abinit/tests/v9/Refs/t07.abo

1646 lines
83 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h15 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v9_t07-t08/t07.abi
- output file -> t07.abo
- root for input files -> t07i
- root for output files -> t07o
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 10
lnmax = 10 mgfft = 18 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 2
mpw = 211 nfft = 5832 nkpt = 2
================================================================================
P This job should need less than 4.705 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.054 Mbytes ; DEN or POT disk file : 0.091 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 10
lnmax = 10 mgfft = 18 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 2
- mband = 20 mffmem = 1 mkmem = 2
mpw = 211 nfft = 5832 nkpt = 2
================================================================================
P This job should need less than 3.400 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.260 Mbytes ; DEN or POT disk file : 0.091 Mbytes.
================================================================================
DATASET 3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 10
lnmax = 10 mgfft = 18 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 2
- mband = 20 mffmem = 1 mkmem = 16
mpw = 211 nfft = 5832 nkpt = 16
================================================================================
P This job should need less than 5.249 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.063 Mbytes ; DEN or POT disk file : 0.091 Mbytes.
================================================================================
DATASET 4 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = -3 lmnmax = 10 lnmax = 10
mgfft = 18 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 2 nspinor = 1 nsppol = 2
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 2
- mband = 20 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 211
nfft = 5832 nkpt = 16
================================================================================
P This job should need less than 9.521 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.063 Mbytes ; DEN or POT disk file : 0.091 Mbytes.
================================================================================
DATASET 5 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = -3 lmnmax = 10 lnmax = 10
mgfft = 18 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 2 nspinor = 1 nsppol = 2
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 2
- mband = 20 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 211
nfft = 5832 nkpt = 16
================================================================================
P This job should need less than 9.521 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.063 Mbytes ; DEN or POT disk file : 0.091 Mbytes.
================================================================================
DATASET 6 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6 (RF).
intxc = 0 iscf = -3 lmnmax = 10 lnmax = 10
mgfft = 18 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 2 nspinor = 1 nsppol = 2
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 2
- mband = 20 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 211
nfft = 5832 nkpt = 16
================================================================================
P This job should need less than 9.521 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.063 Mbytes ; DEN or POT disk file : 0.091 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0600000000E+01 1.0600000000E+01 1.0600000000E+01 Bohr
amu 6.97230000E+01 7.49215900E+01
diemac 1.00000000E+01
ecut 6.00000000E+00 Hartree
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 0
getden5 0
getden6 0
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 3
getwfk5 3
getwfk6 3
iscf1 7
iscf2 -2
iscf3 -2
iscf4 -3
iscf5 -3
iscf6 -3
ixc 11
jdtset 1 2 3 4 5 6
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt6 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 1
kptopt3 2
kptopt4 2
kptopt5 2
kptopt6 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12000000E+01
P mkmem1 2
P mkmem2 2
P mkmem3 16
P mkmem4 16
P mkmem5 16
P mkmem6 16
P mkqmem1 2
P mkqmem2 2
P mkqmem3 16
P mkqmem4 16
P mkqmem5 16
P mkqmem6 16
P mk1mem1 2
P mk1mem2 2
P mk1mem3 16
P mk1mem4 16
P mk1mem5 16
P mk1mem6 16
natom 2
nband1 4
nband2 20
nband3 20
nband4 20
nband5 20
nband6 20
nbdbuf 2
ndtset 6
ngfft 18 18 18
nkpt1 2
nkpt2 2
nkpt3 16
nkpt4 16
nkpt5 16
nkpt6 16
nline1 4
nline2 4
nline3 4
nline4 0
nline5 0
nline6 0
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 1
nqpt5 1
nqpt6 1
nspden 2
nsppol 2
nstep1 100
nstep2 100
nstep3 100
nstep4 1
nstep5 1
nstep6 1
nsym 24
ntypat 2
occ1 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ4 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ5 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ6 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
optdriver5 1
optdriver6 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
prtpot5 1
prtpot6 1
prtwf1 1
prtwf2 1
prtwf3 1
prtwf4 3
prtwf5 3
prtwf6 3
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 1 1
rfdir4 1 0 0
rfdir5 0 1 0
rfdir6 0 0 1
rfelfd1 0
rfelfd2 0
rfelfd3 0
rfelfd4 2
rfelfd5 2
rfelfd6 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
spinmagntarget 0.00000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolwfr1 1.00000000E-12
tolwfr2 1.00000000E-12
tolwfr3 1.00000000E-12
tolwfr4 1.00000000E-08
tolwfr5 1.00000000E-08
tolwfr6 1.00000000E-08
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.75000 0.25000
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk5 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk6 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4023196028E+00 1.4023196028E+00 1.4023196028E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6500000000E+00 2.6500000000E+00 2.6500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 31.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 2.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 3.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 4.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 5.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 6.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 4, nsppol: 2, nspinor: 1, nspden: 2, mpw: 211, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.18463
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Ga-low_r.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Ga-low_r.psp8
- Ga ONCVPSP-3.3.0 r_core= 1.85767 1.81388 2.62545
- 31.00000 3.00000 170607 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 0.50000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 4 4
spin-orbit psp, extension_switch 3
nprojso 4 4
pspatm : epsatm= -2.66158541
--- l ekb(1:nproj) -->
0 0.683813 6.549164
1 3.852365 0.585309 0.004713 0.000025
2 1.419515 0.234179 0.000299 0.000044
spin-orbit 1
spin-orbit 1
spin-orbit 1
spin-orbit 1
spin-orbit 2
spin-orbit 2
spin-orbit 2
spin-orbit 2
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/As_r.psp8
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/As_r.psp8
- As ONCVPSP-3.3.0 r_core= 1.85233 1.80867 2.40819
- 33.00000 5.00000 170607 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 8.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 3 3
spin-orbit psp, extension_switch 3
nprojso 4 4
pspatm : epsatm= 6.70888588
--- l ekb(1:nproj) -->
0 0.898236 8.546793
1 4.716430 0.646929 0.003314
2 1.309789 0.275332 0.000180
spin-orbit 1
spin-orbit 1
spin-orbit 1
spin-orbit 1
spin-orbit 2
spin-orbit 2
spin-orbit 2
spin-orbit 2
pspatm: atomic psp has been read and splines computed
3.23784037E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 209.500 209.484
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.247173154483 -1.125E+01 9.545E-04 4.051E+00
ETOT 2 -11.250405530405 -3.232E-03 3.906E-08 2.711E-01
ETOT 3 -11.250577848936 -1.723E-04 1.938E-06 6.223E-03
ETOT 4 -11.250579211526 -1.363E-06 6.892E-09 5.749E-04
ETOT 5 -11.250579342469 -1.309E-07 5.498E-10 3.115E-06
ETOT 6 -11.250579343470 -1.001E-09 1.675E-12 3.491E-08
ETOT 7 -11.250579343476 -6.208E-12 9.109E-13 1.485E-09
At SCF step 7 max residual= 9.11E-13 < tolwfr= 1.00E-12 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.43385117E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.43385117E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.43385117E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: -6.208E-12, res2: 1.485E-09, residm: 9.109E-13, diffor: null, }
etotal : -1.12505793E+01
entropy : 0.00000000E+00
fermie : 1.59156789E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.43385117E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.43385117E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.43385117E-04, ]
pressure_GPa: -7.1606E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ -1.33181281E-23, -1.33181281E-23, 3.99543843E-23, ]
- [ 1.33181281E-23, 1.33181281E-23, -3.99543843E-23, ]
force_length_stats: {min: 4.41712338E-23, max: 4.41712338E-23, mean: 4.41712338E-23, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.542320 0.542320 1.084640 0.000000
2 2.00000 1.237560 1.237560 2.475120 0.000000
---------------------------------------------------------------------
Sum: 1.779880 1.779880 3.559760 0.000000
Total magnetization (from the atomic spheres): 0.000000
Total magnetization (exact up - dn): 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 58.167E-14; max= 91.087E-14
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 1.9965E-22; max dE/dt= 2.8234E-22; dE/dt below (all hartree)
1 -0.000000000000 -0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 2.5502274E-23 3.9954384E-23 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 1.3113795E-21 2.0545369E-21 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t07o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.15916 Average Vxc (hartree)= -0.34374
Eigenvalues (hartree) for nkpt= 2 k points, SPIN UP:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.20670 -0.04700 0.06231 0.10711
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 2 k points, SPIN DOWN:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.20670 -0.04700 0.06231 0.10711
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.12668139318270E+00
hartree : 7.54378341044609E-01
xc : -5.46795341841533E+00
Ewald energy : -8.48789573682593E+00
psp_core : 1.08742128495567E-01
local_psp : -2.97008596022435E+00
non_local_psp : 1.68555390926641E+00
total_energy : -1.12505793434763E+01
total_energy_eV : -3.06143833162721E+02
band_energy : -7.89972068554900E-02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.43385117E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.43385117E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.43385117E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -7.1606E+00 GPa]
- sigma(1 1)= 7.16063616E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 7.16063616E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 7.16063616E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 2, mband: 20, nsppol: 2, nspinor: 1, nspden: 2, mpw: 211, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.18463
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t07o_DS1_WFK
================================================================================
prteigrs : about to open file t07o_DS2_EIG
SPIN UP channel
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
6.46E-13 3.12E-13 2.83E-13 1.49E-13 7.75E-14 3.02E-13 1.95E-13 1.48E-13
2.53E-13 2.08E-13 2.64E-13 2.04E-13 8.95E-13 1.35E-13 7.82E-13 4.76E-13
9.57E-13 7.54E-13 4.78E-13 1.81E-09
-2.0670E-01 -4.6996E-02 6.2308E-02 1.0711E-01 2.6878E-01 3.6391E-01
4.1999E-01 4.4394E-01 5.7549E-01 6.3258E-01 6.5973E-01 6.7670E-01
7.0690E-01 8.4448E-01 8.7363E-01 9.0956E-01 9.4635E-01 9.4811E-01
9.6324E-01 1.0371E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
SPIN DOWN channel
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
6.46E-13 3.12E-13 2.83E-13 1.49E-13 7.75E-14 3.02E-13 1.95E-13 1.48E-13
2.53E-13 2.08E-13 2.64E-13 2.04E-13 8.95E-13 1.35E-13 7.82E-13 4.76E-13
9.57E-13 7.54E-13 4.78E-13 1.81E-09
-2.0670E-01 -4.6996E-02 6.2308E-02 1.0711E-01 2.6878E-01 3.6391E-01
4.1999E-01 4.4394E-01 5.7549E-01 6.3258E-01 6.5973E-01 6.7670E-01
7.0690E-01 8.4448E-01 8.7363E-01 9.0956E-01 9.4635E-01 9.4811E-01
9.6324E-01 1.0371E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.572E-13, diffor: 0.000E+00, }
etotal : -1.12505793E+01
entropy : 0.00000000E+00
fermie : 1.59156789E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.542320 0.542320 1.084640 0.000000
2 2.00000 1.237560 1.237560 2.475120 0.000000
---------------------------------------------------------------------
Sum: 1.779880 1.779880 3.559760 0.000000
Total magnetization (from the atomic spheres): 0.000000
Total magnetization (exact up - dn): 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.919E-14; max= 95.718E-14
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t07o_DS2_EIG
Eigenvalues (hartree) for nkpt= 2 k points, SPIN UP:
kpt# 1, nband= 20, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.20670 -0.04700 0.06231 0.10711 0.26878 0.36391 0.41999 0.44394
0.57549 0.63258 0.65973 0.67670 0.70690 0.84448 0.87363 0.90956
0.94635 0.94811 0.96324 1.03715
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 2 k points, SPIN DOWN:
kpt# 1, nband= 20, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.20670 -0.04700 0.06231 0.10711 0.26878 0.36391 0.41999 0.44394
0.57549 0.63258 0.65973 0.67670 0.70690 0.84448 0.87363 0.90956
0.94635 0.94811 0.96324 1.03715
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 16, mband: 20, nsppol: 2, nspinor: 1, nspden: 2, mpw: 211, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.18463
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t07o_DS2_WFK
================================================================================
prteigrs : about to open file t07o_DS3_EIG
SPIN UP channel
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
6.46E-13 3.12E-13 2.83E-13 1.49E-13 7.75E-14 3.02E-13 1.95E-13 1.48E-13
2.53E-13 2.08E-13 2.64E-13 2.04E-13 8.95E-13 1.35E-13 7.82E-13 4.76E-13
9.57E-13 7.54E-13 4.78E-13 1.41E-10
-2.0670E-01 -4.6996E-02 6.2308E-02 1.0711E-01 2.6878E-01 3.6391E-01
4.1999E-01 4.4394E-01 5.7549E-01 6.3258E-01 6.5973E-01 6.7670E-01
7.0690E-01 8.4448E-01 8.7363E-01 9.0956E-01 9.4635E-01 9.4811E-01
9.6324E-01 1.0371E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
SPIN DOWN channel
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
6.46E-13 3.12E-13 2.83E-13 1.49E-13 7.75E-14 3.02E-13 1.95E-13 1.48E-13
2.53E-13 2.08E-13 2.64E-13 2.04E-13 8.95E-13 1.35E-13 7.82E-13 4.76E-13
9.57E-13 7.54E-13 4.78E-13 1.41E-10
-2.0670E-01 -4.6996E-02 6.2308E-02 1.0711E-01 2.6878E-01 3.6391E-01
4.1999E-01 4.4394E-01 5.7549E-01 6.3258E-01 6.5973E-01 6.7670E-01
7.0690E-01 8.4448E-01 8.7363E-01 9.0956E-01 9.4635E-01 9.4811E-01
9.6324E-01 1.0371E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.572E-13, diffor: 0.000E+00, }
etotal : -1.12505793E+01
entropy : 0.00000000E+00
fermie : 1.59156789E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.542320 0.542320 1.084640 0.000000
2 2.00000 1.237560 1.237560 2.475120 0.000000
---------------------------------------------------------------------
Sum: 1.779880 1.779880 3.559760 0.000000
Total magnetization (from the atomic spheres): 0.000000
Total magnetization (exact up - dn): 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 17.904E-14; max= 95.718E-14
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t07o_DS3_EIG
Eigenvalues (hartree) for nkpt= 16 k points, SPIN UP:
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.20670 -0.04700 0.06231 0.10711 0.26878 0.36391 0.41999 0.44394
0.57549 0.63258 0.65973 0.67670 0.70690 0.84448 0.87363 0.90956
0.94635 0.94811 0.96324 1.03715
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 16 k points, SPIN DOWN:
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.20670 -0.04700 0.06231 0.10711 0.26878 0.36391 0.41999 0.44394
0.57549 0.63258 0.65973 0.67670 0.70690 0.84448 0.87363 0.90956
0.94635 0.94811 0.96324 1.03715
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 16, mband: 20, nsppol: 2, nspinor: 1, nspden: 2, mpw: 211, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.18463
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: -3, nstep: 1, nline: 0, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.595099962090 -1.060E+01 0.000E+00 0.000E+00
At SCF step 1 max residual= 0.00E+00 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 1.1825472459E+00
prteigrs : about to open file t07t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.08456 -0.01177 0.16190 0.17373 0.17695 0.46913 -0.38686 -0.59241
-0.18940 -0.08305 -0.54894 -0.21986 -0.15613 0.17535 0.33084 -0.17543
1.04851 0.17002 0.15102 0.05899
prteigrs : prtvol=0 or 1, do not print more k-points.
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.08456 -0.01177 0.16190 0.17373 0.17695 0.46913 -0.38686 -0.59241
-0.18940 -0.08305 -0.54894 -0.21986 -0.15613 0.17535 0.33084 -0.17543
1.04851 0.17002 0.15102 0.05899
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 0.00000000E+00 eigvalue= 0.00000000E+00 local= 0.00000000E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.99437924E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.05951000E+01 enl0= 0.00000000E+00 enl1= -1.24640754E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.05951000E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1059509996E+02 Ha. Also 2DEtotal= -0.288307332104E+03 eV
( non-var. 2DEtotal : -1.0595099962E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 0.0000000000 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 0.0000000000 0.0000000000
2 2 2.9160697315 0.0000000000
2 3 2.9160697315 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 2.9160697315 0.0000000000
3 3 2.9160697315 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 16, mband: 20, nsppol: 2, nspinor: 1, nspden: 2, mpw: 211, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.18463
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 2 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: -3, nstep: 1, nline: 0, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.594983197990 -1.059E+01 0.000E+00 0.000E+00
At SCF step 1 max residual= 0.00E+00 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 1.1825326585E+00
prteigrs : about to open file t07t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.13341 0.20981 0.20088 -0.04465 -0.03508 -0.46645 -0.06818 0.13508
0.42486 0.68879 -0.07850 -0.27925 -0.55879 -0.74688 -0.91245 0.43609
-0.19018 0.98338 -0.89155 -0.04483
prteigrs : prtvol=0 or 1, do not print more k-points.
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.13341 0.20981 0.20088 -0.04465 -0.03508 -0.46645 -0.06818 0.13508
0.42486 0.68879 -0.07850 -0.27925 -0.55879 -0.74688 -0.91245 0.43609
-0.19018 0.98338 -0.89155 -0.04483
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 0.00000000E+00 eigvalue= 0.00000000E+00 local= 0.00000000E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.99435464E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.05949832E+01 enl0= 0.00000000E+00 enl1= -1.24642003E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.05949832E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1059498320E+02 Ha. Also 2DEtotal= -0.288304154791E+03 eV
( non-var. 2DEtotal : -1.0594983198E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 2.9160650830 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 2.9160650830 0.0000000000
2 1 0.0000000000 0.0000000000
2 2 0.0000000000 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 2.9160650830 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 2.9160650830 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 16, mband: 20, nsppol: 2, nspinor: 1, nspden: 2, mpw: 211, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 6.000 => boxcut(ratio)= 2.18463
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: -3, nstep: 1, nline: 0, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.595090106472 -1.060E+01 0.000E+00 0.000E+00
At SCF step 1 max residual= 0.00E+00 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 1.1825464031E+00
prteigrs : about to open file t07t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.10899 -0.09902 -0.18139 -0.06453 -0.07094 -0.00134 0.22753 0.22866
-0.11773 -0.30287 0.31372 0.24954 0.35747 0.28578 0.29079 -0.13032
-0.42922 -0.57666 0.37027 -0.00707
prteigrs : prtvol=0 or 1, do not print more k-points.
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.10899 -0.09902 -0.18139 -0.06453 -0.07094 -0.00134 0.22753 0.22866
-0.11773 -0.30287 0.31372 0.24954 0.35747 0.28578 0.29079 -0.13032
-0.42922 -0.57666 0.37027 -0.00707
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 0.00000000E+00 eigvalue= 0.00000000E+00 local= 0.00000000E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.99437782E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.05950901E+01 enl0= 0.00000000E+00 enl1= -1.24640204E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.05950901E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1059509011E+02 Ha. Also 2DEtotal= -0.288307063918E+03 eV
( non-var. 2DEtotal : -1.0595090106E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 2.9160696042 0.0000000000
1 2 2.9160696042 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 2.9160696042 0.0000000000
2 2 2.9160696042 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 0.0000000000 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0600000000E+01 1.0600000000E+01 1.0600000000E+01 Bohr
amu 6.97230000E+01 7.49215900E+01
diemac 1.00000000E+01
ecut 6.00000000E+00 Hartree
etotal1 -1.1250579343E+01
etotal4 -1.0595099962E+01
etotal5 -1.0594983198E+01
etotal6 -1.0595090106E+01
fcart1 -1.3318128101E-23 -1.3318128101E-23 3.9954384304E-23
1.3318128101E-23 1.3318128101E-23 -3.9954384304E-23
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 0
getden5 0
getden6 0
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 3
getwfk5 3
getwfk6 3
iscf1 7
iscf2 -2
iscf3 -2
iscf4 -3
iscf5 -3
iscf6 -3
ixc 11
jdtset 1 2 3 4 5 6
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt6 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 1
kptopt3 2
kptopt4 2
kptopt5 2
kptopt6 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12000000E+01
P mkmem1 2
P mkmem2 2
P mkmem3 16
P mkmem4 16
P mkmem5 16
P mkmem6 16
P mkqmem1 2
P mkqmem2 2
P mkqmem3 16
P mkqmem4 16
P mkqmem5 16
P mkqmem6 16
P mk1mem1 2
P mk1mem2 2
P mk1mem3 16
P mk1mem4 16
P mk1mem5 16
P mk1mem6 16
natom 2
nband1 4
nband2 20
nband3 20
nband4 20
nband5 20
nband6 20
nbdbuf 2
ndtset 6
ngfft 18 18 18
nkpt1 2
nkpt2 2
nkpt3 16
nkpt4 16
nkpt5 16
nkpt6 16
nline1 4
nline2 4
nline3 4
nline4 0
nline5 0
nline6 0
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 1
nqpt5 1
nqpt6 1
nspden 2
nsppol 2
nstep1 100
nstep2 100
nstep3 100
nstep4 1
nstep5 1
nstep6 1
nsym 24
ntypat 2
occ1 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ4 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ5 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ6 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
optdriver5 1
optdriver6 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
prtpot5 1
prtpot6 1
prtwf1 1
prtwf2 1
prtwf3 1
prtwf4 3
prtwf5 3
prtwf6 3
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 1 1
rfdir4 1 0 0
rfdir5 0 1 0
rfdir6 0 0 1
rfelfd1 0
rfelfd2 0
rfelfd3 0
rfelfd4 2
rfelfd5 2
rfelfd6 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
spinmagntarget 0.00000000E+00
strten1 2.4338511697E-04 2.4338511697E-04 2.4338511697E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolwfr1 1.00000000E-12
tolwfr2 1.00000000E-12
tolwfr3 1.00000000E-12
tolwfr4 1.00000000E-08
tolwfr5 1.00000000E-08
tolwfr6 1.00000000E-08
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.75000 0.25000
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk5 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk6 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4023196028E+00 1.4023196028E+00 1.4023196028E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6500000000E+00 2.6500000000E+00 2.6500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 31.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.6 wall= 2.7
================================================================================
Calculation completed.
.Delivered 28 WARNINGs and 13 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.6 wall= 2.7