.00106 0.00000 0.00000 -0.01610 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Spin component 2
=== REAL PART:
0.32752 -0.04467 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
-0.04467 39.58583 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 0.07334 -0.00000 0.00000 -0.13862 0.00000 -0.00000
0.00000 -0.00000 -0.00000 0.07334 0.00000 0.00000 -0.13862 -0.00000
-0.00000 0.00000 0.00000 0.00000 0.07334 -0.00000 -0.00000 -0.13862
-0.00000 0.00000 -0.13862 0.00000 -0.00000 23.84380 -0.00000 0.00000
-0.00000 0.00000 0.00000 -0.13862 -0.00000 -0.00000 23.84380 0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.13862 0.00000 0.00000 23.84380
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00007 -0.00000 -0.00000 -0.00106 -0.00000
0.00000 0.00000 -0.00007 -0.00000 -0.00000 0.00106 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00106 0.00000 -0.00000 0.01610 -0.00000
0.00000 0.00000 0.00106 0.00000 0.00000 -0.01610 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Augmentation waves occupancies Rhoij:
Atom # 1 - Spin component 1
=== REAL PART:
0.83277 0.00273 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00273 0.00001 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 0.00000 0.57843 0.00000 -0.00000 0.00322 0.00000 -0.00000
-0.00000 0.00000 0.00000 0.57843 0.00000 0.00000 0.00322 0.00000
0.00000 -0.00000 -0.00000 0.00000 0.57843 -0.00000 0.00000 0.00322
0.00000 0.00000 0.00322 0.00000 -0.00000 0.00002 0.00000 0.00000
0.00000 0.00000 0.00000 0.00322 0.00000 0.00000 0.00002 0.00000
-0.00000 0.00000 -0.00000 0.00000 0.00322 0.00000 0.00000 0.00002
=== IMAGINARY PART:
0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00001 0.00000 -0.00000 0.00000 -0.00000
0.00000 -0.00000 -0.00001 -0.00000 -0.00000 -0.00000 0.00000 -0.00000
-0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
Atom # 1 - Spin component 2
=== REAL PART:
0.83277 0.00273 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00273 0.00001 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 0.00000 0.57843 0.00000 -0.00000 0.00322 0.00000 -0.00000
-0.00000 0.00000 0.00000 0.57843 0.00000 0.00000 0.00322 0.00000
0.00000 -0.00000 -0.00000 0.00000 0.57843 -0.00000 0.00000 0.00322
0.00000 0.00000 0.00322 0.00000 -0.00000 0.00002 0.00000 0.00000
0.00000 0.00000 0.00000 0.00322 0.00000 0.00000 0.00002 0.00000
-0.00000 0.00000 -0.00000 0.00000 0.00322 0.00000 0.00000 0.00002
=== IMAGINARY PART:
-0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00001 0.00000 -0.00000 0.00000 -0.00000
0.00000 -0.00000 -0.00001 0.00000 -0.00000 -0.00000 0.00000 -0.00000
-0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Spin component 1
=== REAL PART:
0.59813 -0.00065 -0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00065 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
-0.00000 0.00000 0.42659 0.00000 -0.00000 -0.00035 0.00000 0.00000
-0.00000 -0.00000 0.00000 0.42659 -0.00000 0.00000 -0.00035 0.00000
0.00000 0.00000 -0.00000 -0.00000 0.42659 0.00000 0.00000 -0.00035
0.00000 0.00000 -0.00035 0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00000 0.00000 0.00000 -0.00035 0.00000 -0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00035 0.00000 0.00000 0.00000
=== IMAGINARY PART:
0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00073 -0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00073 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Spin component 2
=== REAL PART:
0.59813 -0.00065 -0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00065 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
-0.00000 0.00000 0.42659 0.00000 -0.00000 -0.00035 0.00000 0.00000
-0.00000 -0.00000 0.00000 0.42659 -0.00000 0.00000 -0.00035 0.00000
0.00000 0.00000 -0.00000 -0.00000 0.42659 0.00000 0.00000 -0.00035
0.00000 0.00000 -0.00035 0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00000 0.00000 0.00000 -0.00035 0.00000 -0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00035 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 -0.00000 0.00073 -0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00073 0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.830E-15; max= 11.166E-14
reduced coordinates (array xred) for 2 atoms
0.250000000000 0.250000000000 0.250000000000
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 1.36274997628497 1.36274997628497 1.36274997628497
2 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 10.300896971100 10.300896971100 10.300896971100 bohr
= 5.450999905140 5.450999905140 5.450999905140 angstroms
Fermi (or HOMO) energy (hartree) = 0.18647 Average Vxc (hartree)= -0.33357
Eigenvalues (hartree) for nkpt= 32 k points, SPIN UP:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.15248 0.02060 0.10379 0.14530
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 32 k points, SPIN DOWN:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.15248 0.02060 0.10379 0.14530
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.59033324517902E+00
hartree : 9.18229958665547E-01
xc : -3.11568102160527E+00
Ewald energy : -8.73435537339883E+00
psp_core : -9.73433600340962E-02
local_psp : -3.09233785645557E+00
spherical_terms : 1.73230162172548E+00
nucl. magn. dipoles : -9.84953967199360E-09
total_energy : -8.79885279577327E+00
total_energy_eV : -2.39428960953421E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.04637607279180E-01
Ewald energy : -8.73435537339883E+00
psp_core : -9.73433600340962E-02
xc_dc : -3.52446345070427E-01
spherical_terms : 8.06619115380485E-02
total_energy_dc : -8.79884555968613E+00
total_energy_dc_eV : -2.39428764049476E+02
...
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 2, nspinor: 1, nspden: 2, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfddk: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1504485 5.1504485 G(1)= -0.0970789 0.0970789 0.0970789
R(2)= 5.1504485 0.0000000 5.1504485 G(2)= 0.0970789 -0.0970789 0.0970789
R(3)= 5.1504485 5.1504485 0.0000000 G(3)= 0.0970789 0.0970789 -0.0970789
Unit cell volume ucvol= 2.7325313E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.18228
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.31465
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 13.394057 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/P.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90690075
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.40634E-03 BB= 0.60952E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60765221
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1773 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pbe_std/Al.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90363307
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.46377E-03 BB= 0.60291E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60786206
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1771 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -9.7149352336916 -9.715E+00 1.129E-02 0.000E+00
ETOT 2 -9.7175790565889 -2.644E-03 6.706E-06 0.000E+00
ETOT 3 -9.7175808276366 -1.771E-06 5.966E-09 0.000E+00
ETOT 4 -9.7175808298722 -2.236E-09 5.156E-12 0.000E+00
ETOT 5 -9.7175808298753 -3.066E-12 9.513E-15 0.000E+00
ETOT 6 -9.7175808298753 -1.243E-14 9.544E-18 0.000E+00
ETOT 7 -9.7175808298753 0.000E+00 1.845E-20 0.000E+00
ETOT 8 -9.7175808298753 3.553E-15 8.807E-21 0.000E+00
At SCF step 8 max residual= 8.81E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.252E-22; max= 88.069E-22
dfpt_looppert : ek2= 1.7858742990E+01
f-sum rule ratio= 1.2091284936E+00
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.07323 -0.08306 0.19740 0.15068
prteigrs : prtvol=0 or 1, do not print more k-points.
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.07323 -0.08306 0.19740 0.15068
prteigrs : prtvol=0 or 1, do not print more k-points.
Nine components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.81476977E+01 eigvalue= -7.23843381E+00 local= -3.07839895E+01 nclr dpl0= -8.19181528E-08
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.15935150E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00 nclr dpl1= 5.92031659E-09
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.94833022E+01 enl1= 2.26735756E+00
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -9.71758083E+00
11 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -5.45021012E-02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.9717580830E+01 Ha. Also 2DEtotal= -0.264428822152E+03 eV
( non-var. 2DEtotal : -9.7175808280E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -9.7149343519696 -9.715E+00 1.129E-02 0.000E+00
ETOT 2 -9.7175781723651 -2.644E-03 6.706E-06 0.000E+00
ETOT 3 -9.7175799434103 -1.771E-06 5.967E-09 0.000E+00
ETOT 4 -9.7175799456461 -2.236E-09 5.162E-12 0.000E+00
ETOT 5 -9.7175799456491 -3.045E-12 9.520E-15 0.000E+00
ETOT 6 -9.7175799456491 -1.776E-14 9.559E-18 0.000E+00
ETOT 7 -9.7175799456491 8.882E-15 1.848E-20 0.000E+00
ETOT 8 -9.7175799456491 -3.553E-15 8.807E-21 0.000E+00
At SCF step 8 max residual= 8.81E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.252E-22; max= 88.069E-22
dfpt_looppert : ek2= 1.7858742990E+01
f-sum rule ratio= 1.2091283827E+00
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.11824 0.18163 0.19406 -0.04246
prteigrs : prtvol=0 or 1, do not print more k-points.
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.11824 0.18163 0.19406 -0.04246
prteigrs : prtvol=0 or 1, do not print more k-points.
Nine components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.81476896E+01 eigvalue= -7.23843143E+00 local= -3.07839756E+01 nclr dpl0= -8.19181659E-08
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.15935130E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00 nclr dpl1= 5.92031036E-09
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.94832933E+01 enl1= 2.26735733E+00
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -9.71757995E+00
11 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -5.45021005E-02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.9717579946E+01 Ha. Also 2DEtotal= -0.264428798091E+03 eV
( non-var. 2DEtotal : -9.7175799493E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -9.7149331432333 -9.715E+00 1.130E-02 0.000E+00
ETOT 2 -9.7175769591483 -2.644E-03 6.705E-06 0.000E+00
ETOT 3 -9.7175787301899 -1.771E-06 5.968E-09 0.000E+00
ETOT 4 -9.7175787324257 -2.236E-09 5.169E-12 0.000E+00
ETOT 5 -9.7175787324287 -3.077E-12 9.531E-15 0.000E+00
ETOT 6 -9.7175787324287 1.776E-15 9.582E-18 0.000E+00
ETOT 7 -9.7175787324287 0.000E+00 1.852E-20 0.000E+00
ETOT 8 -9.7175787324287 1.776E-14 8.807E-21 0.000E+00
At SCF step 8 max residual= 8.81E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.252E-22; max= 88.070E-22
dfpt_looppert : ek2= 1.7858742990E+01
f-sum rule ratio= 1.2091282301E+00
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.09571 -0.04929 -0.19581 -0.05384
prteigrs : prtvol=0 or 1, do not print more k-points.
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.09571 -0.04929 -0.19581 -0.05384
prteigrs : prtvol=0 or 1, do not print more k-points.
Nine components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.81476785E+01 eigvalue= -7.23842820E+00 local= -3.07839565E+01 nclr dpl0= -8.19181312E-08
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.15935103E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00 nclr dpl1= 5.92031286E-09
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.94832809E+01 enl1= 2.26735701E+00
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -9.71757873E+00
11 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -5.45020988E-02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.9717578732E+01 Ha. Also 2DEtotal= -0.264428765078E+03 eV
( non-var. 2DEtotal : -9.7175787438E+00 Ha)
====================================================
Orbital magnetic moment computed with DFPT derivative wavefunctions
Orbital magnetic moment, Cartesian directions :
-3.19792519E-04 3.27739736E-09 6.02033303E-10
Chern vector, Cartesian directions :
4.56644940E-06 7.24712683E-11 -7.36254432E-11
Orbital magnetic moment, term-by-term breakdown :
rho(1) CC : 2.80712937E-04 2.44185858E-09 7.58603702E-10
rho(1) VV1 : -6.95506620E-06 5.20372113E-12 -4.87258864E-12
rho(1) VV2 : -1.25954166E-09 3.97725022E-13 6.95423957E-13
rho(0) NL : 1.79311367E-04 8.76014192E-10 -2.10954640E-10
<L_R> terms : -3.66856036E-06 -4.60568261E-11 5.85689343E-11
<A0.An> terms : -2.43193705E-06 -2.00348680E-14 -7.52816250E-15
Lamb terms : -7.66760000E-04 0.00000000E+00 0.00000000E+00
Chern vector, term-by-term breakdown :
Ch CC : 4.39315874E-06 7.08647753E-11 -7.31520080E-11
Ch vv1 : 1.73290661E-07 1.60649291E-12 -4.73435244E-13
Ch vv2 : -5.29395592E-23 1.01387938E-22 9.95762081E-24
Term-by-term breakdowns for each band :
band 1 of 4; spin polarization 1 of 2
Orbital magnetic moment : 3.20639333E-05 9.58677432E-10 -4.43535932E-10
rho(1) CC : 3.17054950E-06 1.73852999E-11 -1.37953988E-11
rho(1) VV1 : -9.75116293E-07 1.27454451E-12 -2.04241017E-12
rho(1) VV2 : -9.21789518E-09 1.01106125E-13 4.56459919E-13
rho(0) NL : 1.40559245E-05 4.60473821E-10 -2.04421796E-10
<L_R> terms : -5.79398856E-08 6.35052579E-13 4.28361801E-13
<A0.An> terms : -1.52235487E-07 3.65602737E-14 4.46277765E-15
Chern vector : 2.29214682E-09 -6.60427900E-13 -1.00590999E-13
Ch CC : -9.08418188E-09 -3.14132649E-13 -6.37515083E-14
Ch VV1 : 1.01435123E-08 -1.34188916E-14 2.23648191E-14
Ch VV2 : 8.67455155E-11 -1.32447696E-15 -4.67331100E-15
band 1 of 4; spin polarization 2 of 2
Orbital magnetic moment : 3.20639333E-05 9.58677432E-10 -4.43535932E-10
rho(1) CC : 3.17054944E-06 1.73777155E-11 -1.37580054E-11
rho(1) VV1 : -9.75116500E-07 1.48169336E-12 -1.42097120E-12
rho(1) VV2 : -9.21712535E-09 2.26692861E-13 5.74669071E-13
rho(0) NL : 1.40559284E-05 4.59193567E-10 -2.09944613E-10
<L_R> terms : -5.79398717E-08 4.54830818E-13 3.78829857E-13
<A0.An> terms : -1.52235487E-07 3.65481134E-14 4.47857883E-15
Chern vector : 2.29214682E-09 -6.60427900E-13 -1.00590999E-13
Ch CC : -9.08418144E-09 -3.13972462E-13 -6.41504420E-14
Ch VV1 : 1.01435146E-08 -1.56553735E-14 1.56553731E-14
Ch VV2 : 8.67376982E-11 -1.92404762E-15 -6.03593027E-15
band 2 of 4; spin polarization 1 of 2
Orbital magnetic moment : 1.55841272E-04 1.44150716E-10 1.78971780E-11
rho(1) CC : 3.69218418E-05 1.10945513E-10 -1.56315312E-11
rho(1) VV1 : -1.18277671E-06 9.87342270E-13 -7.67722860E-13
rho(1) VV2 : 1.22874524E-08 6.45427471E-14 -1.50870210E-13
rho(0) NL : 4.15904949E-05 1.14935444E-11 4.60023729E-11
<L_R> terms : 9.16332314E-07 -2.80482260E-11 -1.48577686E-11
<A0.An> terms : -3.37543392E-07 -1.79544710E-15 -6.65964300E-16
Chern vector : -1.03518644E-06 7.93788942E-13 2.02354963E-12
Ch CC : -5.45339205E-07 4.26694118E-13 9.94760521E-13
Ch VV1 : 2.80476549E-08 -2.19454788E-14 1.69133943E-14
Ch VV2 : -3.01675956E-10 -1.64632724E-15 3.60829929E-15
band 2 of 4; spin polarization 2 of 2
Orbital magnetic moment : 1.55841272E-04 1.44150716E-10 1.78971780E-11
rho(1) CC : 3.69218809E-05 7.20343713E-11 -5.47883957E-11
rho(1) VV1 : -1.18277710E-06 1.24265937E-12 -3.55908684E-13
rho(1) VV2 : 1.22873876E-08 1.23338963E-13 -1.55256311E-13
rho(0) NL : 4.15904553E-05 3.51099725E-12 7.33775319E-11
<L_R> terms : 9.16332371E-07 -2.81997786E-11 -1.47739446E-11
<A0.An> terms : -3.37543392E-07 -1.79369193E-15 -6.62624713E-16
Chern vector : -1.03518644E-06 7.93788942E-13 2.02354963E-12
Ch CC : -5.45339204E-07 4.24669487E-13 9.97208853E-13
Ch VV1 : 2.80476634E-08 -3.10311865E-14 7.82768649E-15
Ch VV2 : -3.01674777E-10 -2.95167057E-15 3.23088054E-15
band 3 of 4; spin polarization 1 of 2
Orbital magnetic moment : -5.26519024E-02 -3.93646755E-09 3.96635159E-08
rho(1) CC : -3.76969160E-02 6.09820655E-09 2.94053480E-08
rho(1) VV1 : -1.04607330E-06 1.89833457E-10 3.64127901E-11
rho(1) VV2 : -1.28687561E-09 8.41363162E-13 1.77446615E-13
rho(0) NL : 1.38098719E-02 -8.62303752E-09 -1.17306595E-08
<L_R> terms : -2.43751427E-03 1.65051931E-09 2.12814686E-09
<A0.An> terms : -3.46685121E-07 2.54563386E-11 4.50897177E-12
Chern vector : -8.30814954E-03 3.40225985E-09 6.82064390E-09
Ch CC : -4.21834874E-03 1.73741714E-09 3.46378438E-09
Ch VV1 : 6.39583481E-05 -3.53708004E-11 -5.36109879E-11
Ch VV2 : 3.15659457E-07 -1.72618968E-13 -2.58364402E-13
band 3 of 4; spin polarization 2 of 2
Orbital magnetic moment : -5.26519024E-02 -3.93646755E-09 3.96635159E-08
rho(1) CC : -3.76969137E-02 3.70632579E-09 2.92818275E-08
rho(1) VV1 : -1.04607378E-06 1.90143998E-10 3.62848114E-11
rho(1) VV2 : -1.28693113E-09 9.20834953E-13 1.51469288E-13
rho(0) NL : 1.38098720E-02 -8.87586096E-09 -1.15866385E-08
<L_R> terms : -2.43751427E-03 1.67472738E-09 2.08345228E-09
<A0.An> terms : -3.46685120E-07 2.54559042E-11 4.50375049E-12
Chern vector : -8.30814954E-03 3.40225985E-09 6.82064390E-09
Ch CC : -4.21834882E-03 1.73594050E-09 3.46458000E-09
Ch VV1 : 6.39583481E-05 -3.53892514E-11 -5.35942142E-11
Ch VV2 : 3.15659458E-07 -1.65114221E-13 -2.56914964E-13
band 4 of 4; spin polarization 1 of 2
Orbital magnetic moment : 5.29109647E-02 6.11103676E-09 -3.86358438E-08
rho(1) CC : 3.77971792E-02 -5.35397031E-09 -2.92302129E-08
rho(1) VV1 : -2.73566245E-07 -1.89832207E-10 -3.65554427E-11
rho(1) VV2 : -2.41277718E-09 -9.40043245E-13 -1.79435180E-13
rho(0) NL : -1.37758628E-02 8.68777972E-09 1.17348682E-08
<L_R> terms : 2.43482158E-03 -1.65634944E-09 -2.06937069E-09
<A0.An> terms : -3.79504529E-07 -2.55012447E-11 -4.51658140E-12
Chern vector : 8.31374888E-03 -3.32992194E-09 -6.89619230E-09
Ch CC : 4.22109974E-03 -1.66487740E-09 -3.46522746E-09
Ch VV1 : -6.39098939E-05 3.59290822E-11 5.36241272E-11
Ch VV2 : -3.15444527E-07 1.75589772E-13 2.59429414E-13
band 4 of 4; spin polarization 2 of 2
Orbital magnetic moment : 5.29109647E-02 6.11103676E-09 -3.86358438E-08
rho(1) CC : 3.77971786E-02 -2.22644635E-09 -2.86003855E-08
rho(1) VV1 : -2.73566269E-07 -1.89927767E-10 -3.64277346E-11
rho(1) VV2 : -2.41277720E-09 -9.40110545E-13 -1.79059234E-13
rho(0) NL : -1.37758626E-02 8.75246102E-09 1.16664617E-08
<L_R> terms : 2.43482163E-03 -1.65979595E-09 -2.05483500E-09
<A0.An> terms : -3.79504528E-07 -2.55005522E-11 -4.51128179E-12
Chern vector : 8.31374888E-03 -3.32992194E-09 -6.89619230E-09
Ch CC : 4.22109982E-03 -1.73783871E-09 -3.53815299E-09
Ch VV1 : -6.39098939E-05 3.65195134E-11 5.30448784E-11
Ch VV2 : -3.15444521E-07 1.69989939E-13 2.59720013E-13
====================================================
================================================================================
---- first-order wavefunction calculations are completed ----
respfn : d/dk was computed, but no 2DTE, so no DDB output.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0300896971E+01 1.0300896971E+01 1.0300896971E+01 Bohr
amu 3.09737620E+01 2.69815390E+01
ecut 5.00000000E+00 Hartree
etotal1 -8.7988455597E+00
etotal2 -9.7175787324E+00
fcart1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
- fftalg 512
getwfk1 0
getwfk2 -1
iscf1 17
iscf2 -3
ixc -101130
jdtset 1 2
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.06017939E+01
lambsig 0.00000000E+00 7.66760000E-04
P mkmem 32
P mkqmem 32
P mk1mem 32
natom 2
nband 4
ndtset 2
ngfft 16 16 16
ngfftdg 24 24 24
nkpt 32
nspden 2
nsppol 2
nstep 10
nsym 1
ntypat 2
nucdipmom 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.0000000000E+00 0.0000000000E+00 0.0000000000E+00
occ 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
optdriver1 0
optdriver2 1
optforces 0
optstress 0
orbmag1 0
orbmag2 2
pawcpxocc 2
pawecutdg 1.00000000E+01 Hartree
prtden 0
prteig 0
prtpot1 0
prtpot2 1
prtwf1 1
prtwf2 0
rfddk1 0
rfddk2 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
spinmagntarget 0.00000000E+00
strten1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
symmorphi 0
tolvrs1 1.00000000E-18
tolvrs2 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-20
typat 1 2
usexcnhat 0
useylm 1
wtk 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
xangst 1.3627499763E+00 1.3627499763E+00 1.3627499763E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart 2.5752242428E+00 2.5752242428E+00 2.5752242428E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred 2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
znucl 15.00000 13.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Orbital magnetism and chemical shielding in the projector augmented-wave formalism.
- J.W. Zwanziger, M. Torrent, and X. Gonze Phys. Rev. B 107, 165157 (2023).
- Comment: to be cited in case the computation of orbital magnetism is used, i.e. orbmag>0.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#zwanziger2023
-
- [2] Projector augmented-wave approach to density-functional perturbation theory.
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 73, 235101 (2006).
- Comparison between projector augmented-wave and ultrasoft pseudopotential formalisms
- at the density-functional perturbation theory level.
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 78, 035105 (2008).
- Comment: to be cited in case the computation of response function with PAW, i.e. (rfphon=1 or rfelfd=1) and usepaw=1.
- Strong suggestion to cite these papers.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#audouze2006,
- and https://docs.abinit.org/theory/bibliography/#audouze2008
-
- [3] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [4] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [5] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 13.3 wall= 13.3
================================================================================
Calculation completed.
.Delivered 21 WARNINGs and 17 COMMENTs to log file.
+Overall time at end (sec) : cpu= 13.3 wall= 13.3