abinit/tests/v7/Refs/t95.abo

7554 lines
398 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h13 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t95/t95.abi
- output file -> t95.abo
- root for input files -> t95i
- root for output files -> t95o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 3 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 2
mpw = 132 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.470 Mbytes of memory.
P Max. in main chain + fourwf.f
P 9 blocks of mpw integer numbers, for 0.005 Mbytes.
P 63 blocks of mpw real(dp) numbers, for 0.063 Mbytes.
P 12 blocks of nfft (fine grid) real(dp) numbers, for 0.534 Mbytes.
P 2 blocks of nfft (coarse grid) integer numbers, for 0.031 Mbytes.
P 31 blocks of nfft (coarse grid) real(dp) numbers, for 0.969 Mbytes.
P Additional integer numbers, for 0.057 Mbytes.
P Additional real(dp) numbers, for 0.843 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.470 Mbytes.
P Main chain + nonlop.f + opernl.f 3.367 Mbytes.
P XC chain 3.190 Mbytes.
P mkrho chain 3.191 Mbytes.
P fourdp chain 3.153 Mbytes.
- parallel k-point chain 3.074 Mbytes.
P newvtr chain 3.137 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.026 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 3 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 2
mpw = 132 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.470 Mbytes of memory.
P Max. in main chain + fourwf.f
P 9 blocks of mpw integer numbers, for 0.005 Mbytes.
P 63 blocks of mpw real(dp) numbers, for 0.063 Mbytes.
P 12 blocks of nfft (fine grid) real(dp) numbers, for 0.534 Mbytes.
P 2 blocks of nfft (coarse grid) integer numbers, for 0.031 Mbytes.
P 31 blocks of nfft (coarse grid) real(dp) numbers, for 0.969 Mbytes.
P Additional integer numbers, for 0.057 Mbytes.
P Additional real(dp) numbers, for 0.843 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.470 Mbytes.
P Main chain + nonlop.f + opernl.f 3.367 Mbytes.
P XC chain 3.190 Mbytes.
P mkrho chain 3.191 Mbytes.
P fourdp chain 3.153 Mbytes.
- parallel k-point chain 3.074 Mbytes.
P newvtr chain 3.137 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.026 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 3 : space group Im m m (# 71); Bravais oI (body-center ortho.)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 1 ntypat = 1
occopt = 3 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 6
mpw = 132 nfft = 4096 nkpt = 6
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.544 Mbytes of memory.
P Max. in main chain + fourwf.f
P 21 blocks of mpw integer numbers, for 0.011 Mbytes.
P 127 blocks of mpw real(dp) numbers, for 0.128 Mbytes.
P 12 blocks of nfft (fine grid) real(dp) numbers, for 0.534 Mbytes.
P 2 blocks of nfft (coarse grid) integer numbers, for 0.031 Mbytes.
P 31 blocks of nfft (coarse grid) real(dp) numbers, for 0.969 Mbytes.
P Additional integer numbers, for 0.056 Mbytes.
P Additional real(dp) numbers, for 0.847 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.544 Mbytes.
P Main chain + nonlop.f + opernl.f 3.441 Mbytes.
P XC chain 3.261 Mbytes.
P mkrho chain 3.263 Mbytes.
P fourdp chain 3.225 Mbytes.
- parallel k-point chain 3.146 Mbytes.
P newvtr chain 3.208 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.075 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 4 : space group Im m m (# 71); Bravais oI (body-center ortho.)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 1 ntypat = 1
occopt = 3 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 6
mpw = 132 nfft = 4096 nkpt = 6
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.544 Mbytes of memory.
P Max. in main chain + fourwf.f
P 21 blocks of mpw integer numbers, for 0.011 Mbytes.
P 127 blocks of mpw real(dp) numbers, for 0.128 Mbytes.
P 12 blocks of nfft (fine grid) real(dp) numbers, for 0.534 Mbytes.
P 2 blocks of nfft (coarse grid) integer numbers, for 0.031 Mbytes.
P 31 blocks of nfft (coarse grid) real(dp) numbers, for 0.969 Mbytes.
P Additional integer numbers, for 0.056 Mbytes.
P Additional real(dp) numbers, for 0.847 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.544 Mbytes.
P Main chain + nonlop.f + opernl.f 3.441 Mbytes.
P XC chain 3.261 Mbytes.
P mkrho chain 3.262 Mbytes.
P fourdp chain 3.225 Mbytes.
- parallel k-point chain 3.146 Mbytes.
P newvtr chain 3.208 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.075 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 5 : space group Im m m (# 71); Bravais oI (body-center ortho.)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 1 ntypat = 1
occopt = 3 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 6
mpw = 132 nfft = 4096 nkpt = 6
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.545 Mbytes of memory.
P Max. in main chain + fourwf.f
P 21 blocks of mpw integer numbers, for 0.011 Mbytes.
P 127 blocks of mpw real(dp) numbers, for 0.128 Mbytes.
P 12 blocks of nfft (fine grid) real(dp) numbers, for 0.534 Mbytes.
P 2 blocks of nfft (coarse grid) integer numbers, for 0.031 Mbytes.
P 31 blocks of nfft (coarse grid) real(dp) numbers, for 0.969 Mbytes.
P Additional integer numbers, for 0.056 Mbytes.
P Additional real(dp) numbers, for 0.847 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.545 Mbytes.
P Main chain + nonlop.f + opernl.f 3.441 Mbytes.
P XC chain 3.262 Mbytes.
P mkrho chain 3.263 Mbytes.
P fourdp chain 3.225 Mbytes.
- parallel k-point chain 3.146 Mbytes.
P newvtr chain 3.209 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.075 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 6 : space group Im m m (# 71); Bravais oI (body-center ortho.)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 1 ntypat = 1
occopt = 3 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 6
mpw = 132 nfft = 4096 nkpt = 6
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.544 Mbytes of memory.
P Max. in main chain + fourwf.f
P 21 blocks of mpw integer numbers, for 0.011 Mbytes.
P 127 blocks of mpw real(dp) numbers, for 0.128 Mbytes.
P 12 blocks of nfft (fine grid) real(dp) numbers, for 0.534 Mbytes.
P 2 blocks of nfft (coarse grid) integer numbers, for 0.031 Mbytes.
P 31 blocks of nfft (coarse grid) real(dp) numbers, for 0.969 Mbytes.
P Additional integer numbers, for 0.056 Mbytes.
P Additional real(dp) numbers, for 0.847 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.544 Mbytes.
P Main chain + nonlop.f + opernl.f 3.440 Mbytes.
P XC chain 3.261 Mbytes.
P mkrho chain 3.262 Mbytes.
P fourdp chain 3.224 Mbytes.
- parallel k-point chain 3.146 Mbytes.
P newvtr chain 3.208 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.075 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 12 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 12 (RF).
intxc = 0 iscf = 7 lmnmax = 8 lnmax = 4
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 1
nloc_mem = 2 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 1 ntypat = 1 occopt = 3
xclevel = 1
- mband = 6 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 132
nfft = 4096 nkpt = 32
================================================================================
P This job should need less than 4.696 Mbytes of memory.
P Max. in main chain + nonlop.f + opernl.f
P 198 blocks of mpw integer numbers, for 0.100 Mbytes.
P 1384 blocks of mpw real(dp) numbers, for 1.394 Mbytes.
P 21 blocks of nfft real(dp) numbers, for 0.656 Mbytes.
P Additional integer numbers, for 0.002 Mbytes.
P Additional real(dp) numbers, for 1.575 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.572 Mbytes.
P Main chain + nonlop.f + opernl.f 4.696 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.389 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 13 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 13 (RF).
intxc = 0 iscf = 7 lmnmax = 8 lnmax = 4
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 1
nloc_mem = 2 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 1 ntypat = 1 occopt = 3
xclevel = 1
- mband = 6 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 132
nfft = 4096 nkpt = 32
================================================================================
P This job should need less than 4.696 Mbytes of memory.
P Max. in main chain + nonlop.f + opernl.f
P 198 blocks of mpw integer numbers, for 0.100 Mbytes.
P 1384 blocks of mpw real(dp) numbers, for 1.394 Mbytes.
P 21 blocks of nfft real(dp) numbers, for 0.656 Mbytes.
P Additional integer numbers, for 0.002 Mbytes.
P Additional real(dp) numbers, for 1.575 Mbytes.
P With residue estimated to be 0.969 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 3.572 Mbytes.
P Main chain + nonlop.f + opernl.f 4.696 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.389 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 5.6684462775E+00 5.6684462775E+00 5.6684462775E+00 Bohr
amu 2.69815390E+01
boxcutmin 2.20000000E+00
bxctmindg 2.20000000E+00
ecut 1.50000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
- fftalg 512
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
getwfk6 1
getwfk12 1
getwfk13 1
iscf1 17
iscf2 17
iscf3 17
iscf4 17
iscf5 17
iscf6 17
iscf12 7
iscf13 7
ixc 7
jdtset 1 2 3 4 5 6 12 13
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt4 0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt6 0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
kpt12 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt13 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt1 1
kptopt2 1
kptopt3 1
kptopt4 1
kptopt5 1
kptopt6 1
kptopt12 3
kptopt13 3
kptrlatt1 2 -2 2 -2 2 2 -2 -2 2
kptrlatt2 2 -2 2 -2 2 2 -2 -2 2
kptrlatt3 2 -2 2 -2 2 2 -2 -2 2
kptrlatt4 2 2 -2 -2 2 2 2 -2 2
kptrlatt5 2 -2 2 -2 2 2 -2 -2 2
kptrlatt6 2 2 -2 -2 2 2 2 -2 2
kptrlatt12 2 -2 2 -2 2 2 -2 -2 2
kptrlatt13 2 -2 2 -2 2 2 -2 -2 2
kptrlen1 1.13368926E+01
kptrlen2 1.13368926E+01
kptrlen3 1.13312241E+01
kptrlen4 1.13368940E+01
kptrlen5 1.13255557E+01
kptrlen6 1.13368982E+01
kptrlen12 1.13368926E+01
kptrlen13 1.13368926E+01
P mkmem1 2
P mkmem2 2
P mkmem3 6
P mkmem4 6
P mkmem5 6
P mkmem6 6
P mkmem12 32
P mkmem13 32
P mkqmem1 2
P mkqmem2 2
P mkqmem3 6
P mkqmem4 6
P mkqmem5 6
P mkqmem6 6
P mkqmem12 32
P mkqmem13 32
P mk1mem1 2
P mk1mem2 2
P mk1mem3 6
P mk1mem4 6
P mk1mem5 6
P mk1mem6 6
P mk1mem12 32
P mk1mem13 32
natom 1
nband1 6
nband2 6
nband3 6
nband4 6
nband5 6
nband6 6
nband12 6
nband13 6
nbdbuf1 0
nbdbuf2 0
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
nbdbuf12 2
nbdbuf13 2
ndtset 8
ngfft 16 16 16
ngfftdg 18 18 18
nkpt1 2
nkpt2 2
nkpt3 6
nkpt4 6
nkpt5 6
nkpt6 6
nkpt12 32
nkpt13 32
nline1 20
nline2 4
nline3 4
nline4 4
nline5 4
nline6 4
nline12 4
nline13 4
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 0
nqpt5 0
nqpt6 0
nqpt12 1
nqpt13 1
nstep 200
nsym1 48
nsym2 48
nsym3 8
nsym4 8
nsym5 8
nsym6 8
nsym12 48
nsym13 48
ntypat 1
occ1 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ2 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ3 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ4 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ5 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ6 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ12 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occ13 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 0
optdriver5 0
optdriver6 0
optdriver12 1
optdriver13 1
pawecutdg 2.00000000E+01 Hartree
prtden 0
prteig 0
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 0
prtpot5 0
prtpot6 0
prtpot12 1
prtpot13 1
prtvol 10
prtwf1 1
prtwf2 0
prtwf3 0
prtwf4 0
prtwf5 0
prtwf6 0
prtwf12 0
prtwf13 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 0
rfphon5 0
rfphon6 0
rfphon12 1
rfphon13 1
rfstrs1 0
rfstrs2 0
rfstrs3 0
rfstrs4 0
rfstrs5 0
rfstrs6 0
rfstrs12 3
rfstrs13 3
rprim1 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
rprim2 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
rprim3 -2.5000000000E-04 5.0000000000E-01 4.9975000000E-01
5.0000000000E-01 -2.5000000000E-04 4.9975000000E-01
4.9975000000E-01 4.9975000000E-01 0.0000000000E+00
rprim4 2.5000000000E-04 5.0000000000E-01 5.0025000000E-01
5.0000000000E-01 2.5000000000E-04 5.0025000000E-01
5.0025000000E-01 5.0025000000E-01 0.0000000000E+00
rprim5 -5.0000000000E-04 5.0000000000E-01 4.9950000000E-01
5.0000000000E-01 -5.0000000000E-04 4.9950000000E-01
4.9950000000E-01 4.9950000000E-01 0.0000000000E+00
rprim6 5.0000000000E-04 5.0000000000E-01 5.0050000000E-01
5.0000000000E-01 5.0000000000E-04 5.0050000000E-01
5.0050000000E-01 5.0050000000E-01 0.0000000000E+00
rprim12 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
rprim13 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk3 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk4 -5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk5 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk6 -5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk12 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk13 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup1 225
spgroup2 225
spgroup3 71
spgroup4 71
spgroup5 71
spgroup6 71
spgroup12 225
spgroup13 225
symafm1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symafm2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symafm3 1 1 1 1 1 1 1 1
symafm4 1 1 1 1 1 1 1 1
symafm5 1 1 1 1 1 1 1 1
symafm6 1 1 1 1 1 1 1 1
symafm12 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symafm13 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symrel1 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symrel2 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symrel3 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel4 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel5 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel6 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel12 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symrel13 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons5 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons12 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons13 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tolvrs1 0.00000000E+00
tolvrs2 1.00000000E-08
tolvrs3 1.00000000E-08
tolvrs4 1.00000000E-08
tolvrs5 1.00000000E-08
tolvrs6 1.00000000E-08
tolvrs12 1.00000000E-08
tolvrs13 1.00000000E-08
tolwfr1 1.00000000E-18
tolwfr2 0.00000000E+00
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
tolwfr12 0.00000000E+00
tolwfr13 0.00000000E+00
tsmear 5.00000000E-03 Hartree
typat 1
usexcnhat1 1
usexcnhat2 1
usexcnhat3 1
usexcnhat4 1
usexcnhat5 1
usexcnhat6 1
usexcnhat12 1
usexcnhat13 0
useylm 1
wtk1 0.75000 0.25000
wtk2 0.75000 0.25000
wtk3 0.12500 0.12500 0.12500 0.25000 0.25000 0.12500
wtk4 0.12500 0.12500 0.25000 0.25000 0.12500 0.12500
wtk5 0.12500 0.12500 0.12500 0.25000 0.25000 0.12500
wtk6 0.12500 0.12500 0.25000 0.25000 0.12500 0.12500
wtk12 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk13 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
znucl 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 12.
chkinp: Checking input parameters for consistency, jdtset= 13.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 1, nkpt: 2, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 2.8342231 2.8342231 G(1)= -0.1764152 0.1764152 0.1764152
R(2)= 2.8342231 0.0000000 2.8342231 G(2)= 0.1764152 -0.1764152 0.1764152
R(3)= 2.8342231 2.8342231 0.0000000 G(3)= 0.1764152 0.1764152 -0.1764152
Unit cell volume ucvol= 4.5533613E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.28960
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.658558 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23759
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.033944 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/al_ps.abinit.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/al_ps.abinit.paw
- Paw atomic data for element Al - Generated by AtomPAW + AtomPAW2Abinit v3.2.1
- 13.00000 3.00000 20091223 znucl, zion, pspdat
7 7 1 0 473 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw4
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.01466516
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 473 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 468 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 521 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 569 , AA= 0.12205E-02 BB= 0.15866E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
3.17781974E-01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 6 bands with npw= 124 for ikpt= 1 by node 0
P newkpt: treating 6 bands with npw= 132 for ikpt= 2 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 126.000 125.953
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 200, nline: 20, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-18, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -1.8916674970943 -1.892E+00 4.640E-01 6.987E-01
Fermi (or HOMO) energy (hartree) = 0.70477 Average Vxc (hartree)= -0.46638
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45160 0.70130 0.95261 1.26425 1.40586 2.00811
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19562 0.94810 1.41891 1.41944 1.64269 1.73396
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 2 -1.9098641300656 -1.820E-02 1.326E-06 6.266E-02
Fermi (or HOMO) energy (hartree) = 0.70962 Average Vxc (hartree)= -0.46554
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45251 0.70615 0.95649 1.25622 1.39926 1.93513
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19266 0.95411 1.42223 1.42223 1.62829 1.72841
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 3 -1.9086085646937 1.256E-03 1.101E-05 3.188E-03
Fermi (or HOMO) energy (hartree) = 0.71411 Average Vxc (hartree)= -0.46481
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45821 0.71064 0.95948 1.26132 1.40334 1.94124
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19811 0.95757 1.42387 1.42387 1.63085 1.73070
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 4 -1.9086088389057 -2.742E-07 3.787E-08 5.425E-06
Fermi (or HOMO) energy (hartree) = 0.71462 Average Vxc (hartree)= -0.46457
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45886 0.71115 0.95995 1.26182 1.40371 1.94171
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19874 0.95798 1.42413 1.42413 1.63143 1.73096
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 5 -1.9086023760182 6.463E-06 6.601E-08 7.491E-07
Fermi (or HOMO) energy (hartree) = 0.71438 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45856 0.71092 0.95983 1.26153 1.40347 1.94133
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19845 0.95781 1.42406 1.42406 1.63138 1.73084
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 6 -1.9086022483799 1.276E-07 1.235E-09 3.087E-08
Fermi (or HOMO) energy (hartree) = 0.71435 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26149 1.40343 1.94127
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19841 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 7 -1.9086022471016 1.278E-09 9.203E-12 4.474E-10
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 8 -1.9086022470657 3.594E-11 3.266E-13 4.505E-12
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 9 -1.9086022470653 3.537E-13 3.748E-15 2.021E-14
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 10 -1.9086022470655 -1.648E-13 8.051E-19 5.667E-16
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
At SCF step 10 max residual= 8.05E-19 < tolwfr= 1.00E-18 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41334657E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41334657E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41334657E-02 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 2.8342231, 2.8342231, ]
- [ 2.8342231, 0.0000000, 2.8342231, ]
- [ 2.8342231, 2.8342231, 0.0000000, ]
lattice_lengths: [ 4.00820, 4.00820, 4.00820, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.5533613E+01
convergence: {deltae: -1.648E-13, res2: 5.667E-16, residm: 8.051E-19, diffor: null, }
etotal : -1.90860225E+00
entropy : 0.00000000E+00
fermie : 7.14341312E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.41334657E-02, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.41334657E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.41334657E-02, ]
pressure_GPa: 4.1582E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 2.08304082
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.132676239124032
Compensation charge over fine fft grid = -0.132678429796437
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.32035 0.01425 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01425 13.31640 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07920 0.00000 0.00000 -0.04788 0.00000 0.00000
0.00000 0.00000 0.00000 0.07920 0.00000 0.00000 -0.04788 0.00000
0.00000 0.00000 0.00000 0.00000 0.07920 0.00000 0.00000 -0.04788
0.00000 0.00000 -0.04788 0.00000 0.00000 0.21556 0.00000 0.00000
0.00000 0.00000 0.00000 -0.04788 0.00000 0.00000 0.21556 0.00000
0.00000 0.00000 0.00000 0.00000 -0.04788 0.00000 0.00000 0.21556
Augmentation waves occupancies Rhoij:
1.79091 0.01212 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01212 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94937 0.00000 0.00000 -0.03404 0.00000 0.00000
0.00000 0.00000 0.00000 1.94937 0.00000 0.00000 -0.03404 0.00000
0.00000 0.00000 0.00000 0.00000 1.94937 0.00000 0.00000 -0.03404
0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.719E-20; max= 80.510E-20
-0.2500 0.5000 0.0000 1 8.05101E-19 kpt; spin; max resid(k); each band:
3.95E-19 1.83E-19 3.11E-19 8.05E-19 4.60E-19 6.75E-19
-0.2500 0.0000 0.0000 1 7.63499E-19 kpt; spin; max resid(k); each band:
1.34E-19 2.12E-19 3.52E-20 7.63E-19 5.08E-19 1.64E-19
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 5.668446277500 5.668446277500 5.668446277500 bohr
= 2.999612578170 2.999612578170 2.999612578170 angstroms
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 9.1414E-02 at reduced coord. 0.7222 0.7778 0.7778
)Next maximum= 9.1414E-02 at reduced coord. 0.7778 0.7222 0.7778
) Minimum= -3.4826E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= -9.8388E-04 at reduced coord. 0.0556 0.0000 0.0000
Integrated= 3.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.59118500649299E+00
hartree : 2.11846198354737E-02
xc : -1.16969844350598E+00
Ewald energy : -3.63977681422282E+00
psp_core : 6.97906342699219E-03
local_psp : 4.15620981314419E-01
spherical_terms : 8.70677177141567E-01
internal : -1.90382840951737E+00
'-kT*entropy' : -4.77385626219329E-03
total_energy : -1.90860226577956E+00
total_energy_eV : -5.19357088901933E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.49783835597394E+00
Ewald energy : -3.63977681422282E+00
psp_core : 6.97906342699219E-03
xc_dc : 2.26194037469415E-01
spherical_terms : 4.93696654915099E-03
internal : -1.90382839080332E+00
'-kT*entropy' : -4.77385626219329E-03
total_energy_dc : -1.90860224706551E+00
total_energy_dc_eV : -5.19357083809582E+01
...
===> extra information on forces <===
ewald contribution to reduced grads
1 0.000000000000 -0.000000000000 -0.000000000000
nonlocal contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
local psp contribution to red. grads
1 -0.000000000000 -0.000000000000 -0.000000000000
core charge xc contribution to reduced grads
1 0.000000000000 0.000000000000 0.000000000000
residual contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41334657E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41334657E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41334657E-02 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.1582E+02 GPa]
- sigma(1 1)= -4.15820846E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.15820846E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.15820846E+02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 1, nkpt: 2, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 2.8342231 2.8342231 G(1)= -0.1764152 0.1764152 0.1764152
R(2)= 2.8342231 0.0000000 2.8342231 G(2)= 0.1764152 -0.1764152 0.1764152
R(3)= 2.8342231 2.8342231 0.0000000 G(3)= 0.1764152 0.1764152 -0.1764152
Unit cell volume ucvol= 4.5533613E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.28960
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.658558 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23759
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.033944 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t95o_DS1_WFK
P newkpt: treating 6 bands with npw= 124 for ikpt= 1 by node 0
P newkpt: treating 6 bands with npw= 132 for ikpt= 2 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 126.000 125.953
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -1.9086022470652 -1.909E+00 5.689E-21 1.640E-18
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
At SCF step 1 nres2 = 1.64E-18 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41334657E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41334657E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41334657E-02 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 2.8342231, 2.8342231, ]
- [ 2.8342231, 0.0000000, 2.8342231, ]
- [ 2.8342231, 2.8342231, 0.0000000, ]
lattice_lengths: [ 4.00820, 4.00820, 4.00820, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.5533613E+01
convergence: {deltae: -1.909E+00, res2: 1.640E-18, residm: 5.689E-21, diffor: null, }
etotal : -1.90860225E+00
entropy : 0.00000000E+00
fermie : 7.14341313E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.41334657E-02, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.41334657E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.41334657E-02, ]
pressure_GPa: 4.1582E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 2.08304082
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.132676240438130
Compensation charge over fine fft grid = -0.132678429672701
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.32035 0.01425 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01425 13.31640 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07920 0.00000 0.00000 -0.04788 0.00000 0.00000
0.00000 0.00000 0.00000 0.07920 0.00000 0.00000 -0.04788 0.00000
0.00000 0.00000 0.00000 0.00000 0.07920 0.00000 0.00000 -0.04788
0.00000 0.00000 -0.04788 0.00000 0.00000 0.21556 0.00000 0.00000
0.00000 0.00000 0.00000 -0.04788 0.00000 0.00000 0.21556 0.00000
0.00000 0.00000 0.00000 0.00000 -0.04788 0.00000 0.00000 0.21556
Augmentation waves occupancies Rhoij:
1.79091 0.01212 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01212 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94937 0.00000 0.00000 -0.03404 0.00000 0.00000
0.00000 0.00000 0.00000 1.94937 0.00000 0.00000 -0.03404 0.00000
0.00000 0.00000 0.00000 0.00000 1.94937 0.00000 0.00000 -0.03404
0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 78.287E-23; max= 56.888E-22
-0.2500 0.5000 0.0000 1 3.39617E-21 kpt; spin; max resid(k); each band:
1.62E-25 1.73E-23 1.37E-23 8.01E-24 3.29E-23 3.40E-21
-0.2500 0.0000 0.0000 1 5.68883E-21 kpt; spin; max resid(k); each band:
2.53E-24 8.43E-24 1.41E-24 1.06E-22 5.69E-21 1.19E-22
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 5.668446277500 5.668446277500 5.668446277500 bohr
= 2.999612578170 2.999612578170 2.999612578170 angstroms
Fermi (or HOMO) energy (hartree) = 0.71434 Average Vxc (hartree)= -0.46458
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45851 0.71088 0.95980 1.26148 1.40343 1.94126
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19840 0.95778 1.42404 1.42404 1.63136 1.73082
occupation numbers for kpt# 2
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 9.1414E-02 at reduced coord. 0.7222 0.7778 0.7778
)Next maximum= 9.1414E-02 at reduced coord. 0.7778 0.7222 0.7778
) Minimum= -3.4826E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= -9.8388E-04 at reduced coord. 0.0556 0.0000 0.0000
Integrated= 3.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 1.59118500669422E+00
hartree : 2.11846203435578E-02
xc : -1.16969844370673E+00
Ewald energy : -3.63977681422282E+00
psp_core : 6.97906342699219E-03
local_psp : 4.15620986518274E-01
spherical_terms : 8.70677190344415E-01
internal : -1.90382839060209E+00
'-kT*entropy' : -4.77385626219196E-03
total_energy : -1.90860224686428E+00
total_energy_eV : -5.19357083754825E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.49783835763478E+00
Ewald energy : -3.63977681422282E+00
psp_core : 6.97906342699219E-03
xc_dc : 2.26194037160783E-01
spherical_terms : 4.93696519721487E-03
internal : -1.90382839080305E+00
'-kT*entropy' : -4.77385626219196E-03
total_energy_dc : -1.90860224706524E+00
total_energy_dc_eV : -5.19357083809509E+01
...
===> extra information on forces <===
ewald contribution to reduced grads
1 0.000000000000 -0.000000000000 -0.000000000000
nonlocal contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
local psp contribution to red. grads
1 -0.000000000000 -0.000000000000 -0.000000000000
core charge xc contribution to reduced grads
1 0.000000000000 0.000000000000 0.000000000000
residual contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41334657E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41334657E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41334657E-02 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.1582E+02 GPa]
- sigma(1 1)= -4.15820848E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.15820848E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.15820848E+02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 1, nkpt: 6, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= -0.0014171 2.8342231 2.8328060 G(1)= -0.1763270 0.1763270 0.1765034
R(2)= 2.8342231 -0.0014171 2.8328060 G(2)= 0.1763270 -0.1763270 0.1765034
R(3)= 2.8328060 2.8328060 0.0000000 G(3)= 0.1765034 0.1765034 -0.1765034
Unit cell volume ucvol= 4.5510835E+01 bohr^3
Angles (23,13,12)= 6.00082748E+01 6.00082748E+01 6.00496320E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.29018
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.668402 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23802
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.043639 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t95o_DS1_WFK
- newkpt: read input wf with ikpt,npw= 1 124, make ikpt,npw= 1 124
- newkpt: read input wf with ikpt,npw= 2 124, make ikpt,npw= 2 124
- newkpt: read input wf with ikpt,npw= 3 132, make ikpt,npw= 3 132
- newkpt: read input wf with ikpt,npw= 4 124, make ikpt,npw= 4 124
- newkpt: read input wf with ikpt,npw= 5 124, make ikpt,npw= 5 124
- newkpt: read input wf with ikpt,npw= 6 132, make ikpt,npw= 6 132
_setup2: Arith. and geom. avg. npw (full set) are 126.000 125.953
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 17, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -1.9066036087487 -1.907E+00 3.641E-01 4.756E-02
Fermi (or HOMO) energy (hartree) = 0.71390 Average Vxc (hartree)= -0.46713
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45602 0.70827 0.95843 1.26062 1.40092 1.93842
occupation numbers for kpt# 1
2.00000 1.51008 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45759 0.71639 0.96052 1.25852 1.40890 1.96929
occupation numbers for kpt# 2
2.00000 0.75585 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19586 0.95548 1.42248 1.42332 1.62910 1.72912
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45589 0.70909 0.95749 1.26009 1.40313 1.97840
occupation numbers for kpt# 4
2.00000 1.44749 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45643 0.70943 0.95802 1.26078 1.40216 1.95240
occupation numbers for kpt# 5
2.00000 1.41955 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19600 0.95812 1.42162 1.42289 1.64856 1.72898
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 2 -1.9082971143593 -1.694E-03 1.328E-03 7.310E-03
Fermi (or HOMO) energy (hartree) = 0.71449 Average Vxc (hartree)= -0.46489
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45852 0.71047 0.96049 1.26265 1.40339 1.94066
occupation numbers for kpt# 1
2.00000 1.38119 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45873 0.71132 0.95972 1.26045 1.40420 1.94456
occupation numbers for kpt# 2
2.00000 1.30699 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19825 0.95758 1.42452 1.42531 1.63171 1.73160
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45814 0.71108 0.95990 1.26210 1.40433 1.94322
occupation numbers for kpt# 4
2.00000 1.32796 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45861 0.71108 0.95945 1.26194 1.40399 1.94245
occupation numbers for kpt# 5
2.00000 1.32795 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19838 0.95847 1.42315 1.42475 1.63090 1.73046
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 3 -1.9082823378067 1.478E-05 1.996E-04 2.750E-04
Fermi (or HOMO) energy (hartree) = 0.71463 Average Vxc (hartree)= -0.46471
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45879 0.71061 0.96048 1.26274 1.40377 1.94065
occupation numbers for kpt# 1
2.00000 1.38160 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45895 0.71148 0.96030 1.26044 1.40384 1.94329
occupation numbers for kpt# 2
2.00000 1.30473 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19848 0.95765 1.42452 1.42534 1.63208 1.73196
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45844 0.71109 0.96021 1.26221 1.40433 1.94271
occupation numbers for kpt# 4
2.00000 1.34007 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45882 0.71135 0.95969 1.26212 1.40395 1.94214
occupation numbers for kpt# 5
2.00000 1.31676 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19862 0.95861 1.42320 1.42508 1.63150 1.73040
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 4 -1.9082820277479 3.101E-07 1.237E-04 6.314E-06
Fermi (or HOMO) energy (hartree) = 0.71468 Average Vxc (hartree)= -0.46466
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45888 0.71066 0.96054 1.26278 1.40384 1.94068
occupation numbers for kpt# 1
2.00000 1.38167 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45903 0.71154 0.96041 1.26047 1.40382 1.94293
occupation numbers for kpt# 2
2.00000 1.30434 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19856 0.95769 1.42456 1.42536 1.63220 1.73202
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45852 0.71113 0.96029 1.26226 1.40435 1.94259
occupation numbers for kpt# 4
2.00000 1.34138 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45891 0.71142 0.95976 1.26218 1.40396 1.94208
occupation numbers for kpt# 5
2.00000 1.31562 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19870 0.95866 1.42323 1.42514 1.63164 1.73040
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 5 -1.9082820158708 1.188E-08 1.642E-05 2.366E-08
Fermi (or HOMO) energy (hartree) = 0.71470 Average Vxc (hartree)= -0.46465
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45890 0.71068 0.96057 1.26278 1.40383 1.94070
occupation numbers for kpt# 1
2.00000 1.38165 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45905 0.71155 0.96041 1.26049 1.40384 1.94281
occupation numbers for kpt# 2
2.00000 1.30438 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19858 0.95771 1.42457 1.42536 1.63223 1.73202
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45854 0.71115 0.96030 1.26227 1.40435 1.94257
occupation numbers for kpt# 4
2.00000 1.34080 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45892 0.71142 0.95978 1.26219 1.40397 1.94207
occupation numbers for kpt# 5
2.00000 1.31618 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19872 0.95867 1.42324 1.42514 1.63165 1.73040
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 6 -1.9082820158670 3.856E-12 1.112E-05 8.456E-10
Fermi (or HOMO) energy (hartree) = 0.71470 Average Vxc (hartree)= -0.46465
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45890 0.71068 0.96057 1.26278 1.40383 1.94070
occupation numbers for kpt# 1
2.00000 1.38165 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45905 0.71155 0.96041 1.26048 1.40384 1.94278
occupation numbers for kpt# 2
2.00000 1.30438 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19858 0.95771 1.42457 1.42536 1.63223 1.73202
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45854 0.71115 0.96030 1.26227 1.40435 1.94256
occupation numbers for kpt# 4
2.00000 1.34083 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45892 0.71142 0.95978 1.26219 1.40397 1.94207
occupation numbers for kpt# 5
2.00000 1.31616 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19872 0.95867 1.42324 1.42514 1.63165 1.73040
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
At SCF step 6 nres2 = 8.46E-10 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41603882E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41603882E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41446364E-02 sigma(2 1)= 8.00497980E-05
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ -0.0014171, 2.8342231, 2.8328060, ]
- [ 2.8342231, -0.0014171, 2.8328060, ]
- [ 2.8328060, 2.8328060, 0.0000000, ]
lattice_lengths: [ 4.00720, 4.00720, 4.00619, ]
lattice_angles: [ 60.008, 60.008, 60.050, ] # degrees, (23, 13, 12)
lattice_volume: 4.5510835E+01
convergence: {deltae: 3.856E-12, res2: 8.456E-10, residm: 1.112E-05, diffor: null, }
etotal : -1.90828202E+00
entropy : 0.00000000E+00
fermie : 7.14698043E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.41603882E-02, 8.00497980E-05, 0.00000000E+00, ]
- [ 8.00497980E-05, -1.41603882E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.41446364E-02, ]
pressure_GPa: 4.1646E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 2.08294515
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.132726725464257
Compensation charge over fine fft grid = -0.132728302897646
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.32034 0.01426 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01426 13.31663 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07921 0.00000 0.00000 -0.04790 0.00000 -0.00000
0.00000 0.00000 0.00000 0.07921 0.00000 0.00000 -0.04790 0.00000
0.00000 0.00000 0.00000 0.00000 0.07921 -0.00000 0.00000 -0.04790
0.00000 0.00000 -0.04790 0.00000 -0.00000 0.21563 0.00000 -0.00001
0.00000 0.00000 0.00000 -0.04790 0.00000 0.00000 0.21562 0.00000
0.00000 0.00000 -0.00000 0.00000 -0.04790 -0.00001 0.00000 0.21563
Augmentation waves occupancies Rhoij:
1.79153 0.01213 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01213 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.95125 0.00000 -0.00602 -0.03407 0.00000 0.00005
0.00000 0.00000 0.00000 1.94898 0.00000 0.00000 -0.03404 0.00000
0.00000 0.00000 -0.00602 0.00000 1.95125 0.00005 0.00000 -0.03407
0.00000 0.00000 -0.03407 0.00000 0.00005 0.00074 0.00000 -0.00000
0.00000 0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074 0.00000
0.00000 0.00000 0.00005 0.00000 -0.03407 -0.00000 0.00000 0.00074
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.748E-08; max= 11.122E-06
-0.2500 0.5000 0.0000 1 9.50677E-13 kpt; spin; max resid(k); each band:
6.00E-13 7.51E-13 3.29E-13 8.68E-15 9.51E-13 6.31E-13
-0.2500 -0.2500 0.2500 1 1.11225E-05 kpt; spin; max resid(k); each band:
6.86E-13 7.87E-13 7.46E-13 1.50E-15 5.62E-13 1.11E-05
-0.2500 0.0000 0.0000 1 9.25153E-08 kpt; spin; max resid(k); each band:
8.61E-13 6.86E-13 8.36E-13 1.86E-14 1.99E-11 9.25E-08
-0.2500 0.2500 0.2500 1 1.89474E-06 kpt; spin; max resid(k); each band:
6.15E-13 5.18E-13 4.48E-13 6.26E-13 3.46E-13 1.89E-06
-0.2500 0.5000 0.5000 1 4.82854E-07 kpt; spin; max resid(k); each band:
8.90E-13 4.91E-13 4.79E-13 6.07E-13 4.66E-13 4.83E-07
-0.2500 -0.2500 -0.2500 1 3.56426E-07 kpt; spin; max resid(k); each band:
8.69E-13 4.65E-13 5.21E-15 7.55E-13 2.64E-10 3.56E-07
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 5.668446277500 5.668446277500 5.668446277500 bohr
= 2.999612578170 2.999612578170 2.999612578170 angstroms
Fermi (or HOMO) energy (hartree) = 0.71470 Average Vxc (hartree)= -0.46465
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45890 0.71068 0.96057 1.26278 1.40383 1.94070
occupation numbers for kpt# 1
2.00000 1.38165 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45905 0.71155 0.96041 1.26048 1.40384 1.94278
occupation numbers for kpt# 2
2.00000 1.30438 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19858 0.95771 1.42457 1.42536 1.63223 1.73202
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45854 0.71115 0.96030 1.26227 1.40435 1.94256
occupation numbers for kpt# 4
2.00000 1.34083 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45892 0.71142 0.95978 1.26219 1.40397 1.94207
occupation numbers for kpt# 5
2.00000 1.31616 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19872 0.95867 1.42324 1.42514 1.63165 1.73040
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 9.1490E-02 at reduced coord. 0.7778 0.7778 0.7222
)Next maximum= 9.1490E-02 at reduced coord. 0.2222 0.2222 0.2778
) Minimum= -3.4856E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= -9.9207E-04 at reduced coord. 0.9444 0.0556 0.0000
Integrated= 3.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 1.59177724307208E+00
hartree : 2.11989891835065E-02
xc : -1.16988531800124E+00
Ewald energy : -3.64038355940677E+00
psp_core : 6.98255644998347E-03
local_psp : 4.15713689417287E-01
spherical_terms : 8.71084191533500E-01
internal : -1.90351220775166E+00
'-kT*entropy' : -4.77111661607264E-03
total_energy : -1.90828332436773E+00
total_energy_eV : -5.19270300530072E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 3, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.49876516867466E+00
Ewald energy : -3.64038355940677E+00
psp_core : 6.98255644998347E-03
xc_dc : 2.26223176323086E-01
spherical_terms : 4.90175870816045E-03
internal : -1.90351089925089E+00
'-kT*entropy' : -4.77111661607264E-03
total_energy_dc : -1.90828201586696E+00
total_energy_dc_eV : -5.19269944468905E+01
...
===> extra information on forces <===
ewald contribution to reduced grads
1 0.000000000000 0.000000000000 -0.000000000000
nonlocal contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
local psp contribution to red. grads
1 -0.000000000000 -0.000000000000 0.000000000000
core charge xc contribution to reduced grads
1 0.000000000000 0.000000000000 -0.000000000000
residual contribution to red. grads
1 0.000000000000 0.000000000000 -0.000000000000
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41603882E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41603882E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41446364E-02 sigma(2 1)= 8.00497980E-05
-Cartesian components of stress tensor (GPa) [Pressure= 4.1646E+02 GPa]
- sigma(1 1)= -4.16612935E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.16612935E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.16149501E+02 sigma(2 1)= 2.35514597E+00
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 1, nkpt: 6, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0014171 2.8342231 2.8356403 G(1)= -0.1765034 0.1765034 0.1763270
R(2)= 2.8342231 0.0014171 2.8356403 G(2)= 0.1765034 -0.1765034 0.1763270
R(3)= 2.8356403 2.8356403 0.0000000 G(3)= 0.1763270 0.1763270 -0.1763270
Unit cell volume ucvol= 4.5556369E+01 bohr^3
Angles (23,13,12)= 5.99917349E+01 5.99917349E+01 5.99503928E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.28846
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.638914 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23647
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.008929 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t95o_DS1_WFK
- newkpt: read input wf with ikpt,npw= 1 132, make ikpt,npw= 1 132
- newkpt: read input wf with ikpt,npw= 2 124, make ikpt,npw= 2 124
- newkpt: read input wf with ikpt,npw= 3 124, make ikpt,npw= 3 124
- newkpt: read input wf with ikpt,npw= 4 124, make ikpt,npw= 4 124
- newkpt: read input wf with ikpt,npw= 5 132, make ikpt,npw= 5 132
- newkpt: read input wf with ikpt,npw= 6 124, make ikpt,npw= 6 124
_setup2: Arith. and geom. avg. npw (full set) are 126.000 125.953
================================================================================
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 17, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -1.9029866287570 -1.903E+00 3.536E-01 1.166E-01
Fermi (or HOMO) energy (hartree) = 0.71978 Average Vxc (hartree)= -0.46588
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19679 0.95642 1.42094 1.42200 1.62797 1.72979
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45683 0.70979 0.95582 1.25959 1.40392 1.93984
occupation numbers for kpt# 2
2.00000 1.76099 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45731 0.71120 0.95976 1.25988 1.40230 1.97554
occupation numbers for kpt# 3
2.00000 1.69506 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45752 0.72251 0.96480 1.26795 1.40213 1.95200
occupation numbers for kpt# 4
2.00000 0.73317 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19666 0.95753 1.42299 1.42460 1.69364 1.73410
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45694 0.71575 0.96226 1.26140 1.40591 1.96200
occupation numbers for kpt# 6
2.00000 1.38254 0.00000 0.00000 0.00000 0.00000
ETOT 2 -1.9089312832009 -5.945E-03 2.034E-03 8.465E-03
Fermi (or HOMO) energy (hartree) = 0.71397 Average Vxc (hartree)= -0.46463
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19814 0.95788 1.42285 1.42356 1.63030 1.72915
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45797 0.71104 0.95922 1.26037 1.40264 1.94170
occupation numbers for kpt# 2
2.00000 1.28492 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45832 0.71074 0.95912 1.26067 1.40258 1.94034
occupation numbers for kpt# 3
2.00000 1.31175 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45807 0.71014 0.95974 1.26065 1.40304 1.94134
occupation numbers for kpt# 4
2.00000 1.36507 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19800 0.95685 1.42259 1.42497 1.63181 1.73150
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45790 0.71018 0.95867 1.26272 1.40349 1.94072
occupation numbers for kpt# 6
2.00000 1.36143 0.00000 0.00000 0.00000 0.00000
ETOT 3 -1.9089260325022 5.251E-06 1.257E-04 1.509E-03
Fermi (or HOMO) energy (hartree) = 0.71396 Average Vxc (hartree)= -0.46457
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19817 0.95785 1.42277 1.42350 1.63039 1.72943
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45804 0.71104 0.95907 1.26025 1.40288 1.94175
occupation numbers for kpt# 2
2.00000 1.28413 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45839 0.71063 0.95921 1.26066 1.40253 1.94010
occupation numbers for kpt# 3
2.00000 1.32125 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45805 0.71024 0.95977 1.26071 1.40293 1.94069
occupation numbers for kpt# 4
2.00000 1.35569 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19803 0.95686 1.42280 1.42489 1.63100 1.73133
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45792 0.71017 0.95898 1.26256 1.40317 1.93989
occupation numbers for kpt# 6
2.00000 1.36198 0.00000 0.00000 0.00000 0.00000
ETOT 4 -1.9089256163089 4.162E-07 3.881E-05 6.117E-06
Fermi (or HOMO) energy (hartree) = 0.71398 Average Vxc (hartree)= -0.46451
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19822 0.95785 1.42272 1.42350 1.63049 1.72964
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45811 0.71107 0.95902 1.26018 1.40304 1.94183
occupation numbers for kpt# 2
2.00000 1.28364 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45847 0.71059 0.95930 1.26069 1.40250 1.93996
occupation numbers for kpt# 3
2.00000 1.32701 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45808 0.71033 0.95982 1.26077 1.40288 1.94047
occupation numbers for kpt# 4
2.00000 1.35004 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19808 0.95688 1.42296 1.42484 1.63109 1.73122
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45796 0.71019 0.95921 1.26247 1.40299 1.93983
occupation numbers for kpt# 6
2.00000 1.36226 0.00000 0.00000 0.00000 0.00000
ETOT 5 -1.9089255967371 1.957E-08 5.532E-06 3.710E-08
Fermi (or HOMO) energy (hartree) = 0.71399 Average Vxc (hartree)= -0.46451
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19823 0.95786 1.42272 1.42351 1.63050 1.72962
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45812 0.71107 0.95904 1.26019 1.40302 1.94184
occupation numbers for kpt# 2
2.00000 1.28370 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45848 0.71061 0.95930 1.26070 1.40251 1.93997
occupation numbers for kpt# 3
2.00000 1.32620 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45809 0.71033 0.95983 1.26078 1.40289 1.94045
occupation numbers for kpt# 4
2.00000 1.35085 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19809 0.95689 1.42295 1.42485 1.63107 1.73122
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45797 0.71020 0.95919 1.26248 1.40302 1.93978
occupation numbers for kpt# 6
2.00000 1.36218 0.00000 0.00000 0.00000 0.00000
ETOT 6 -1.9089255967478 -1.068E-11 2.288E-06 5.450E-10
Fermi (or HOMO) energy (hartree) = 0.71399 Average Vxc (hartree)= -0.46451
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19823 0.95786 1.42272 1.42351 1.63050 1.72962
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45812 0.71107 0.95904 1.26019 1.40302 1.94184
occupation numbers for kpt# 2
2.00000 1.28370 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45848 0.71061 0.95930 1.26070 1.40251 1.93997
occupation numbers for kpt# 3
2.00000 1.32623 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45809 0.71033 0.95983 1.26078 1.40289 1.94045
occupation numbers for kpt# 4
2.00000 1.35083 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19809 0.95689 1.42295 1.42485 1.63107 1.73122
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45797 0.71020 0.95919 1.26249 1.40302 1.93977
occupation numbers for kpt# 6
2.00000 1.36218 0.00000 0.00000 0.00000 0.00000
At SCF step 6 nres2 = 5.45E-10 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41059341E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41059341E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41237612E-02 sigma(2 1)= -8.14139770E-05
--- !ResultsGS
iteration_state: {dtset: 4, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0014171, 2.8342231, 2.8356403, ]
- [ 2.8342231, 0.0014171, 2.8356403, ]
- [ 2.8356403, 2.8356403, 0.0000000, ]
lattice_lengths: [ 4.00920, 4.00920, 4.01020, ]
lattice_angles: [ 59.992, 59.992, 59.950, ] # degrees, (23, 13, 12)
lattice_volume: 4.5556369E+01
convergence: {deltae: -1.068E-11, res2: 5.450E-10, residm: 2.288E-06, diffor: null, }
etotal : -1.90892560E+00
entropy : 0.00000000E+00
fermie : 7.13991258E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.41059341E-02, -8.14139770E-05, 0.00000000E+00, ]
- [ -8.14139770E-05, -1.41059341E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.41237612E-02, ]
pressure_GPa: 4.1519E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 2.08313790
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.132628827729762
Compensation charge over fine fft grid = -0.132631574797889
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.32036 0.01425 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01425 13.31616 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07920 0.00000 -0.00000 -0.04786 0.00000 0.00000
0.00000 0.00000 0.00000 0.07920 0.00000 0.00000 -0.04786 0.00000
0.00000 0.00000 -0.00000 0.00000 0.07920 0.00000 0.00000 -0.04786
0.00000 0.00000 -0.04786 0.00000 0.00000 0.21549 0.00000 0.00001
0.00000 0.00000 0.00000 -0.04786 0.00000 0.00000 0.21550 0.00000
0.00000 0.00000 0.00000 0.00000 -0.04786 0.00001 0.00000 0.21549
Augmentation waves occupancies Rhoij:
1.79034 0.01211 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01211 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94739 0.00000 0.00617 -0.03401 0.00000 -0.00005
0.00000 0.00000 0.00000 1.94990 0.00000 0.00000 -0.03404 0.00000
0.00000 0.00000 0.00617 0.00000 1.94739 -0.00005 0.00000 -0.03401
0.00000 0.00000 -0.03401 0.00000 -0.00005 0.00074 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03404 0.00000 0.00000 0.00074 0.00000
0.00000 0.00000 -0.00005 0.00000 -0.03401 0.00000 0.00000 0.00074
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.147E-08; max= 22.882E-07
0.0000 -0.2500 0.0000 1 3.53860E-08 kpt; spin; max resid(k); each band:
1.57E-12 7.22E-13 1.78E-13 8.14E-13 3.61E-11 3.54E-08
0.2500 0.5000 0.0000 1 3.06415E-12 kpt; spin; max resid(k); each band:
1.32E-12 1.34E-12 1.93E-12 2.56E-14 3.09E-13 3.06E-12
0.0000 0.5000 0.2500 1 1.19395E-07 kpt; spin; max resid(k); each band:
1.43E-12 8.18E-13 1.29E-12 5.36E-13 4.71E-13 1.19E-07
0.0000 -0.2500 0.5000 1 2.28823E-06 kpt; spin; max resid(k); each band:
1.98E-12 5.84E-13 1.42E-12 5.76E-13 4.42E-13 2.29E-06
0.0000 0.0000 0.2500 1 7.11702E-07 kpt; spin; max resid(k); each band:
1.29E-12 3.69E-13 9.69E-13 2.08E-13 3.24E-07 7.12E-07
0.5000 0.5000 0.2500 1 5.34508E-07 kpt; spin; max resid(k); each band:
1.51E-12 9.88E-13 9.37E-13 3.52E-15 8.75E-13 5.35E-07
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 5.668446277500 5.668446277500 5.668446277500 bohr
= 2.999612578170 2.999612578170 2.999612578170 angstroms
Fermi (or HOMO) energy (hartree) = 0.71399 Average Vxc (hartree)= -0.46451
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19823 0.95786 1.42272 1.42351 1.63050 1.72962
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45812 0.71107 0.95904 1.26019 1.40302 1.94184
occupation numbers for kpt# 2
2.00000 1.28370 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45848 0.71061 0.95930 1.26070 1.40251 1.93997
occupation numbers for kpt# 3
2.00000 1.32623 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45809 0.71033 0.95983 1.26078 1.40289 1.94045
occupation numbers for kpt# 4
2.00000 1.35083 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19809 0.95689 1.42295 1.42485 1.63107 1.73122
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45797 0.71020 0.95919 1.26249 1.40302 1.93977
occupation numbers for kpt# 6
2.00000 1.36218 0.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 9.1377E-02 at reduced coord. 0.7222 0.7222 0.7778
)Next maximum= 9.1377E-02 at reduced coord. 0.2778 0.2778 0.2222
) Minimum= -3.4796E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= -9.8861E-04 at reduced coord. 0.0000 0.0000 0.0556
Integrated= 3.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 4, }
comment : Components of total free energy in Hartree
kinetic : 1.59057744956776E+00
hartree : 2.11702039332950E-02
xc : -1.16951189496029E+00
Ewald energy : -3.63917029924570E+00
psp_core : 6.97557738306695E-03
local_psp : 4.15524617432177E-01
spherical_terms : 8.70281109036522E-01
internal : -1.90415323685317E+00
'-kT*entropy' : -4.77105203625519E-03
total_energy : -1.90892428888943E+00
total_energy_eV : -5.19444715846477E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 4, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.49690368500650E+00
Ewald energy : -3.63917029924570E+00
psp_core : 6.97557738306695E-03
xc_dc : 2.26164927822239E-01
spherical_terms : 4.97156432234180E-03
internal : -1.90415454471155E+00
'-kT*entropy' : -4.77105203625519E-03
total_energy_dc : -1.90892559674781E+00
total_energy_dc_eV : -5.19445071732842E+01
...
===> extra information on forces <===
ewald contribution to reduced grads
1 0.000000000000 -0.000000000000 0.000000000000
nonlocal contribution to red. grads
1 -0.000000000000 0.000000000000 0.000000000000
local psp contribution to red. grads
1 -0.000000000000 -0.000000000000 -0.000000000000
core charge xc contribution to reduced grads
1 0.000000000000 0.000000000000 0.000000000000
residual contribution to red. grads
1 0.000000000000 0.000000000000 -0.000000000000
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41059341E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41059341E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41237612E-02 sigma(2 1)= -8.14139770E-05
-Cartesian components of stress tensor (GPa) [Pressure= 4.1519E+02 GPa]
- sigma(1 1)= -4.15010839E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.15010839E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.15535331E+02 sigma(2 1)= -2.39528150E+00
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 1, nkpt: 6, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= -0.0028342 2.8342231 2.8313889 G(1)= -0.1762389 0.1762389 0.1765918
R(2)= 2.8342231 -0.0028342 2.8313889 G(2)= 0.1762389 -0.1762389 0.1765918
R(3)= 2.8313889 2.8313889 0.0000000 G(3)= 0.1765918 0.1765918 -0.1765918
Unit cell volume ucvol= 4.5488034E+01 bohr^3
Angles (23,13,12)= 6.00165592E+01 6.00165592E+01 6.00992888E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.29075
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.678275 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23845
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.053371 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t95o_DS1_WFK
- newkpt: read input wf with ikpt,npw= 1 124, make ikpt,npw= 1 124
- newkpt: read input wf with ikpt,npw= 2 124, make ikpt,npw= 2 124
- newkpt: read input wf with ikpt,npw= 3 132, make ikpt,npw= 3 132
- newkpt: read input wf with ikpt,npw= 4 124, make ikpt,npw= 4 124
- newkpt: read input wf with ikpt,npw= 5 124, make ikpt,npw= 5 124
- newkpt: read input wf with ikpt,npw= 6 132, make ikpt,npw= 6 132
_setup2: Arith. and geom. avg. npw (full set) are 126.000 125.953
================================================================================
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 17, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -1.9063218909186 -1.906E+00 3.633E-01 4.715E-02
Fermi (or HOMO) energy (hartree) = 0.71425 Average Vxc (hartree)= -0.46720
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45640 0.70807 0.95915 1.26192 1.40134 1.93783
occupation numbers for kpt# 1
2.00000 1.55001 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45811 0.71698 0.96114 1.25750 1.40920 1.97075
occupation numbers for kpt# 2
2.00000 0.73349 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19601 0.95539 1.42299 1.42464 1.62994 1.73035
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45591 0.70933 0.95799 1.26086 1.40406 1.97961
occupation numbers for kpt# 4
2.00000 1.45550 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45683 0.70998 0.95798 1.26147 1.40269 1.95264
occupation numbers for kpt# 5
2.00000 1.40275 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19630 0.95901 1.42090 1.42392 1.64981 1.72856
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 2 -1.9079794894402 -1.658E-03 1.355E-03 7.210E-03
Fermi (or HOMO) energy (hartree) = 0.71485 Average Vxc (hartree)= -0.46496
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45890 0.71027 0.96124 1.26395 1.40380 1.94010
occupation numbers for kpt# 1
2.00000 1.42790 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45927 0.71199 0.96034 1.25945 1.40460 1.94609
occupation numbers for kpt# 2
2.00000 1.27796 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19842 0.95750 1.42504 1.42663 1.63256 1.73281
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45817 0.71135 0.96040 1.26289 1.40526 1.94447
occupation numbers for kpt# 4
2.00000 1.33635 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45902 0.71163 0.95943 1.26265 1.40453 1.94324
occupation numbers for kpt# 5
2.00000 1.31072 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19869 0.95936 1.42235 1.42585 1.63119 1.73005
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 3 -1.9079651251129 1.436E-05 1.849E-04 2.801E-04
Fermi (or HOMO) energy (hartree) = 0.71499 Average Vxc (hartree)= -0.46479
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45918 0.71041 0.96125 1.26404 1.40417 1.94010
occupation numbers for kpt# 1
2.00000 1.42838 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45949 0.71216 0.96090 1.25944 1.40426 1.94480
occupation numbers for kpt# 2
2.00000 1.27577 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19865 0.95758 1.42505 1.42666 1.63294 1.73316
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45847 0.71136 0.96071 1.26300 1.40526 1.94398
occupation numbers for kpt# 4
2.00000 1.34798 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45924 0.71190 0.95966 1.26283 1.40449 1.94293
occupation numbers for kpt# 5
2.00000 1.29994 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19894 0.95950 1.42240 1.42617 1.63178 1.72998
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 4 -1.9079648041577 3.210E-07 1.285E-04 6.081E-06
Fermi (or HOMO) energy (hartree) = 0.71505 Average Vxc (hartree)= -0.46473
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45927 0.71047 0.96130 1.26408 1.40423 1.94013
occupation numbers for kpt# 1
2.00000 1.42845 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45957 0.71222 0.96102 1.25947 1.40424 1.94443
occupation numbers for kpt# 2
2.00000 1.27538 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19873 0.95762 1.42509 1.42668 1.63307 1.73322
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45856 0.71140 0.96080 1.26305 1.40527 1.94388
occupation numbers for kpt# 4
2.00000 1.34927 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45932 0.71197 0.95974 1.26289 1.40450 1.94287
occupation numbers for kpt# 5
2.00000 1.29881 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19902 0.95955 1.42242 1.42624 1.63192 1.72998
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 5 -1.9079647929544 1.120E-08 1.470E-05 2.270E-08
Fermi (or HOMO) energy (hartree) = 0.71506 Average Vxc (hartree)= -0.46472
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45928 0.71048 0.96133 1.26409 1.40423 1.94014
occupation numbers for kpt# 1
2.00000 1.42843 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45959 0.71223 0.96102 1.25949 1.40426 1.94432
occupation numbers for kpt# 2
2.00000 1.27542 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19875 0.95763 1.42510 1.42668 1.63309 1.73321
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45857 0.71142 0.96081 1.26306 1.40528 1.94386
occupation numbers for kpt# 4
2.00000 1.34871 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45934 0.71197 0.95976 1.26290 1.40451 1.94286
occupation numbers for kpt# 5
2.00000 1.29937 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19904 0.95956 1.42243 1.42623 1.63193 1.72998
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ETOT 6 -1.9079647929525 1.930E-12 1.152E-05 7.870E-10
Fermi (or HOMO) energy (hartree) = 0.71506 Average Vxc (hartree)= -0.46472
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45928 0.71048 0.96133 1.26409 1.40423 1.94014
occupation numbers for kpt# 1
2.00000 1.42843 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45959 0.71223 0.96102 1.25949 1.40426 1.94428
occupation numbers for kpt# 2
2.00000 1.27543 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19875 0.95763 1.42510 1.42668 1.63309 1.73321
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45857 0.71142 0.96081 1.26306 1.40528 1.94385
occupation numbers for kpt# 4
2.00000 1.34873 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45934 0.71197 0.95976 1.26290 1.40451 1.94286
occupation numbers for kpt# 5
2.00000 1.29934 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19904 0.95956 1.42243 1.42623 1.63193 1.72997
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
At SCF step 6 nres2 = 7.87E-10 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41866362E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41866362E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41573979E-02 sigma(2 1)= 1.58341952E-04
--- !ResultsGS
iteration_state: {dtset: 5, }
comment : Summary of ground state results
lattice_vectors:
- [ -0.0028342, 2.8342231, 2.8313889, ]
- [ 2.8342231, -0.0028342, 2.8313889, ]
- [ 2.8313889, 2.8313889, 0.0000000, ]
lattice_lengths: [ 4.00619, 4.00619, 4.00419, ]
lattice_angles: [ 60.017, 60.017, 60.099, ] # degrees, (23, 13, 12)
lattice_volume: 4.5488034E+01
convergence: {deltae: 1.930E-12, res2: 7.870E-10, residm: 1.152E-05, diffor: null, }
etotal : -1.90796479E+00
entropy : 0.00000000E+00
fermie : 7.15061718E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.41866362E-02, 1.58341952E-04, 0.00000000E+00, ]
- [ 1.58341952E-04, -1.41866362E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.41573979E-02, ]
pressure_GPa: 4.1710E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 2.09808460
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.132779523088877
Compensation charge over fine fft grid = -0.132781126654829
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.32033 0.01426 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01426 13.31687 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07921 0.00000 0.00000 -0.04792 0.00000 -0.00000
0.00000 0.00000 0.00000 0.07921 0.00000 0.00000 -0.04792 0.00000
0.00000 0.00000 0.00000 0.00000 0.07921 -0.00000 0.00000 -0.04792
0.00000 0.00000 -0.04792 0.00000 -0.00000 0.21570 0.00000 -0.00003
0.00000 0.00000 0.00000 -0.04792 0.00000 0.00000 0.21569 0.00000
0.00000 0.00000 -0.00000 0.00000 -0.04792 -0.00003 0.00000 0.21570
Augmentation waves occupancies Rhoij:
1.79220 0.01213 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01213 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.95303 0.00000 -0.01185 -0.03409 0.00000 0.00009
0.00000 0.00000 0.00000 1.94877 0.00000 0.00000 -0.03405 0.00000
0.00000 0.00000 -0.01185 0.00000 1.95303 0.00009 0.00000 -0.03409
0.00000 0.00000 -0.03409 0.00000 0.00009 0.00074 0.00000 -0.00000
0.00000 0.00000 0.00000 -0.03405 0.00000 0.00000 0.00074 0.00000
0.00000 0.00000 0.00009 0.00000 -0.03409 -0.00000 0.00000 0.00074
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 46.515E-08; max= 11.516E-06
-0.2500 0.5000 0.0000 1 9.37329E-13 kpt; spin; max resid(k); each band:
6.15E-13 7.37E-13 3.05E-13 7.90E-15 9.37E-13 5.80E-13
-0.2500 -0.2500 0.2500 1 1.15155E-05 kpt; spin; max resid(k); each band:
6.59E-13 7.58E-13 7.52E-13 1.38E-15 5.16E-13 1.15E-05
-0.2500 0.0000 0.0000 1 7.90076E-07 kpt; spin; max resid(k); each band:
8.58E-13 6.74E-13 8.39E-13 1.50E-14 2.13E-11 7.90E-07
-0.2500 0.2500 0.2500 1 1.80990E-06 kpt; spin; max resid(k); each band:
6.02E-13 5.19E-13 4.39E-13 6.15E-13 3.20E-13 1.81E-06
-0.2500 0.5000 0.5000 1 5.05718E-07 kpt; spin; max resid(k); each band:
8.67E-13 4.80E-13 4.52E-13 5.94E-13 4.42E-13 5.06E-07
-0.2500 -0.2500 -0.2500 1 2.12362E-06 kpt; spin; max resid(k); each band:
8.69E-13 4.70E-13 2.73E-14 7.47E-13 5.48E-10 2.12E-06
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 5.668446277500 5.668446277500 5.668446277500 bohr
= 2.999612578170 2.999612578170 2.999612578170 angstroms
Fermi (or HOMO) energy (hartree) = 0.71506 Average Vxc (hartree)= -0.46472
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.45928 0.71048 0.96133 1.26409 1.40423 1.94014
occupation numbers for kpt# 1
2.00000 1.42843 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
0.45959 0.71223 0.96102 1.25949 1.40426 1.94428
occupation numbers for kpt# 2
2.00000 1.27543 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.12500, kpt= -0.2500 0.0000 0.0000 (reduced coord)
0.19875 0.95763 1.42510 1.42668 1.63309 1.73321
occupation numbers for kpt# 3
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
0.45857 0.71142 0.96081 1.26306 1.40528 1.94385
occupation numbers for kpt# 4
2.00000 1.34873 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.25000, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.45934 0.71197 0.95976 1.26290 1.40451 1.94286
occupation numbers for kpt# 5
2.00000 1.29934 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= -0.2500 -0.2500 -0.2500 (reduced coord)
0.19904 0.95956 1.42243 1.42623 1.63193 1.72997
occupation numbers for kpt# 6
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 9.1566E-02 at reduced coord. 0.7778 0.7778 0.7222
)Next maximum= 9.1566E-02 at reduced coord. 0.2222 0.2222 0.2778
) Minimum= -3.4887E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= -1.0002E-03 at reduced coord. 0.9444 0.0556 0.0000
Integrated= 3.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 5, }
comment : Components of total free energy in Hartree
kinetic : 1.59235458183476E+00
hartree : 2.12138175696768E-02
xc : -1.17007291899568E+00
Ewald energy : -3.64099053846563E+00
psp_core : 6.98605646252512E-03
local_psp : 4.15806510501590E-01
spherical_terms : 8.71498977234786E-01
internal : -1.90320351385797E+00
'-kT*entropy' : -4.76305680568359E-03
total_energy : -1.90796657066366E+00
total_energy_eV : -5.19184107463765E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 5, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.49968440721683E+00
Ewald energy : -3.64099053846563E+00
psp_core : 6.98605646252512E-03
xc_dc : 2.26252105942207E-01
spherical_terms : 4.86623269725184E-03
internal : -1.90320173614682E+00
'-kT*entropy' : -4.76305680568359E-03
total_energy_dc : -1.90796479295250E+00
total_energy_dc_eV : -5.19183623723960E+01
...
===> extra information on forces <===
ewald contribution to reduced grads
1 -0.000000000000 0.000000000000 -0.000000000000
nonlocal contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
local psp contribution to red. grads
1 -0.000000000000 -0.000000000000 -0.000000000000
core charge xc contribution to reduced grads
1 0.000000000000 0.000000000000 0.000000000000
residual contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.41866362E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.41866362E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41573979E-02 sigma(2 1)= 1.58341952E-04
-Cartesian components of stress tensor (GPa) [Pressure= 4.1710E+02 GPa]
- sigma(1 1)= -4.17385178E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.17385178E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.16524957E+02 sigma(2 1)= 4.65858029E+00
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 1, nkpt: 6, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0028342 2.8342231 2.8370574 G(1)= -0.1765918 0.1765918 0.1762389
R(2)= 2.8342231 0.0028342 2.8370574 G(2)= 0.1765918 -0.1765918 0.1762389
R(3)= 2.8370574 2.8370574 0.0000000 G(3)= 0.1762389 0.1762389 -0.1762389
Unit cell volume ucvol= 4.5579101E+01 bohr^3
Angles (23,13,12)= 5.99834794E+01 5.99834794E+01 5.99008104E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.28732
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.619299 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23535
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 24.983952 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t95o_DS1_WFK
- newkpt: read input wf with ikpt,npw= 1 132, make ikpt,npw= 1 132
- newkpt: read input wf with ikpt,npw= 2 124, make ikpt,npw= 2 124
- newkpt: read input wf with ikpt,npw= 3 124, make ikpt,npw= 3 124
- newkpt: read input wf with ikpt,npw= 4 124, make ikpt,npw= 4 124
- newkpt: read input wf with ikpt,npw= 5 132, make ikpt,npw= 5 132
- newkpt: read input wf with ikpt,npw= 6 124, make ikpt,npw= 6 124
_setup2: Arith. and geom. avg. npw (full set) are 126.000 125.953
================================================================================
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 17, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -1.9032789229984 -1.903E+00 3.555E-01 1.135E-01
Fermi (or HOMO) energy (hartree) = 0.71930 Average Vxc (hartree)= -0.46580
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19663 0.95651 1.42044 1.42068 1.62713 1.72858
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45646 0.71001 0.95510 1.25829 1.40348 1.94045
occupation numbers for kpt# 2
2.00000 1.72999 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45729 0.71090 0.95921 1.25910 1.40133 1.97466
occupation numbers for kpt# 3
2.00000 1.68546 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45712 0.72182 0.96476 1.26723 1.40157 1.95092
occupation numbers for kpt# 4
2.00000 0.75232 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19636 0.95663 1.42200 1.42533 1.69174 1.73407
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45643 0.71512 0.96169 1.26243 1.40564 1.96074
occupation numbers for kpt# 6
2.00000 1.39446 0.00000 0.00000 0.00000 0.00000
ETOT 2 -1.9092578510008 -5.979E-03 1.960E-03 8.574E-03
Fermi (or HOMO) energy (hartree) = 0.71362 Average Vxc (hartree)= -0.46456
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19797 0.95796 1.42153 1.42304 1.62945 1.72795
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45758 0.71124 0.95847 1.25907 1.40223 1.94229
occupation numbers for kpt# 2
2.00000 1.23429 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45830 0.71048 0.95862 1.25989 1.40166 1.93905
occupation numbers for kpt# 3
2.00000 1.30496 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45766 0.70959 0.95976 1.25995 1.40250 1.94046
occupation numbers for kpt# 4
2.00000 1.38276 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19769 0.95596 1.42149 1.42579 1.63133 1.73194
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45737 0.70950 0.95806 1.26373 1.40308 1.93929
occupation numbers for kpt# 6
2.00000 1.39027 0.00000 0.00000 0.00000 0.00000
ETOT 3 -1.9092525955446 5.255E-06 1.266E-04 1.540E-03
Fermi (or HOMO) energy (hartree) = 0.71362 Average Vxc (hartree)= -0.46450
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19800 0.95792 1.42146 1.42298 1.62953 1.72823
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45765 0.71124 0.95832 1.25896 1.40247 1.94234
occupation numbers for kpt# 2
2.00000 1.23345 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45837 0.71036 0.95871 1.25988 1.40161 1.93881
occupation numbers for kpt# 3
2.00000 1.31446 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45764 0.70969 0.95980 1.26001 1.40240 1.93984
occupation numbers for kpt# 4
2.00000 1.37346 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19771 0.95597 1.42171 1.42570 1.63068 1.73173
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45738 0.70949 0.95837 1.26357 1.40277 1.93840
occupation numbers for kpt# 6
2.00000 1.39069 0.00000 0.00000 0.00000 0.00000
ETOT 4 -1.9092521723295 4.232E-07 4.443E-05 6.149E-06
Fermi (or HOMO) energy (hartree) = 0.71364 Average Vxc (hartree)= -0.46445
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19805 0.95792 1.42141 1.42297 1.62962 1.72844
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45773 0.71127 0.95826 1.25888 1.40263 1.94241
occupation numbers for kpt# 2
2.00000 1.23293 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45844 0.71032 0.95880 1.25991 1.40158 1.93867
occupation numbers for kpt# 3
2.00000 1.32028 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45766 0.70978 0.95984 1.26007 1.40235 1.93963
occupation numbers for kpt# 4
2.00000 1.36780 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19776 0.95599 1.42186 1.42565 1.63079 1.73155
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45742 0.70951 0.95859 1.26347 1.40259 1.93834
occupation numbers for kpt# 6
2.00000 1.39090 0.00000 0.00000 0.00000 0.00000
ETOT 5 -1.9092521527993 1.953E-08 1.737E-05 3.621E-08
Fermi (or HOMO) energy (hartree) = 0.71365 Average Vxc (hartree)= -0.46444
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19806 0.95793 1.42141 1.42298 1.62964 1.72842
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45774 0.71127 0.95828 1.25889 1.40261 1.94242
occupation numbers for kpt# 2
2.00000 1.23300 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45845 0.71034 0.95880 1.25991 1.40159 1.93868
occupation numbers for kpt# 3
2.00000 1.31948 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45768 0.70978 0.95985 1.26007 1.40236 1.93962
occupation numbers for kpt# 4
2.00000 1.36860 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19777 0.95600 1.42185 1.42566 1.63077 1.73150
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45743 0.70952 0.95858 1.26349 1.40261 1.93830
occupation numbers for kpt# 6
2.00000 1.39083 0.00000 0.00000 0.00000 0.00000
ETOT 6 -1.9092521528209 -2.155E-11 4.299E-06 7.091E-10
Fermi (or HOMO) energy (hartree) = 0.71365 Average Vxc (hartree)= -0.46444
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19806 0.95793 1.42141 1.42298 1.62964 1.72842
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45774 0.71127 0.95828 1.25889 1.40262 1.94242
occupation numbers for kpt# 2
2.00000 1.23300 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45845 0.71034 0.95880 1.25992 1.40159 1.93868
occupation numbers for kpt# 3
2.00000 1.31950 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45768 0.70978 0.95985 1.26007 1.40236 1.93961
occupation numbers for kpt# 4
2.00000 1.36858 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19777 0.95600 1.42185 1.42566 1.63077 1.73142
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45743 0.70952 0.95858 1.26349 1.40261 1.93828
occupation numbers for kpt# 6
2.00000 1.39083 0.00000 0.00000 0.00000 0.00000
At SCF step 6 nres2 = 7.09E-10 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.40778545E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.40778545E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41153756E-02 sigma(2 1)= -1.63739816E-04
--- !ResultsGS
iteration_state: {dtset: 6, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0028342, 2.8342231, 2.8370574, ]
- [ 2.8342231, 0.0028342, 2.8370574, ]
- [ 2.8370574, 2.8370574, 0.0000000, ]
lattice_lengths: [ 4.01020, 4.01020, 4.01220, ]
lattice_angles: [ 59.983, 59.983, 59.901, ] # degrees, (23, 13, 12)
lattice_volume: 4.5579101E+01
convergence: {deltae: -2.155E-11, res2: 7.091E-10, residm: 4.299E-06, diffor: null, }
etotal : -1.90925215E+00
entropy : 0.00000000E+00
fermie : 7.13647612E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.40778545E-02, -1.63739816E-04, 0.00000000E+00, ]
- [ -1.63739816E-04, -1.40778545E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.41153756E-02, ]
pressure_GPa: 4.1455E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 2.08565761
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.132584945685152
Compensation charge over fine fft grid = -0.132587728829158
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.32037 0.01424 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01424 13.31592 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07920 0.00000 -0.00000 -0.04784 0.00000 0.00000
0.00000 0.00000 0.00000 0.07920 0.00000 0.00000 -0.04784 0.00000
0.00000 0.00000 -0.00000 0.00000 0.07920 0.00000 0.00000 -0.04784
0.00000 0.00000 -0.04784 0.00000 0.00000 0.21543 0.00000 0.00003
0.00000 0.00000 0.00000 -0.04784 0.00000 0.00000 0.21544 0.00000
0.00000 0.00000 0.00000 0.00000 -0.04784 0.00003 0.00000 0.21543
Augmentation waves occupancies Rhoij:
1.78982 0.01210 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01210 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94534 0.00000 0.01246 -0.03399 0.00000 -0.00010
0.00000 0.00000 0.00000 1.95057 0.00000 0.00000 -0.03403 0.00000
0.00000 0.00000 0.01246 0.00000 1.94534 -0.00010 0.00000 -0.03399
0.00000 0.00000 -0.03399 0.00000 -0.00010 0.00074 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03403 0.00000 0.00000 0.00074 0.00000
0.00000 0.00000 -0.00010 0.00000 -0.03399 0.00000 0.00000 0.00074
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.393E-08; max= 42.989E-07
0.0000 -0.2500 0.0000 1 1.18788E-07 kpt; spin; max resid(k); each band:
1.20E-12 4.94E-13 1.66E-13 5.45E-13 3.58E-11 1.19E-07
0.2500 0.5000 0.0000 1 2.75252E-12 kpt; spin; max resid(k); each band:
1.08E-12 9.97E-13 1.61E-12 2.32E-14 2.45E-13 2.75E-12
0.0000 0.5000 0.2500 1 1.00369E-07 kpt; spin; max resid(k); each band:
1.18E-12 6.61E-13 1.15E-12 3.38E-13 3.85E-13 1.00E-07
0.0000 -0.2500 0.5000 1 2.02433E-06 kpt; spin; max resid(k); each band:
1.37E-12 5.01E-13 1.23E-12 3.84E-13 3.56E-13 2.02E-06
0.0000 0.0000 0.2500 1 4.29885E-06 kpt; spin; max resid(k); each band:
9.87E-13 2.75E-13 7.39E-13 2.14E-13 2.60E-07 4.30E-06
0.5000 0.5000 0.2500 1 3.05910E-06 kpt; spin; max resid(k); each band:
1.25E-12 7.48E-13 7.90E-13 3.53E-15 6.30E-13 3.06E-06
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 5.668446277500 5.668446277500 5.668446277500 bohr
= 2.999612578170 2.999612578170 2.999612578170 angstroms
Fermi (or HOMO) energy (hartree) = 0.71365 Average Vxc (hartree)= -0.46444
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 -0.2500 0.0000 (reduced coord)
0.19806 0.95793 1.42141 1.42298 1.62964 1.72842
occupation numbers for kpt# 1
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 6, wtk= 0.12500, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.45774 0.71127 0.95828 1.25889 1.40262 1.94242
occupation numbers for kpt# 2
2.00000 1.23300 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 6, wtk= 0.25000, kpt= 0.0000 0.5000 0.2500 (reduced coord)
0.45845 0.71034 0.95880 1.25992 1.40159 1.93868
occupation numbers for kpt# 3
2.00000 1.31950 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 6, wtk= 0.25000, kpt= 0.0000 -0.2500 0.5000 (reduced coord)
0.45768 0.70978 0.95985 1.26007 1.40236 1.93961
occupation numbers for kpt# 4
2.00000 1.36858 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.2500 (reduced coord)
0.19777 0.95600 1.42185 1.42566 1.63077 1.73142
occupation numbers for kpt# 5
2.00000 0.00000 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 6, wtk= 0.12500, kpt= 0.5000 0.5000 0.2500 (reduced coord)
0.45743 0.70952 0.95858 1.26349 1.40261 1.93828
occupation numbers for kpt# 6
2.00000 1.39083 0.00000 0.00000 0.00000 0.00000
Total charge density [el/Bohr^3]
) Maximum= 9.1339E-02 at reduced coord. 0.7222 0.7222 0.7778
)Next maximum= 9.1339E-02 at reduced coord. 0.2778 0.2778 0.2222
) Minimum= -3.4766E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= -9.9332E-04 at reduced coord. 0.0000 0.0000 0.0556
Integrated= 3.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 6, }
comment : Components of total free energy in Hartree
kinetic : 1.58995413968948E+00
hartree : 2.11556425387132E-02
xc : -1.16932569918659E+00
Ewald energy : -3.63856401080553E+00
psp_core : 6.97209830775484E-03
local_psp : 4.15423120290238E-01
spherical_terms : 8.69896885690365E-01
internal : -1.90448782347557E+00
'-kT*entropy' : -4.76254526597355E-03
total_energy : -1.90925036874154E+00
total_energy_eV : -5.19533446686727E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 6, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.49596079660343E+00
Ewald energy : -3.63856401080553E+00
psp_core : 6.97209830775484E-03
xc_dc : 2.26135925573006E-01
spherical_terms : 5.00558276643015E-03
internal : -1.90448960755491E+00
'-kT*entropy' : -4.76254526597355E-03
total_energy_dc : -1.90925215282088E+00
total_energy_dc_eV : -5.19533932159404E+01
...
===> extra information on forces <===
ewald contribution to reduced grads
1 -0.000000000000 -0.000000000000 -0.000000000000
nonlocal contribution to red. grads
1 0.000000000000 0.000000000000 0.000000000000
local psp contribution to red. grads
1 -0.000000000000 -0.000000000000 -0.000000000000
core charge xc contribution to reduced grads
1 0.000000000000 0.000000000000 0.000000000000
residual contribution to red. grads
1 0.000000000000 -0.000000000000 -0.000000000000
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.40778545E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.40778545E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.41153756E-02 sigma(2 1)= -1.63739816E-04
-Cartesian components of stress tensor (GPa) [Pressure= 4.1455E+02 GPa]
- sigma(1 1)= -4.14184709E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.14184709E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.15288618E+02 sigma(2 1)= -4.81739090E+00
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 1, nkpt: 32, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 1, rfphon: 1, rfstrs: 3, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 2.8342231 2.8342231 G(1)= -0.1764152 0.1764152 0.1764152
R(2)= 2.8342231 0.0000000 2.8342231 G(2)= 0.1764152 -0.1764152 0.1764152
R(3)= 2.8342231 2.8342231 0.0000000 G(3)= 0.1764152 0.1764152 -0.1764152
Unit cell volume ucvol= 4.5533613E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.28960
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.658558 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23759
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.033944 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
symkchk : k-point set has full space-group symmetry.
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 4
3) idir= 2 ipert= 4
4) idir= 3 ipert= 4
5) idir= 1 ipert= 5
6) idir= 2 ipert= 5
7) idir= 3 ipert= 5
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 10 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.68157056528313E-02 -6.366E+00 5.935E-02 3.878E+01
ETOT 2 -3.24644620280062E-04 -1.714E-02 1.216E-04 5.270E+00
ETOT 3 -3.01596875081092E-03 -2.691E-03 1.997E-05 1.514E-03
ETOT 4 -3.01669342740166E-03 -7.247E-07 2.171E-08 5.259E-06
ETOT 5 -3.01669998896539E-03 -6.562E-09 1.956E-10 1.758E-07
ETOT 6 -3.01670007057300E-03 -8.161E-11 3.142E-13 1.757E-09
At SCF step 6 vres2 = 1.76E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 12.460E-14; max= 31.419E-14
-0.2500 0.5000 0.0000 1 2.20043E-13 kpt; spin; max resid(k); each band:
1.52E-13 1.28E-13 2.20E-13 2.16E-14-1.00E-01-1.00E-01
0.5000 -0.2500 0.0000 1 2.86559E-13 kpt; spin; max resid(k); each band:
1.44E-13 1.29E-13 1.44E-13 2.87E-13-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 3.05165E-13 kpt; spin; max resid(k); each band:
2.48E-13 3.05E-13 5.63E-14 4.52E-14-1.00E-01-1.00E-01
0.5000 0.2500 0.0000 1 2.86559E-13 kpt; spin; max resid(k); each band:
1.44E-13 1.29E-13 1.44E-13 2.87E-13-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 1.20201E-13 kpt; spin; max resid(k); each band:
1.20E-13 6.58E-14 1.21E-14 8.43E-14-1.00E-01-1.00E-01
0.2500 0.5000 0.0000 1 2.20043E-13 kpt; spin; max resid(k); each band:
1.52E-13 1.28E-13 2.20E-13 2.16E-14-1.00E-01-1.00E-01
0.0000 -0.2500 0.0000 1 1.28540E-13 kpt; spin; max resid(k); each band:
7.42E-15 1.03E-13 1.29E-13 8.42E-14-1.00E-01-1.00E-01
0.2500 0.0000 0.0000 1 3.05165E-13 kpt; spin; max resid(k); each band:
2.48E-13 3.05E-13 5.69E-14 4.52E-14-1.00E-01-1.00E-01
0.0000 0.5000 0.2500 1 3.14185E-13 kpt; spin; max resid(k); each band:
5.27E-15 4.58E-15 1.17E-14 3.14E-13-1.00E-01-1.00E-01
0.2500 0.5000 0.5000 1 1.20201E-13 kpt; spin; max resid(k); each band:
1.20E-13 6.58E-14 1.21E-14 8.41E-14-1.00E-01-1.00E-01
Fourteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.69589555E+00 eigvalue= -8.51598235E-01 local= -1.13640473E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.37396097E+01 Hartree= 9.59167560E-01 xc= -7.52532306E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.06078538E+00 enl0= 8.27504111E-01 enl1= -2.69282812E+01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.21872196E-11
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -6.38585413E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -9.24120486E+00 fr.nonlo= 1.58248954E+01 Ewald= 0.00000000E+00
14,15 Frozen wf xc core corrections (1) and (2)
frxc 1 = -6.11054571E-02 frxc 2 = -1.39747705E-01
16 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 2.08483722E-01
Resulting in :
2DEtotal= -0.3016700071E-02 Ha. Also 2DEtotal= -0.820885836108E-01 eV
(2DErelax= -6.3858541274E+00 Ha. 2DEnonrelax= 6.3828374273E+00 Ha)
( non-var. 2DEtotal : -3.0145788669E-03 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 16 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.30902022834518 -2.480E+00 2.757E-02 3.201E+00
ETOT 2 0.30559894771771 -3.421E-03 3.862E-05 5.001E-01
ETOT 3 0.30524771370205 -3.512E-04 1.290E-06 2.235E-03
ETOT 4 0.30524010482250 -7.609E-06 4.657E-08 8.588E-05
ETOT 5 0.30523995055056 -1.543E-07 1.058E-09 8.337E-07
ETOT 6 0.30523994649442 -4.056E-09 1.754E-11 2.634E-09
At SCF step 6 vres2 = 2.63E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 73.253E-13; max= 17.543E-12
-0.2500 0.5000 0.0000 1 7.54445E-12 kpt; spin; max resid(k); each band:
5.93E-12 7.54E-12 5.58E-12 2.75E-12-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 1.75426E-11 kpt; spin; max resid(k); each band:
2.37E-12 1.75E-11 1.57E-11 3.37E-12-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 1.04923E-11 kpt; spin; max resid(k); each band:
4.20E-12 8.34E-12 4.09E-12 1.05E-11-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.59337663E-01 eigvalue= -6.20939934E-02 local= -5.37635513E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.15987891E+00 Hartree= 2.25866814E-01 xc= -1.02697514E-01
kin1= -6.11637858E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 2.50910312E+00 enl0= 3.05835980E-02 enl1= -5.05057133E-01
11: eventually, PAW "on-site" Hxc contribution: epaw1= 7.17742802E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.48344639E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.06804801E-04 fr.kin= 2.15235446E+00 fr.loc= -3.19510783E-01
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.36489954E+00 fr.xc= -1.23398133E-01 Ewald= -2.92431004E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 6.97906343E-03
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 1.98946372E-01
Resulting in :
2DEtotal= 0.3052399465E+00 Ha. Also 2DEtotal= 0.830600135347E+01 eV
(2DErelax= -2.4834463900E+00 Ha. 2DEnonrelax= 2.7886863365E+00 Ha)
( non-var. 2DEtotal : 3.0523988164E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 16 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.30902709653630 -2.480E+00 1.114E-02 3.200E+00
ETOT 2 0.30559902225655 -3.428E-03 2.596E-05 5.004E-01
ETOT 3 0.30524774280724 -3.513E-04 1.324E-06 2.226E-03
ETOT 4 0.30524010202252 -7.641E-06 4.685E-08 8.548E-05
ETOT 5 0.30523995053556 -1.515E-07 1.021E-09 8.299E-07
ETOT 6 0.30523994652540 -4.010E-09 1.730E-11 2.602E-09
At SCF step 6 vres2 = 2.60E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 72.401E-13; max= 17.297E-12
-0.2500 0.5000 0.0000 1 7.43515E-12 kpt; spin; max resid(k); each band:
5.83E-12 7.44E-12 5.49E-12 2.71E-12-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 1.72974E-11 kpt; spin; max resid(k); each band:
2.35E-12 1.73E-11 1.72E-11 1.80E-12-1.00E-01-1.00E-01
0.2500 -0.2500 0.2500 1 1.03406E-11 kpt; spin; max resid(k); each band:
4.13E-12 8.22E-12 4.03E-12 1.03E-11-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.60097851E-01 eigvalue= -6.21736752E-02 local= -5.37426555E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.15987897E+00 Hartree= 2.25866822E-01 xc= -1.02697518E-01
kin1= -6.11637866E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 2.50848763E+00 enl0= 3.04976711E-02 enl1= -5.05057118E-01
11: eventually, PAW "on-site" Hxc contribution: epaw1= 7.17742898E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.48344639E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.06804801E-04 fr.kin= 2.15235446E+00 fr.loc= -3.19510783E-01
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.36489954E+00 fr.xc= -1.23398133E-01 Ewald= -2.92431004E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 6.97906343E-03
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 1.98946377E-01
Resulting in :
2DEtotal= 0.3052399465E+00 Ha. Also 2DEtotal= 0.830600135431E+01 eV
(2DErelax= -2.4834463900E+00 Ha. 2DEnonrelax= 2.7886863365E+00 Ha)
( non-var. 2DEtotal : 3.0523988778E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 16 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.30900282043543 -2.480E+00 1.990E-02 3.206E+00
ETOT 2 0.30559878127706 -3.404E-03 6.137E-05 4.991E-01
ETOT 3 0.30524761311275 -3.512E-04 1.248E-06 2.267E-03
ETOT 4 0.30524011512379 -7.498E-06 4.557E-08 8.748E-05
ETOT 5 0.30523995077292 -1.644E-07 8.994E-10 8.453E-07
ETOT 6 0.30523994657989 -4.193E-09 1.825E-11 2.608E-09
At SCF step 6 vres2 = 2.61E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 83.571E-13; max= 18.253E-12
-0.2500 0.5000 0.0000 1 1.09322E-11 kpt; spin; max resid(k); each band:
4.39E-12 8.70E-12 4.25E-12 1.09E-11-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 1.82533E-11 kpt; spin; max resid(k); each band:
2.43E-12 1.83E-11 1.68E-11 1.18E-11-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 7.86030E-12 kpt; spin; max resid(k); each band:
6.19E-12 7.86E-12 5.81E-12 2.86E-12-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.57807917E-01 eigvalue= -6.19336498E-02 local= -5.38056069E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.15987876E+00 Hartree= 2.25866800E-01 xc= -1.02697505E-01
kin1= -6.11637839E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 2.51034170E+00 enl0= 3.07565180E-02 enl1= -5.05057190E-01
11: eventually, PAW "on-site" Hxc contribution: epaw1= 7.17742556E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.48344639E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.06804801E-04 fr.kin= 2.15235446E+00 fr.loc= -3.19510783E-01
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.36489954E+00 fr.xc= -1.23398133E-01 Ewald= -2.92431004E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 6.97906343E-03
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 1.98946360E-01
Resulting in :
2DEtotal= 0.3052399466E+00 Ha. Also 2DEtotal= 0.830600135579E+01 eV
(2DErelax= -2.4834463899E+00 Ha. 2DEnonrelax= 2.7886863365E+00 Ha)
( non-var. 2DEtotal : 3.0523985948E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3.6418096566183 -5.617E+00 5.639E-03 3.429E+01
ETOT 2 -3.6764469189785 -3.464E-02 4.373E-05 2.626E+00
ETOT 3 -3.6793061270534 -2.859E-03 5.974E-06 1.046E-04
ETOT 4 -3.6793062193823 -9.233E-08 4.640E-09 1.728E-07
ETOT 5 -3.6793062196726 -2.904E-10 2.706E-11 1.092E-08
ETOT 6 -3.6793062196965 -2.382E-11 9.825E-14 1.288E-10
At SCF step 6 vres2 = 1.29E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.839E-15; max= 98.249E-15
-0.2500 0.5000 0.0000 1 6.86506E-14 kpt; spin; max resid(k); each band:
2.61E-14 3.48E-14 3.55E-14 6.87E-14-1.00E-01-1.00E-01
0.5000 -0.2500 0.0000 1 6.86506E-14 kpt; spin; max resid(k); each band:
2.61E-14 3.48E-14 3.55E-14 6.87E-14-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 9.82494E-14 kpt; spin; max resid(k); each band:
2.53E-15 4.67E-14 9.82E-14 1.62E-14-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 8.33411E-14 kpt; spin; max resid(k); each band:
1.31E-14 7.03E-15 9.87E-15 8.33E-14-1.00E-01-1.00E-01
0.0000 -0.2500 0.0000 1 9.82494E-14 kpt; spin; max resid(k); each band:
2.53E-15 4.67E-14 9.82E-14 1.62E-14-1.00E-01-1.00E-01
0.0000 0.5000 0.2500 1 8.33409E-14 kpt; spin; max resid(k); each band:
1.31E-14 7.03E-15 9.87E-15 8.33E-14-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.39173720E-01 eigvalue= -4.27532667E-02 local= -3.67325660E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.76396850E+00 Hartree= 1.54540424E-01 xc= -1.51927008E-01
kin1= -1.38247422E+01
8,9,10: eventually, occupation + non-local contributions
edocc= 5.33531343E+00 enl0= 2.38227738E-02 enl1= 4.40121974E+00
11: eventually, PAW "on-site" Hxc contribution: epaw1= 1.15110735E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.65454239E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -3.42736766E-03 fr.kin= 1.07212339E+00 fr.loc= -9.96621683E-02
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 2.58803981E-01 fr.xc= -5.44663478E-03 Ewald= 7.52844971E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -8.32961983E-03
Resulting in :
2DEtotal= -0.3679306220E+01 Ha. Also 2DEtotal= -0.100119013883E+03 eV
(2DErelax= -5.6545423898E+00 Ha. 2DEnonrelax= 1.9752361701E+00 Ha)
( non-var. 2DEtotal : -3.6793068532E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3.6418106561736 -5.617E+00 4.788E-03 3.429E+01
ETOT 2 -3.6764468603711 -3.464E-02 2.847E-05 2.626E+00
ETOT 3 -3.6793061268787 -2.859E-03 7.868E-06 1.046E-04
ETOT 4 -3.6793062193841 -9.251E-08 2.279E-09 1.766E-07
ETOT 5 -3.6793062196751 -2.911E-10 2.678E-11 1.115E-08
ETOT 6 -3.6793062196987 -2.352E-11 8.241E-14 1.393E-10
At SCF step 6 vres2 = 1.39E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.680E-15; max= 82.410E-15
-0.2500 0.5000 0.0000 1 6.81360E-14 kpt; spin; max resid(k); each band:
2.59E-14 3.46E-14 3.54E-14 6.81E-14-1.00E-01-1.00E-01
0.5000 -0.2500 0.0000 1 6.81358E-14 kpt; spin; max resid(k); each band:
2.59E-14 3.46E-14 3.54E-14 6.81E-14-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 4.90821E-14 kpt; spin; max resid(k); each band:
1.39E-15 4.91E-14 8.42E-15 4.36E-14-1.00E-01-1.00E-01
0.0000 -0.2500 0.0000 1 4.90830E-14 kpt; spin; max resid(k); each band:
1.38E-15 4.91E-14 8.42E-15 4.36E-14-1.00E-01-1.00E-01
0.2500 -0.2500 0.2500 1 8.24098E-14 kpt; spin; max resid(k); each band:
1.30E-14 8.48E-15 9.83E-15 8.24E-14-1.00E-01-1.00E-01
0.5000 0.0000 0.2500 1 8.24012E-14 kpt; spin; max resid(k); each band:
1.30E-14 8.47E-15 9.82E-15 8.24E-14-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.39123439E-01 eigvalue= -4.27479058E-02 local= -3.67129368E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.76396849E+00 Hartree= 1.54540422E-01 xc= -1.51927006E-01
kin1= -1.38247422E+01
8,9,10: eventually, occupation + non-local contributions
edocc= 5.33535485E+00 enl0= 2.38066581E-02 enl1= 4.40121973E+00
11: eventually, PAW "on-site" Hxc contribution: epaw1= 1.15110736E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.65454239E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -3.42736766E-03 fr.kin= 1.07212339E+00 fr.loc= -9.96621683E-02
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 2.58803981E-01 fr.xc= -5.44663478E-03 Ewald= 7.52844971E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -8.32961980E-03
Resulting in :
2DEtotal= -0.3679306220E+01 Ha. Also 2DEtotal= -0.100119013883E+03 eV
(2DErelax= -5.6545423898E+00 Ha. 2DEnonrelax= 1.9752361701E+00 Ha)
( non-var. 2DEtotal : -3.6793068546E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3.6418070184448 -5.617E+00 5.479E-03 3.429E+01
ETOT 2 -3.6764461528495 -3.464E-02 2.771E-05 2.626E+00
ETOT 3 -3.6793061275324 -2.860E-03 3.196E-06 1.051E-04
ETOT 4 -3.6793062193761 -9.184E-08 3.391E-09 1.665E-07
ETOT 5 -3.6793062196812 -3.051E-10 2.186E-11 1.156E-08
ETOT 6 -3.6793062197109 -2.970E-11 1.001E-13 1.418E-10
At SCF step 6 vres2 = 1.42E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 39.736E-15; max= 10.006E-14
-0.2500 0.5000 0.0000 1 1.00056E-13 kpt; spin; max resid(k); each band:
1.17E-14 1.01E-15 1.31E-14 1.00E-13-1.00E-01-1.00E-01
-0.2500 -0.2500 0.2500 1 1.00057E-13 kpt; spin; max resid(k); each band:
1.17E-14 1.01E-15 1.31E-14 1.00E-13-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 6.08156E-14 kpt; spin; max resid(k); each band:
1.98E-14 2.63E-14 5.21E-14 6.08E-14-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 8.11511E-14 kpt; spin; max resid(k); each band:
2.89E-14 4.07E-14 4.11E-14 8.12E-14-1.00E-01-1.00E-01
-0.2500 0.5000 0.5000 1 8.11511E-14 kpt; spin; max resid(k); each band:
2.89E-14 4.07E-14 4.11E-14 8.12E-14-1.00E-01-1.00E-01
-0.2500 -0.2500 -0.2500 1 6.08153E-14 kpt; spin; max resid(k); each band:
1.98E-14 2.63E-14 5.21E-14 6.08E-14-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.39274904E-01 eigvalue= -4.27640552E-02 local= -3.67720671E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.76396854E+00 Hartree= 1.54540434E-01 xc= -1.51927015E-01
kin1= -1.38247422E+01
8,9,10: eventually, occupation + non-local contributions
edocc= 5.33523012E+00 enl0= 2.38552044E-02 enl1= 4.40121977E+00
11: eventually, PAW "on-site" Hxc contribution: epaw1= 1.15110733E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.65454239E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -3.42736766E-03 fr.kin= 1.07212339E+00 fr.loc= -9.96621683E-02
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 2.58803981E-01 fr.xc= -5.44663478E-03 Ewald= 7.52844971E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -8.32961967E-03
Resulting in :
2DEtotal= -0.3679306220E+01 Ha. Also 2DEtotal= -0.100119013883E+03 eV
(2DErelax= -5.6545423898E+00 Ha. 2DEnonrelax= 1.9752361701E+00 Ha)
( non-var. 2DEtotal : -3.6793068606E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
Ewald part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 -0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.0000000000 -0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 -0.0000000000
3 1 3 1 0.0000000000 -0.0000000000
Frozen wf local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -9.2412048583 0.0000000000
1 1 2 1 -4.6206024292 0.0000000000
1 1 3 1 -4.6206024292 0.0000000000
2 1 1 1 -4.6206024292 0.0000000000
2 1 2 1 -9.2412048583 0.0000000000
2 1 3 1 -4.6206024292 0.0000000000
3 1 1 1 -4.6206024292 0.0000000000
3 1 2 1 -4.6206024292 0.0000000000
3 1 3 1 -9.2412048583 0.0000000000
Frozen wf non-local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 15.8248954476 0.0000000000
1 1 2 1 7.9124477238 0.0000000000
1 1 3 1 7.9124477238 0.0000000000
2 1 1 1 7.9124477238 0.0000000000
2 1 2 1 15.8248954476 0.0000000000
2 1 3 1 7.9124477238 0.0000000000
3 1 1 1 7.9124477238 0.0000000000
3 1 2 1 7.9124477238 0.0000000000
3 1 3 1 15.8248954476 0.0000000000
Frozen wf xc core (1) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0611054571 0.0000000000
1 1 2 1 -0.0305527286 0.0000000000
1 1 3 1 -0.0305527286 0.0000000000
2 1 1 1 -0.0305527286 0.0000000000
2 1 2 1 -0.0611054571 0.0000000000
2 1 3 1 -0.0305527286 0.0000000000
3 1 1 1 -0.0305527286 0.0000000000
3 1 2 1 -0.0305527286 0.0000000000
3 1 3 1 -0.0611054571 0.0000000000
Frozen wf xc core (2) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.1397477049 0.0000000000
1 1 2 1 -0.0698738525 0.0000000000
1 1 3 1 -0.0698738525 0.0000000000
2 1 1 1 -0.0698738525 0.0000000000
2 1 2 1 -0.1397477049 0.0000000000
2 1 3 1 -0.0698738525 0.0000000000
3 1 1 1 -0.0698738525 0.0000000000
3 1 2 1 -0.0698738525 0.0000000000
3 1 3 1 -0.1397477049 0.0000000000
Frozen wf part of the piezoelectric tensor
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 3 1 4 0.0000000000 0.0000000000
1 3 2 4 0.0000000000 0.0000000000
1 3 3 4 0.0000000000 0.0000000000
1 3 1 5 0.0000000000 0.0000000000
1 3 2 5 0.0000000000 0.0000000000
1 3 3 5 0.0000000000 0.0000000000
2 3 1 4 0.0000000000 0.0000000000
2 3 2 4 0.0000000000 0.0000000000
2 3 3 4 0.0000000000 0.0000000000
2 3 1 5 0.0000000000 0.0000000000
2 3 2 5 0.0000000000 0.0000000000
2 3 3 5 0.0000000000 0.0000000000
3 3 1 4 0.0000000000 0.0000000000
3 3 2 4 0.0000000000 0.0000000000
3 3 3 4 0.0000000000 0.0000000000
3 3 1 5 0.0000000000 0.0000000000
3 3 2 5 0.0000000000 0.0000000000
3 3 3 5 0.0000000000 0.0000000000
Frozen wf part of the Born Effective Charges
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 3 1 1 0.0000000000 0.0000000000
1 3 2 1 0.0000000000 0.0000000000
1 3 3 1 0.0000000000 0.0000000000
2 3 1 1 0.0000000000 0.0000000000
2 3 2 1 0.0000000000 0.0000000000
2 3 3 1 0.0000000000 0.0000000000
3 3 1 1 0.0000000000 0.0000000000
3 3 2 1 0.0000000000 0.0000000000
3 3 3 1 0.0000000000 0.0000000000
Ewald part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.2924310040 0.0000000000
1 4 2 4 -0.4604139670 0.0000000000
1 4 3 4 -0.4604139670 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 -0.4604139670 0.0000000000
2 4 2 4 -0.2924310040 0.0000000000
2 4 3 4 -0.4604139670 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 -0.4604139670 0.0000000000
3 4 2 4 -0.4604139670 0.0000000000
3 4 3 4 -0.2924310040 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 0.7528449711 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 0.7528449711 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 0.7528449711 0.0000000000
Ewald part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
Frozen wf local part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.3195107828 0.0000000000
1 4 2 4 -0.1443806437 0.0000000000
1 4 3 4 -0.1443806437 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 -0.0000000000 0.0000000000
2 4 1 4 -0.1443806437 0.0000000000
2 4 2 4 -0.3195107828 0.0000000000
2 4 3 4 -0.1443806437 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 -0.0000000000 0.0000000000
3 4 1 4 -0.1443806437 0.0000000000
3 4 2 4 -0.1443806437 0.0000000000
3 4 3 4 -0.3195107828 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0996621683 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.0996621683 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 -0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.0996621683 0.0000000000
Frozen wf local part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Frozen wf nonlocal part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 1.3648995375 0.0000000000
1 4 2 4 1.0958997401 0.0000000000
1 4 3 4 1.0958997401 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 1.0958997401 0.0000000000
2 4 2 4 1.3648995375 0.0000000000
2 4 3 4 1.0958997401 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 1.0958997401 0.0000000000
3 4 2 4 1.0958997401 0.0000000000
3 4 3 4 1.3648995375 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 0.2588039808 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 0.2588039808 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 0.2588039808 0.0000000000
Frozen wf nonlocal part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 -0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
Frozen wf xc part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.1233981332 0.0000000000
1 4 2 4 -0.1170930223 0.0000000000
1 4 3 4 -0.1170930223 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 -0.1170930223 0.0000000000
2 4 2 4 -0.1233981332 0.0000000000
2 4 3 4 -0.1170930223 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 -0.0000000000 0.0000000000
3 4 1 4 -0.1170930223 0.0000000000
3 4 2 4 -0.1170930223 0.0000000000
3 4 3 4 -0.1233981332 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0054466348 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.0054466348 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -0.0054466348 0.0000000000
Frozen wf xc part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Frozen wf kinetic part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 2.1523544605 0.0000000000
1 4 2 4 0.0112544256 0.0000000000
1 4 3 4 0.0112544256 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 0.0112544256 0.0000000000
2 4 2 4 2.1523544605 0.0000000000
2 4 3 4 0.0112544256 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 0.0112544256 0.0000000000
3 4 2 4 0.0112544256 0.0000000000
3 4 3 4 2.1523544604 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 -0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 1.0721233890 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 -0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 1.0721233890 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 1.0721233890 0.0000000000
Frozen wf hartree part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.0002068048 0.0000000000
1 4 2 4 0.0036341725 0.0000000000
1 4 3 4 0.0036341725 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 0.0036341725 0.0000000000
2 4 2 4 -0.0002068048 0.0000000000
2 4 3 4 0.0036341725 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 0.0036341725 0.0000000000
3 4 2 4 0.0036341725 0.0000000000
3 4 3 4 -0.0002068048 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0034273677 0.0000000000
1 5 2 5 -0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 -0.0000000000 0.0000000000
2 5 2 5 -0.0034273677 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.0034273677 0.0000000000
Psp core part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.0069790634 0.0000000000
1 4 2 4 0.0069790634 0.0000000000
1 4 3 4 0.0069790634 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 0.0069790634 0.0000000000
2 4 2 4 0.0069790634 0.0000000000
2 4 3 4 0.0069790634 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 0.0069790634 0.0000000000
3 4 2 4 0.0069790634 0.0000000000
3 4 3 4 0.0069790634 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 0.0000000000 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 0.0000000000 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 0.0000000000 0.0000000000
Non-stationary local part of the 2-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 6.8698048549 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 1 3.4349024275 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 1 3.4349024275 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 -0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
1 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 0.6283250291 0.0000000000
1 4 2 4 -0.2786197491 0.0000000000
1 4 3 4 -0.2786196727 0.0000000000
1 4 1 5 0.0000000001 0.0000000000
1 4 2 5 0.0000000001 0.0000000000
1 4 3 5 0.0000000001 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 4 -0.2786197262 0.0000000000
2 4 2 4 0.6283250635 0.0000000000
2 4 3 4 -0.2786196727 0.0000000000
2 4 1 5 0.0000000001 0.0000000000
2 4 2 5 0.0000000001 0.0000000000
2 4 3 5 0.0000000001 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 0.0000000000 0.0000000000
3 4 1 4 -0.2786197262 0.0000000000
3 4 2 4 -0.2786197491 0.0000000000
3 4 3 4 0.6283249518 0.0000000000
3 4 1 5 0.0000000001 0.0000000000
3 4 2 5 0.0000000001 0.0000000000
3 4 3 5 0.0000000001 0.0000000000
1 5 1 1 0.0000000000 0.0000000000
1 5 2 1 0.0000000000 0.0000000000
1 5 3 1 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.9344521645 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 1 0.0000000000 0.0000000000
2 5 2 1 0.0000000000 0.0000000000
2 5 3 1 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.9344521594 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 1 0.0000000000 0.0000000000
3 5 2 1 0.0000000000 0.0000000000
3 5 3 1 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 -0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.9344521873 0.0000000000
Non-stationary non-local part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -13.4641405834 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
2 1 1 1 -6.7320702917 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 1 -6.7320702917 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
1 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 -3.3107178559 0.0000000000
1 4 2 4 1.5251351949 0.0000000000
1 4 3 4 1.5251349859 0.0000000000
1 4 1 5 -0.0000000003 0.0000000000
1 4 2 5 -0.0000000006 0.0000000000
1 4 3 5 -0.0000000006 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 4 1.5251351339 0.0000000000
2 4 2 4 -3.3107178890 0.0000000000
2 4 3 4 1.5251349859 0.0000000000
2 4 1 5 -0.0000000003 0.0000000000
2 4 2 5 -0.0000000006 0.0000000000
2 4 3 5 -0.0000000006 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 0.0000000000 0.0000000000
3 4 1 4 1.5251351339 0.0000000000
3 4 2 4 1.5251351949 0.0000000000
3 4 3 4 -3.3107177886 0.0000000000
3 4 1 5 -0.0000000003 0.0000000000
3 4 2 5 -0.0000000006 0.0000000000
3 4 3 5 -0.0000000006 0.0000000000
1 5 1 1 0.0000000000 0.0000000000
1 5 2 1 0.0000000000 0.0000000000
1 5 3 1 0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -4.7117612390 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 1 0.0000000000 0.0000000000
2 5 2 1 0.0000000000 0.0000000000
2 5 3 1 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -4.7117612455 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 1 0.0000000000 0.0000000000
3 5 2 1 0.0000000000 0.0000000000
3 5 3 1 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -4.7117612238 0.0000000000
PAW: Non-stationary WF-overlap part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.2084837223 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
2 1 1 1 0.1042418611 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 1 0.1042418611 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
1 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 0.1989463719 0.0000000000
1 4 2 4 0.1946697396 0.0000000000
1 4 3 4 0.1946697133 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 0.0000000001 0.0000000000
1 4 3 5 0.0000000001 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 4 0.1946697320 0.0000000000
2 4 2 4 0.1989463767 0.0000000000
2 4 3 4 0.1946697133 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000001 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 0.0000000000 0.0000000000
3 4 1 4 0.1946697320 0.0000000000
3 4 2 4 0.1946697396 0.0000000000
3 4 3 4 0.1989463598 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000001 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 1 0.0000000000 0.0000000000
1 5 2 1 0.0000000000 0.0000000000
1 5 3 1 0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0083296198 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 1 0.0000000000 0.0000000000
2 5 2 1 0.0000000000 0.0000000000
2 5 3 1 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 -0.0000000000 0.0000000000
2 5 1 5 -0.0000000000 0.0000000000
2 5 2 5 -0.0083296198 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 1 0.0000000000 0.0000000000
3 5 2 1 0.0000000000 0.0000000000
3 5 3 1 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 -0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.0083296197 0.0000000000
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
cartesian coordinates for strain terms (1/ucvol factor
for elastic tensor components not included)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0030145789 0.0000000000
1 1 2 1 -0.0015072894 0.0000000000
1 1 3 1 -0.0015072894 0.0000000000
1 1 2 3 0.0000000000 0.0000000000
1 1 3 3 0.0000000000 0.0000000000
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 1 -0.0015072894 0.0000000000
2 1 2 1 -0.0030145789 0.0000000000
2 1 3 1 -0.0015072894 0.0000000000
2 1 1 3 0.0000000000 0.0000000000
2 1 3 3 0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 1 -0.0015072894 0.0000000000
3 1 2 1 -0.0015072894 0.0000000000
3 1 3 1 -0.0030145789 0.0000000000
3 1 1 3 0.0000000000 0.0000000000
3 1 2 3 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 -0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
1 3 2 1 0.0000000000 0.0000000000
1 3 3 1 0.0000000000 0.0000000000
2 3 1 1 0.0000000000 0.0000000000
2 3 3 1 0.0000000000 0.0000000000
3 3 1 1 0.0000000000 0.0000000000
3 3 2 1 0.0000000000 0.0000000000
1 4 1 4 0.3052398816 0.0000000000
1 4 2 4 1.8370649539 0.0000000000
1 4 3 4 1.8370647949 0.0000000000
1 4 1 5 -0.0000000002 0.0000000000
1 4 2 5 -0.0000000004 0.0000000000
1 4 3 5 -0.0000000004 0.0000000000
2 4 1 4 1.8370649082 0.0000000000
2 4 2 4 0.3052398878 0.0000000000
2 4 3 4 1.8370647949 0.0000000000
2 4 1 5 -0.0000000002 0.0000000000
2 4 2 5 -0.0000000005 0.0000000000
2 4 3 5 -0.0000000004 0.0000000000
3 4 1 4 1.8370649082 0.0000000000
3 4 2 4 1.8370649539 0.0000000000
3 4 3 4 0.3052398595 0.0000000000
3 4 1 5 -0.0000000002 0.0000000000
3 4 2 5 -0.0000000004 0.0000000000
3 4 3 5 -0.0000000005 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -3.6793068532 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -3.6793068546 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -3.6793068606 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
Rigid-atom elastic tensor , in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.0067036165 0.0000000000
1 4 2 4 0.0403452488 0.0000000000
1 4 3 4 0.0403452454 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 -0.0000000000 0.0000000000
2 4 1 4 0.0403452478 0.0000000000
2 4 2 4 0.0067036167 0.0000000000
2 4 3 4 0.0403452454 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 -0.0000000000 0.0000000000
3 4 1 4 0.0403452478 0.0000000000
3 4 2 4 0.0403452488 0.0000000000
3 4 3 4 0.0067036160 0.0000000000
3 4 1 5 -0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 -0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0808041927 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.0808041927 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -0.0808041929 0.0000000000
Internal strain coupling parameters, in cartesian coordinates,
zero average net force deriv. has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00
================================================================================
== DATASET 13 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 13, }
dimensions: {natom: 1, nkpt: 32, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 132, }
cutoff_energies: {ecut: 15.0, pawecutdg: 20.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 5.00000000E-03, }
meta: {optdriver: 1, rfphon: 1, rfstrs: 3, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 2.8342231 2.8342231 G(1)= -0.1764152 0.1764152 0.1764152
R(2)= 2.8342231 0.0000000 2.8342231 G(2)= 0.1764152 -0.1764152 0.1764152
R(3)= 2.8342231 2.8342231 0.0000000 G(3)= 0.1764152 0.1764152 -0.1764152
Unit cell volume ucvol= 4.5533613E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 15.000 => boxcut(ratio)= 2.28960
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.658558 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 20.000 => boxcut(ratio)= 2.23759
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 25.033944 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/al_ps.abinit.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/al_ps.abinit.paw
- Paw atomic data for element Al - Generated by AtomPAW + AtomPAW2Abinit v3.2.1
- 13.00000 3.00000 20091223 znucl, zion, pspdat
7 7 1 0 473 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw4
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.01466516
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 473 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 468 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 521 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 569 , AA= 0.12205E-02 BB= 0.15866E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 4
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
1.57733151E+00 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
symkchk : k-point set has full space-group symmetry.
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 4
3) idir= 2 ipert= 4
4) idir= 3 ipert= 4
5) idir= 1 ipert= 5
6) idir= 2 ipert= 5
7) idir= 3 ipert= 5
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 10 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 5.51392819215688E-02 -6.236E+00 6.329E-02 4.441E+01
ETOT 2 4.26301600530095E-02 -1.251E-02 2.309E-04 6.852E+00
ETOT 3 3.87313458654872E-02 -3.899E-03 2.702E-05 6.208E-03
ETOT 4 3.87308318431372E-02 -5.140E-07 4.373E-08 1.266E-03
ETOT 5 3.87340409511103E-02 3.209E-06 6.695E-09 1.867E-06
ETOT 6 3.87338124536760E-02 -2.285E-07 1.478E-11 1.515E-07
ETOT 7 3.87336942764232E-02 -1.182E-07 6.003E-12 3.045E-09
At SCF step 7 vres2 = 3.05E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.591E-13; max= 60.032E-13
-0.2500 0.5000 0.0000 1 1.70516E-12 kpt; spin; max resid(k); each band:
1.44E-12 1.71E-12 1.47E-12 6.38E-14-1.00E-01-1.00E-01
0.5000 -0.2500 0.0000 1 2.32362E-12 kpt; spin; max resid(k); each band:
2.32E-12 1.95E-12 1.26E-12 3.39E-14-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 6.00317E-12 kpt; spin; max resid(k); each band:
6.00E-12 2.20E-12 9.28E-14 2.78E-13-1.00E-01-1.00E-01
0.5000 0.2500 0.0000 1 2.32362E-12 kpt; spin; max resid(k); each band:
2.32E-12 1.95E-12 1.26E-12 3.39E-14-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 2.00811E-12 kpt; spin; max resid(k); each band:
2.01E-12 1.30E-12 1.70E-14 1.84E-13-1.00E-01-1.00E-01
0.2500 0.5000 0.0000 1 1.70516E-12 kpt; spin; max resid(k); each band:
1.44E-12 1.71E-12 1.47E-12 6.38E-14-1.00E-01-1.00E-01
0.0000 -0.2500 0.0000 1 9.76641E-13 kpt; spin; max resid(k); each band:
1.29E-13 1.26E-13 9.77E-13 1.85E-13-1.00E-01-1.00E-01
0.2500 0.0000 0.0000 1 6.00317E-12 kpt; spin; max resid(k); each band:
6.00E-12 2.20E-12 9.28E-14 2.78E-13-1.00E-01-1.00E-01
0.0000 0.5000 0.2500 1 1.02381E-13 kpt; spin; max resid(k); each band:
4.00E-14 8.34E-14 5.51E-14 1.02E-13-1.00E-01-1.00E-01
0.2500 0.5000 0.5000 1 2.00811E-12 kpt; spin; max resid(k); each band:
2.01E-12 1.30E-12 1.70E-14 1.84E-13-1.00E-01-1.00E-01
Fourteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.68717911E+00 eigvalue= -8.50846841E-01 local= -1.14351087E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.32047988E+01 Hartree= 9.57311371E-01 xc= -3.75064852E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.05847222E+00 enl0= 8.25205050E-01 enl1= -2.66154746E+01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.05763085E-06
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -6.25192959E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -8.97307603E+00 fr.nonlo= 1.53995499E+01 Ewald= 0.00000000E+00
14,15 Frozen wf xc core corrections (1) and (2)
frxc 1 = -5.74469233E-02 frxc 2 = -7.83636511E-02
16 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 4.39977077E-01
Resulting in :
2DEtotal= 0.3873369428E-01 Ha. Also 2DEtotal= 0.105399742327E+01 eV
(2DErelax= -6.2519295873E+00 Ha. 2DEnonrelax= 6.2906632815E+00 Ha)
( non-var. 2DEtotal : 2.5302443828E-02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 16 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.31124623482783 -2.495E+00 2.977E-02 5.118E+00
ETOT 2 0.30676523528989 -4.481E-03 5.407E-05 8.360E-01
ETOT 3 0.30633804447876 -4.272E-04 1.745E-06 9.726E-03
ETOT 4 0.30632931939421 -8.725E-06 1.453E-08 3.270E-04
ETOT 5 0.30632729751397 -2.022E-06 8.879E-09 2.280E-06
ETOT 6 0.30632729253032 -4.984E-09 6.973E-11 5.598E-09
At SCF step 6 vres2 = 5.60E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.664E-12; max= 69.729E-12
-0.2500 0.5000 0.0000 1 3.46024E-11 kpt; spin; max resid(k); each band:
3.43E-11 3.46E-11 2.34E-11 1.22E-11-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 6.97292E-11 kpt; spin; max resid(k); each band:
1.44E-11 6.97E-11 4.48E-11 2.30E-11-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 4.66760E-11 kpt; spin; max resid(k); each band:
2.27E-11 3.98E-11 1.44E-11 4.67E-11-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.59668192E-01 eigvalue= -6.23143236E-02 local= -5.45013165E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.11427408E+00 Hartree= 2.27060194E-01 xc= -9.11374748E-02
kin1= -6.11772816E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 2.50725931E+00 enl0= 3.03291053E-02 enl1= -4.99903321E-01
11: eventually, PAW "on-site" Hxc contribution: epaw1= 8.74938144E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.49949990E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.06804801E-04 fr.kin= 2.15235446E+00 fr.loc= -3.10319479E-01
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.34781707E+00 fr.xc= -1.26028088E-01 Ewald= -2.92431004E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 3.46410355E-02
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 2.04243459E-01
Resulting in :
2DEtotal= 0.3063272925E+00 Ha. Also 2DEtotal= 0.833558954384E+01 eV
(2DErelax= -2.4994998956E+00 Ha. 2DEnonrelax= 2.8058271881E+00 Ha)
( non-var. 2DEtotal : 3.0693458129E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 16 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.31122857485393 -2.495E+00 1.205E-02 5.118E+00
ETOT 2 0.30674803937226 -4.481E-03 2.360E-05 8.361E-01
ETOT 3 0.30632115383428 -4.269E-04 1.769E-06 9.716E-03
ETOT 4 0.30631244688369 -8.707E-06 1.349E-08 3.271E-04
ETOT 5 0.30631041787423 -2.029E-06 8.900E-09 2.279E-06
ETOT 6 0.30631041284009 -5.034E-09 6.979E-11 5.564E-09
At SCF step 6 vres2 = 5.56E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.368E-12; max= 69.794E-12
-0.2500 0.5000 0.0000 1 3.46042E-11 kpt; spin; max resid(k); each band:
3.43E-11 3.46E-11 2.34E-11 1.22E-11-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 6.97942E-11 kpt; spin; max resid(k); each band:
1.44E-11 6.98E-11 5.41E-11 1.00E-11-1.00E-01-1.00E-01
0.2500 -0.2500 0.2500 1 4.66819E-11 kpt; spin; max resid(k); each band:
2.27E-11 3.98E-11 1.44E-11 4.67E-11-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.60511900E-01 eigvalue= -6.24009688E-02 local= -5.45037558E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.11431760E+00 Hartree= 2.27070598E-01 xc= -9.11430647E-02
kin1= -6.11773638E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 2.50658659E+00 enl0= 3.02408370E-02 enl1= -4.99954177E-01
11: eventually, PAW "on-site" Hxc contribution: epaw1= 8.74940452E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.49951678E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.06804801E-04 fr.kin= 2.15235446E+00 fr.loc= -3.10319479E-01
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.34781707E+00 fr.xc= -1.26028088E-01 Ewald= -2.92431004E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 3.46410355E-02
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 2.04243822E-01
Resulting in :
2DEtotal= 0.3063104128E+00 Ha. Also 2DEtotal= 0.833513022411E+01 eV
(2DErelax= -2.4995167753E+00 Ha. 2DEnonrelax= 2.8058271881E+00 Ha)
( non-var. 2DEtotal : 3.0692862684E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 16 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.31129298221782 -2.495E+00 2.136E-02 5.119E+00
ETOT 2 0.30679970752491 -4.493E-03 6.773E-05 8.357E-01
ETOT 3 0.30637201217077 -4.277E-04 1.690E-06 9.782E-03
ETOT 4 0.30636327314783 -8.739E-06 1.641E-08 3.265E-04
ETOT 5 0.30636126587593 -2.007E-06 8.834E-09 2.282E-06
ETOT 6 0.30636126101772 -4.858E-09 6.945E-11 5.506E-09
At SCF step 6 vres2 = 5.51E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.981E-12; max= 69.450E-12
-0.2500 0.5000 0.0000 1 4.65594E-11 kpt; spin; max resid(k); each band:
2.26E-11 3.97E-11 1.44E-11 4.66E-11-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 6.94502E-11 kpt; spin; max resid(k); each band:
1.43E-11 6.95E-11 4.20E-11 6.47E-12-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 3.45222E-11 kpt; spin; max resid(k); each band:
3.42E-11 3.45E-11 2.34E-11 1.22E-11-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.57970245E-01 eigvalue= -6.21399521E-02 local= -5.44963851E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.11418652E+00 Hartree= 2.27039267E-01 xc= -9.11262305E-02
kin1= -6.11771163E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 2.50861316E+00 enl0= 3.05067280E-02 enl1= -4.99800999E-01
11: eventually, PAW "on-site" Hxc contribution: epaw1= 8.74933511E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.49946593E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.06804801E-04 fr.kin= 2.15235446E+00 fr.loc= -3.10319479E-01
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.34781707E+00 fr.xc= -1.26028088E-01 Ewald= -2.92431004E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 3.46410355E-02
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = 2.04242729E-01
Resulting in :
2DEtotal= 0.3063612610E+00 Ha. Also 2DEtotal= 0.833651387339E+01 eV
(2DErelax= -2.4994659270E+00 Ha. 2DEnonrelax= 2.8058271880E+00 Ha)
( non-var. 2DEtotal : 3.0694655456E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3.5942118861223 -5.570E+00 6.098E-03 4.006E+01
ETOT 2 -3.6322810435989 -3.807E-02 4.896E-05 3.286E+00
ETOT 3 -3.6356994052588 -3.418E-03 6.992E-06 1.185E-03
ETOT 4 -3.6357001133895 -7.081E-07 3.617E-09 9.280E-05
ETOT 5 -3.6357000475794 6.581E-08 3.376E-10 1.638E-06
ETOT 6 -3.6357001252264 -7.765E-08 2.341E-12 5.909E-09
At SCF step 6 vres2 = 5.91E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 82.299E-14; max= 23.412E-13
-0.2500 0.5000 0.0000 1 1.18300E-12 kpt; spin; max resid(k); each band:
9.55E-13 1.18E-12 9.18E-13 3.04E-13-1.00E-01-1.00E-01
0.5000 -0.2500 0.0000 1 1.18300E-12 kpt; spin; max resid(k); each band:
9.55E-13 1.18E-12 9.18E-13 3.04E-13-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 2.34119E-12 kpt; spin; max resid(k); each band:
2.34E-12 1.39E-13 7.16E-13 1.42E-12-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 9.82365E-13 kpt; spin; max resid(k); each band:
3.38E-13 9.82E-13 2.93E-13 2.92E-13-1.00E-01-1.00E-01
0.0000 -0.2500 0.0000 1 2.34119E-12 kpt; spin; max resid(k); each band:
2.34E-12 1.39E-13 7.16E-13 1.42E-12-1.00E-01-1.00E-01
0.0000 0.5000 0.2500 1 9.82365E-13 kpt; spin; max resid(k); each band:
3.38E-13 9.82E-13 2.93E-13 2.92E-13-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.40812369E-01 eigvalue= -4.30837527E-02 local= -3.81624643E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.71921776E+00 Hartree= 1.49957020E-01 xc= -1.39806585E-01
kin1= -1.36820832E+01
8,9,10: eventually, occupation + non-local contributions
edocc= 5.21676634E+00 enl0= 2.42412987E-02 enl1= 4.34767527E+00
11: eventually, PAW "on-site" Hxc contribution: epaw1= 3.12262310E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.61167525E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -3.42736766E-03 fr.kin= 1.07212339E+00 fr.loc= -9.41881997E-02
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 2.52933674E-01 fr.xc= -4.31134007E-03 Ewald= 7.52844971E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -2.63875138E-02
Resulting in :
2DEtotal= -0.3635700125E+01 Ha. Also 2DEtotal= -0.989324317074E+02 eV
(2DErelax= -5.6116752522E+00 Ha. 2DEnonrelax= 1.9759751269E+00 Ha)
( non-var. 2DEtotal : -3.6290951335E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3.5942119901209 -5.570E+00 5.136E-03 4.006E+01
ETOT 2 -3.6322808690399 -3.807E-02 3.110E-05 3.286E+00
ETOT 3 -3.6356995845698 -3.419E-03 8.809E-06 1.185E-03
ETOT 4 -3.6357002912209 -7.067E-07 6.121E-09 9.300E-05
ETOT 5 -3.6357002271523 6.407E-08 3.508E-10 1.639E-06
ETOT 6 -3.6357003046134 -7.746E-08 2.719E-12 6.116E-09
At SCF step 6 vres2 = 6.12E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 74.500E-14; max= 27.194E-13
-0.2500 0.5000 0.0000 1 1.18119E-12 kpt; spin; max resid(k); each band:
9.54E-13 1.18E-12 9.17E-13 3.04E-13-1.00E-01-1.00E-01
0.5000 -0.2500 0.0000 1 1.18119E-12 kpt; spin; max resid(k); each band:
9.54E-13 1.18E-12 9.17E-13 3.04E-13-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 2.71943E-12 kpt; spin; max resid(k); each band:
3.50E-13 1.75E-13 2.72E-12 4.36E-13-1.00E-01-1.00E-01
0.0000 -0.2500 0.0000 1 2.71943E-12 kpt; spin; max resid(k); each band:
3.50E-13 1.75E-13 2.72E-12 4.36E-13-1.00E-01-1.00E-01
0.2500 -0.2500 0.2500 1 9.81240E-13 kpt; spin; max resid(k); each band:
3.38E-13 9.81E-13 2.93E-13 2.92E-13-1.00E-01-1.00E-01
0.5000 0.0000 0.2500 1 9.81241E-13 kpt; spin; max resid(k); each band:
3.38E-13 9.81E-13 2.93E-13 2.92E-13-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.40762025E-01 eigvalue= -4.30781030E-02 local= -3.81400254E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.71921987E+00 Hartree= 1.49957465E-01 xc= -1.39806897E-01
kin1= -1.36820828E+01
8,9,10: eventually, occupation + non-local contributions
edocc= 5.21680909E+00 enl0= 2.42202476E-02 enl1= 4.34767722E+00
11: eventually, PAW "on-site" Hxc contribution: epaw1= 3.12262262E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.61167543E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -3.42736766E-03 fr.kin= 1.07212339E+00 fr.loc= -9.41881997E-02
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 2.52933674E-01 fr.xc= -4.31134007E-03 Ewald= 7.52844971E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -2.63875323E-02
Resulting in :
2DEtotal= -0.3635700305E+01 Ha. Also 2DEtotal= -0.989324365888E+02 eV
(2DErelax= -5.6116754315E+00 Ha. 2DEnonrelax= 1.9759751269E+00 Ha)
( non-var. 2DEtotal : -3.6290950864E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 200, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3.5942109732694 -5.570E+00 5.996E-03 4.006E+01
ETOT 2 -3.6322814554187 -3.807E-02 2.865E-05 3.286E+00
ETOT 3 -3.6356990457952 -3.418E-03 3.713E-06 1.185E-03
ETOT 4 -3.6356997555050 -7.097E-07 4.271E-09 9.229E-05
ETOT 5 -3.6356996861577 6.935E-08 3.855E-10 1.644E-06
ETOT 6 -3.6356997641413 -7.798E-08 2.371E-12 6.034E-09
At SCF step 6 vres2 = 6.03E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 79.655E-14; max= 23.708E-13
-0.2500 0.5000 0.0000 1 9.82237E-13 kpt; spin; max resid(k); each band:
3.37E-13 9.82E-13 2.94E-13 2.91E-13-1.00E-01-1.00E-01
-0.2500 -0.2500 0.2500 1 9.82236E-13 kpt; spin; max resid(k); each band:
3.37E-13 9.82E-13 2.94E-13 2.91E-13-1.00E-01-1.00E-01
-0.2500 0.0000 0.0000 1 2.37077E-12 kpt; spin; max resid(k); each band:
4.66E-13 1.17E-12 2.37E-12 2.87E-13-1.00E-01-1.00E-01
-0.2500 0.2500 0.2500 1 1.18457E-12 kpt; spin; max resid(k); each band:
9.54E-13 1.18E-12 9.17E-13 3.05E-13-1.00E-01-1.00E-01
-0.2500 0.5000 0.5000 1 1.18457E-12 kpt; spin; max resid(k); each band:
9.54E-13 1.18E-12 9.17E-13 3.05E-13-1.00E-01-1.00E-01
-0.2500 -0.2500 -0.2500 1 2.37077E-12 kpt; spin; max resid(k); each band:
4.66E-13 1.17E-12 2.37E-12 2.87E-13-1.00E-01-1.00E-01
Eighteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.40913627E-01 eigvalue= -4.30951152E-02 local= -3.82075990E-02
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.71921331E+00 Hartree= 1.49956072E-01 xc= -1.39805920E-01
kin1= -1.36820838E+01
8,9,10: eventually, occupation + non-local contributions
edocc= 5.21668014E+00 enl0= 2.42836377E-02 enl1= 4.34767117E+00
11: eventually, PAW "on-site" Hxc contribution: epaw1= 3.12262426E-02
1-11 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.61167489E+00
12,13,14 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -3.42736766E-03 fr.kin= 1.07212339E+00 fr.loc= -9.41881997E-02
15,16,17 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 2.52933674E-01 fr.xc= -4.31134007E-03 Ewald= 7.52844971E-01
18 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
19 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -2.63874742E-02
Resulting in :
2DEtotal= -0.3635699764E+01 Ha. Also 2DEtotal= -0.989324218818E+02 eV
(2DErelax= -5.6116748911E+00 Ha. 2DEnonrelax= 1.9759751269E+00 Ha)
( non-var. 2DEtotal : -3.6290951044E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
Ewald part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 -0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.0000000000 -0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 -0.0000000000
3 1 3 1 0.0000000000 -0.0000000000
Frozen wf local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -8.9730760331 0.0000000000
1 1 2 1 -4.4865380165 0.0000000000
1 1 3 1 -4.4865380165 0.0000000000
2 1 1 1 -4.4865380165 0.0000000000
2 1 2 1 -8.9730760331 0.0000000000
2 1 3 1 -4.4865380165 0.0000000000
3 1 1 1 -4.4865380165 0.0000000000
3 1 2 1 -4.4865380165 0.0000000000
3 1 3 1 -8.9730760331 0.0000000000
Frozen wf non-local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 15.3995498891 0.0000000000
1 1 2 1 7.6997749445 0.0000000000
1 1 3 1 7.6997749445 0.0000000000
2 1 1 1 7.6997749445 0.0000000000
2 1 2 1 15.3995498891 0.0000000000
2 1 3 1 7.6997749445 0.0000000000
3 1 1 1 7.6997749445 0.0000000000
3 1 2 1 7.6997749445 0.0000000000
3 1 3 1 15.3995498891 0.0000000000
Frozen wf xc core (1) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0574469233 0.0000000000
1 1 2 1 -0.0287234617 0.0000000000
1 1 3 1 -0.0287234617 0.0000000000
2 1 1 1 -0.0287234617 0.0000000000
2 1 2 1 -0.0574469233 0.0000000000
2 1 3 1 -0.0287234617 0.0000000000
3 1 1 1 -0.0287234617 0.0000000000
3 1 2 1 -0.0287234617 0.0000000000
3 1 3 1 -0.0574469233 0.0000000000
Frozen wf xc core (2) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0783636511 0.0000000000
1 1 2 1 -0.0391818256 0.0000000000
1 1 3 1 -0.0391818256 0.0000000000
2 1 1 1 -0.0391818256 0.0000000000
2 1 2 1 -0.0783636511 0.0000000000
2 1 3 1 -0.0391818256 0.0000000000
3 1 1 1 -0.0391818256 0.0000000000
3 1 2 1 -0.0391818256 0.0000000000
3 1 3 1 -0.0783636511 0.0000000000
Frozen wf part of the piezoelectric tensor
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 3 1 4 0.0000000000 0.0000000000
1 3 2 4 0.0000000000 0.0000000000
1 3 3 4 0.0000000000 0.0000000000
1 3 1 5 0.0000000000 0.0000000000
1 3 2 5 0.0000000000 0.0000000000
1 3 3 5 0.0000000000 0.0000000000
2 3 1 4 0.0000000000 0.0000000000
2 3 2 4 0.0000000000 0.0000000000
2 3 3 4 0.0000000000 0.0000000000
2 3 1 5 0.0000000000 0.0000000000
2 3 2 5 0.0000000000 0.0000000000
2 3 3 5 0.0000000000 0.0000000000
3 3 1 4 0.0000000000 0.0000000000
3 3 2 4 0.0000000000 0.0000000000
3 3 3 4 0.0000000000 0.0000000000
3 3 1 5 0.0000000000 0.0000000000
3 3 2 5 0.0000000000 0.0000000000
3 3 3 5 0.0000000000 0.0000000000
Frozen wf part of the Born Effective Charges
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 3 1 1 0.0000000000 0.0000000000
1 3 2 1 0.0000000000 0.0000000000
1 3 3 1 0.0000000000 0.0000000000
2 3 1 1 0.0000000000 0.0000000000
2 3 2 1 0.0000000000 0.0000000000
2 3 3 1 0.0000000000 0.0000000000
3 3 1 1 0.0000000000 0.0000000000
3 3 2 1 0.0000000000 0.0000000000
3 3 3 1 0.0000000000 0.0000000000
Ewald part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.2924310040 0.0000000000
1 4 2 4 -0.4604139670 0.0000000000
1 4 3 4 -0.4604139670 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 -0.4604139670 0.0000000000
2 4 2 4 -0.2924310040 0.0000000000
2 4 3 4 -0.4604139670 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 -0.4604139670 0.0000000000
3 4 2 4 -0.4604139670 0.0000000000
3 4 3 4 -0.2924310040 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 0.7528449711 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 0.7528449711 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 0.7528449711 0.0000000000
Ewald part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
Frozen wf local part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.3103194795 0.0000000000
1 4 2 4 -0.1431967658 0.0000000000
1 4 3 4 -0.1431967658 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 -0.0000000000 0.0000000000
2 4 1 4 -0.1431967658 0.0000000000
2 4 2 4 -0.3103194795 0.0000000000
2 4 3 4 -0.1431967658 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 -0.0000000000 0.0000000000
3 4 1 4 -0.1431967658 0.0000000000
3 4 2 4 -0.1431967658 0.0000000000
3 4 3 4 -0.3103194795 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0941881997 0.0000000000
1 5 2 5 -0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 -0.0000000000 0.0000000000
2 5 2 5 -0.0941881997 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 -0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.0941881997 0.0000000000
Frozen wf local part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Frozen wf nonlocal part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 1.3478170686 0.0000000000
1 4 2 4 1.0881195697 0.0000000000
1 4 3 4 1.0881195697 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 1.0881195697 0.0000000000
2 4 2 4 1.3478170686 0.0000000000
2 4 3 4 1.0881195697 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 1.0881195697 0.0000000000
3 4 2 4 1.0881195697 0.0000000000
3 4 3 4 1.3478170686 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 -0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 0.2529336743 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 -0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 0.2529336743 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 0.2529336743 0.0000000000
Frozen wf nonlocal part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Frozen wf xc part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.1260280882 0.0000000000
1 4 2 4 -0.1220439329 0.0000000000
1 4 3 4 -0.1220439329 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 -0.0000000000 0.0000000000
2 4 1 4 -0.1220439329 0.0000000000
2 4 2 4 -0.1260280882 0.0000000000
2 4 3 4 -0.1220439329 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 -0.1220439329 0.0000000000
3 4 2 4 -0.1220439329 0.0000000000
3 4 3 4 -0.1260280882 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0043113401 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.0043113401 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 -0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -0.0043113401 0.0000000000
Frozen wf xc part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Frozen wf kinetic part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 2.1523544605 0.0000000000
1 4 2 4 0.0112544256 0.0000000000
1 4 3 4 0.0112544256 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 0.0112544256 0.0000000000
2 4 2 4 2.1523544605 0.0000000000
2 4 3 4 0.0112544256 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 0.0112544256 0.0000000000
3 4 2 4 0.0112544256 0.0000000000
3 4 3 4 2.1523544604 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 -0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 1.0721233890 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 -0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 1.0721233890 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 1.0721233890 0.0000000000
Frozen wf hartree part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.0002068048 0.0000000000
1 4 2 4 0.0036341725 0.0000000000
1 4 3 4 0.0036341725 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 0.0036341725 0.0000000000
2 4 2 4 -0.0002068048 0.0000000000
2 4 3 4 0.0036341725 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 0.0036341725 0.0000000000
3 4 2 4 0.0036341725 0.0000000000
3 4 3 4 -0.0002068048 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0034273677 0.0000000000
1 5 2 5 -0.0000000000 0.0000000000
1 5 3 5 -0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 -0.0000000000 0.0000000000
2 5 2 5 -0.0034273677 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.0034273677 0.0000000000
Psp core part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.0346410355 0.0000000000
1 4 2 4 0.0346410355 0.0000000000
1 4 3 4 0.0346410355 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
2 4 1 4 0.0346410355 0.0000000000
2 4 2 4 0.0346410355 0.0000000000
2 4 3 4 0.0346410355 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
3 4 1 4 0.0346410355 0.0000000000
3 4 2 4 0.0346410355 0.0000000000
3 4 3 4 0.0346410355 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 0.0000000000 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 0.0000000000 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 0.0000000000 0.0000000000
Non-stationary local part of the 2-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 6.6023993969 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 1 3.3011996984 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 1 3.3011996984 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 -0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
1 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 0.6056796725 0.0000000000
1 4 2 4 -0.2901320993 0.0000000000
1 4 3 4 -0.2900971235 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000001 0.0000000000
1 4 3 5 0.0000000001 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 4 -0.2901204856 0.0000000000
2 4 2 4 0.6057028974 0.0000000000
2 4 3 4 -0.2900971235 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000001 0.0000000000
2 4 3 5 0.0000000001 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 0.0000000000 0.0000000000
3 4 1 4 -0.2901204856 0.0000000000
3 4 2 4 -0.2901320993 0.0000000000
3 4 3 4 0.6056329518 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000001 0.0000000000
3 4 3 5 0.0000000001 0.0000000000
1 5 1 1 0.0000000000 0.0000000000
1 5 2 1 0.0000000000 0.0000000000
1 5 3 1 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.9114787727 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 1 0.0000000000 0.0000000000
2 5 2 1 0.0000000000 0.0000000000
2 5 3 1 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.9114798876 0.0000000000
2 5 3 5 -0.0000000000 0.0000000000
3 5 1 1 0.0000000000 0.0000000000
3 5 2 1 0.0000000000 0.0000000000
3 5 3 1 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 -0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 -0.0000000000 0.0000000000
3 5 3 5 -0.9114764240 0.0000000000
Non-stationary non-local part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -13.3077373111 -0.0000000008
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
2 1 1 1 -6.6538686555 -0.0000000004
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 1 -6.6538686555 -0.0000000004
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
1 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 -3.3088157380 0.0000000000
1 4 2 4 1.5281851134 0.0000000000
1 4 3 4 1.5281406078 0.0000000000
1 4 1 5 -0.0000000001 0.0000000000
1 4 2 5 -0.0000000003 0.0000000000
1 4 3 5 -0.0000000003 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 4 1.5281703335 0.0000000000
2 4 2 4 -3.3088452802 0.0000000000
2 4 3 4 1.5281406078 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000003 0.0000000000
2 4 3 5 -0.0000000003 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 0.0000000000 0.0000000000
3 4 1 4 1.5281703335 0.0000000000
3 4 2 4 1.5281851134 0.0000000000
3 4 3 4 -3.3087563147 0.0000000000
3 4 1 5 -0.0000000000 0.0000000000
3 4 2 5 -0.0000000003 0.0000000000
3 4 3 5 -0.0000000003 0.0000000000
1 5 1 1 0.0000000000 0.0000000000
1 5 2 1 0.0000000000 0.0000000000
1 5 3 1 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 -0.0000000000 0.0000000000
1 5 3 4 -0.0000000000 0.0000000000
1 5 1 5 -4.6672039738 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 1 0.0000000000 0.0000000000
2 5 2 1 0.0000000000 0.0000000000
2 5 3 1 0.0000000000 0.0000000000
2 5 1 4 0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 -0.0000000000 0.0000000000
2 5 2 5 -4.6672027934 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 1 0.0000000000 0.0000000000
3 5 2 1 0.0000000000 0.0000000000
3 5 3 1 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -4.6672063331 0.0000000000
PAW: Non-stationary WF-overlap part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.4399770765 0.0000000200
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
2 1 1 1 0.2199885383 0.0000000100
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
3 1 1 1 0.2199885383 0.0000000100
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 0.0000000000 0.0000000000
3 1 3 5 0.0000000000 0.0000000000
1 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 0.2042434586 0.0000000000
1 4 2 4 0.1920707854 0.0000000000
1 4 3 4 0.1920713250 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 -0.0000000000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 4 0.1920709642 0.0000000000
2 4 2 4 0.2042438215 0.0000000000
2 4 3 4 0.1920713250 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 -0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 0.0000000000 0.0000000000
3 4 1 4 0.1920709642 0.0000000000
3 4 2 4 0.1920707854 0.0000000000
3 4 3 4 0.2042427294 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 -0.0000000000 0.0000000000
1 5 1 1 0.0000000000 0.0000000000
1 5 2 1 0.0000000000 0.0000000000
1 5 3 1 0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0263875138 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 1 0.0000000000 0.0000000000
2 5 2 1 0.0000000000 0.0000000000
2 5 3 1 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 -0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 -0.0000000000 0.0000000000
2 5 2 5 -0.0263875323 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 1 0.0000000000 0.0000000000
3 5 2 1 0.0000000000 0.0000000000
3 5 3 1 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 -0.0000000000 0.0000000000
3 5 3 4 -0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -0.0263874742 0.0000000000
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
cartesian coordinates for strain terms (1/ucvol factor
for elastic tensor components not included)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0253024438 0.0000000000
1 1 2 1 0.0126512219 0.0000000000
1 1 3 1 0.0126512219 0.0000000000
1 1 2 3 0.0000000000 0.0000000000
1 1 3 3 0.0000000000 0.0000000000
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 1 0.0126512219 0.0000000000
2 1 2 1 0.0253024438 0.0000000000
2 1 3 1 0.0126512219 0.0000000000
2 1 1 3 0.0000000000 0.0000000000
2 1 3 3 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 1 0.0126512219 0.0000000000
3 1 2 1 0.0126512219 0.0000000000
3 1 3 1 0.0253024438 0.0000000000
3 1 1 3 0.0000000000 0.0000000000
3 1 2 3 0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 0.0000000000 0.0000000000
3 1 1 5 0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
1 3 2 1 0.0000000000 0.0000000000
1 3 3 1 0.0000000000 0.0000000000
2 3 1 1 0.0000000000 0.0000000000
2 3 3 1 0.0000000000 0.0000000000
3 3 1 1 0.0000000000 0.0000000000
3 3 2 1 0.0000000000 0.0000000000
1 4 1 4 0.3069345813 0.0000000000
1 4 2 4 1.8421183370 0.0000000000
1 4 3 4 1.8421093468 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 -0.0000000002 0.0000000000
1 4 3 5 -0.0000000002 0.0000000000
2 4 1 4 1.8421153497 0.0000000000
2 4 2 4 0.3069286268 0.0000000000
2 4 3 4 1.8421093468 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000002 0.0000000000
2 4 3 5 -0.0000000002 0.0000000000
3 4 1 4 1.8421153497 0.0000000000
3 4 2 4 1.8421183370 0.0000000000
3 4 3 4 0.3069465546 0.0000000000
3 4 1 5 -0.0000000000 0.0000000000
3 4 2 5 -0.0000000002 0.0000000000
3 4 3 5 -0.0000000002 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -3.6290951335 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -3.6290950864 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -3.6290951044 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
Rigid-atom elastic tensor , in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.0067408352 0.0000000000
1 4 2 4 0.0404562302 0.0000000000
1 4 3 4 0.0404560328 0.0000000000
1 4 1 5 -0.0000000000 0.0000000000
1 4 2 5 -0.0000000000 0.0000000000
1 4 3 5 -0.0000000000 0.0000000000
2 4 1 4 0.0404561646 0.0000000000
2 4 2 4 0.0067407044 0.0000000000
2 4 3 4 0.0404560328 0.0000000000
2 4 1 5 -0.0000000000 0.0000000000
2 4 2 5 -0.0000000000 0.0000000000
2 4 3 5 -0.0000000000 0.0000000000
3 4 1 4 0.0404561646 0.0000000000
3 4 2 4 0.0404562302 0.0000000000
3 4 3 4 0.0067410981 0.0000000000
3 4 1 5 -0.0000000000 0.0000000000
3 4 2 5 -0.0000000000 0.0000000000
3 4 3 5 -0.0000000000 0.0000000000
1 5 1 4 0.0000000000 0.0000000000
1 5 2 4 0.0000000000 0.0000000000
1 5 3 4 0.0000000000 0.0000000000
1 5 1 5 -0.0797014531 0.0000000000
1 5 2 5 0.0000000000 0.0000000000
1 5 3 5 0.0000000000 0.0000000000
2 5 1 4 -0.0000000000 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 2 5 -0.0797014521 0.0000000000
2 5 3 5 0.0000000000 0.0000000000
3 5 1 4 0.0000000000 0.0000000000
3 5 2 4 0.0000000000 0.0000000000
3 5 3 4 0.0000000000 0.0000000000
3 5 1 5 -0.0000000000 0.0000000000
3 5 2 5 0.0000000000 0.0000000000
3 5 3 5 -0.0797014524 0.0000000000
Internal strain coupling parameters, in cartesian coordinates,
zero average net force deriv. has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
1 1 1 5 -0.0000000000 0.0000000000
1 1 2 5 -0.0000000000 0.0000000000
1 1 3 5 -0.0000000000 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 -0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 5.6684462775E+00 5.6684462775E+00 5.6684462775E+00 Bohr
amu 2.69815390E+01
boxcutmin 2.20000000E+00
bxctmindg 2.20000000E+00
ecut 1.50000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
etotal1 -1.9086022471E+00
etotal2 -1.9086022471E+00
etotal3 -1.9082820159E+00
etotal4 -1.9089255967E+00
etotal5 -1.9079647930E+00
etotal6 -1.9092521528E+00
etotal12 -3.6793062197E+00
etotal13 -3.6356997641E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart4 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart5 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart6 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
getwfk6 1
getwfk12 1
getwfk13 1
iscf1 17
iscf2 17
iscf3 17
iscf4 17
iscf5 17
iscf6 17
iscf12 7
iscf13 7
ixc 7
jdtset 1 2 3 4 5 6 12 13
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt4 0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt6 0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
kpt12 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt13 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt1 1
kptopt2 1
kptopt3 1
kptopt4 1
kptopt5 1
kptopt6 1
kptopt12 3
kptopt13 3
kptrlatt1 2 -2 2 -2 2 2 -2 -2 2
kptrlatt2 2 -2 2 -2 2 2 -2 -2 2
kptrlatt3 2 -2 2 -2 2 2 -2 -2 2
kptrlatt4 2 2 -2 -2 2 2 2 -2 2
kptrlatt5 2 -2 2 -2 2 2 -2 -2 2
kptrlatt6 2 2 -2 -2 2 2 2 -2 2
kptrlatt12 2 -2 2 -2 2 2 -2 -2 2
kptrlatt13 2 -2 2 -2 2 2 -2 -2 2
kptrlen1 1.13368926E+01
kptrlen2 1.13368926E+01
kptrlen3 1.13312241E+01
kptrlen4 1.13368940E+01
kptrlen5 1.13255557E+01
kptrlen6 1.13368982E+01
kptrlen12 1.13368926E+01
kptrlen13 1.13368926E+01
P mkmem1 2
P mkmem2 2
P mkmem3 6
P mkmem4 6
P mkmem5 6
P mkmem6 6
P mkmem12 32
P mkmem13 32
P mkqmem1 2
P mkqmem2 2
P mkqmem3 6
P mkqmem4 6
P mkqmem5 6
P mkqmem6 6
P mkqmem12 32
P mkqmem13 32
P mk1mem1 2
P mk1mem2 2
P mk1mem3 6
P mk1mem4 6
P mk1mem5 6
P mk1mem6 6
P mk1mem12 32
P mk1mem13 32
natom 1
nband1 6
nband2 6
nband3 6
nband4 6
nband5 6
nband6 6
nband12 6
nband13 6
nbdbuf1 0
nbdbuf2 0
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
nbdbuf12 2
nbdbuf13 2
ndtset 8
ngfft 16 16 16
ngfftdg 18 18 18
nkpt1 2
nkpt2 2
nkpt3 6
nkpt4 6
nkpt5 6
nkpt6 6
nkpt12 32
nkpt13 32
nline1 20
nline2 4
nline3 4
nline4 4
nline5 4
nline6 4
nline12 4
nline13 4
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 0
nqpt5 0
nqpt6 0
nqpt12 1
nqpt13 1
nstep 200
nsym1 48
nsym2 48
nsym3 8
nsym4 8
nsym5 8
nsym6 8
nsym12 48
nsym13 48
ntypat 1
occ1 2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ2 2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ3 2.000000 1.381649 0.000000 0.000000 0.000000 0.000000
2.000000 1.304382 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.340825 0.000000 0.000000 0.000000 0.000000
2.000000 1.316159 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ4 2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.283704 0.000000 0.000000 0.000000 0.000000
2.000000 1.326229 0.000000 0.000000 0.000000 0.000000
2.000000 1.350828 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.362182 0.000000 0.000000 0.000000 0.000000
occ5 2.000000 1.428431 0.000000 0.000000 0.000000 0.000000
2.000000 1.275425 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.348730 0.000000 0.000000 0.000000 0.000000
2.000000 1.299342 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ6 2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.232999 0.000000 0.000000 0.000000 0.000000
2.000000 1.319503 0.000000 0.000000 0.000000 0.000000
2.000000 1.368582 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.390832 0.000000 0.000000 0.000000 0.000000
occ12 2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ13 2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 1.333333 0.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 0
optdriver5 0
optdriver6 0
optdriver12 1
optdriver13 1
pawecutdg 2.00000000E+01 Hartree
prtden 0
prteig 0
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 0
prtpot5 0
prtpot6 0
prtpot12 1
prtpot13 1
prtvol 10
prtwf1 1
prtwf2 0
prtwf3 0
prtwf4 0
prtwf5 0
prtwf6 0
prtwf12 0
prtwf13 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 0
rfphon5 0
rfphon6 0
rfphon12 1
rfphon13 1
rfstrs1 0
rfstrs2 0
rfstrs3 0
rfstrs4 0
rfstrs5 0
rfstrs6 0
rfstrs12 3
rfstrs13 3
rprim1 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
rprim2 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
rprim3 -2.5000000000E-04 5.0000000000E-01 4.9975000000E-01
5.0000000000E-01 -2.5000000000E-04 4.9975000000E-01
4.9975000000E-01 4.9975000000E-01 0.0000000000E+00
rprim4 2.5000000000E-04 5.0000000000E-01 5.0025000000E-01
5.0000000000E-01 2.5000000000E-04 5.0025000000E-01
5.0025000000E-01 5.0025000000E-01 0.0000000000E+00
rprim5 -5.0000000000E-04 5.0000000000E-01 4.9950000000E-01
5.0000000000E-01 -5.0000000000E-04 4.9950000000E-01
4.9950000000E-01 4.9950000000E-01 0.0000000000E+00
rprim6 5.0000000000E-04 5.0000000000E-01 5.0050000000E-01
5.0000000000E-01 5.0000000000E-04 5.0050000000E-01
5.0050000000E-01 5.0050000000E-01 0.0000000000E+00
rprim12 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
rprim13 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk3 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk4 -5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk5 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk6 -5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk12 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk13 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup1 225
spgroup2 225
spgroup3 71
spgroup4 71
spgroup5 71
spgroup6 71
spgroup12 225
spgroup13 225
strten1 -1.4133465680E-02 -1.4133465680E-02 -1.4133465680E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 -1.4133465721E-02 -1.4133465721E-02 -1.4133465721E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 -1.4160388220E-02 -1.4160388220E-02 -1.4144636419E-02
0.0000000000E+00 0.0000000000E+00 8.0049798020E-05
strten4 -1.4105934092E-02 -1.4105934092E-02 -1.4123761219E-02
0.0000000000E+00 0.0000000000E+00 -8.1413977043E-05
strten5 -1.4186636249E-02 -1.4186636249E-02 -1.4157397901E-02
0.0000000000E+00 0.0000000000E+00 1.5834195238E-04
strten6 -1.4077854479E-02 -1.4077854479E-02 -1.4115375586E-02
0.0000000000E+00 0.0000000000E+00 -1.6373981622E-04
strten12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symafm1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symafm2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symafm3 1 1 1 1 1 1 1 1
symafm4 1 1 1 1 1 1 1 1
symafm5 1 1 1 1 1 1 1 1
symafm6 1 1 1 1 1 1 1 1
symafm12 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symafm13 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
symrel1 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symrel2 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symrel3 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel4 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel5 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel6 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 1 0 -1 1 0 0 1 1 0 -1 0 1 -1 0 0 -1
0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
symrel12 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
symrel13 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons5 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons12 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons13 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tolvrs1 0.00000000E+00
tolvrs2 1.00000000E-08
tolvrs3 1.00000000E-08
tolvrs4 1.00000000E-08
tolvrs5 1.00000000E-08
tolvrs6 1.00000000E-08
tolvrs12 1.00000000E-08
tolvrs13 1.00000000E-08
tolwfr1 1.00000000E-18
tolwfr2 0.00000000E+00
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
tolwfr12 0.00000000E+00
tolwfr13 0.00000000E+00
tsmear 5.00000000E-03 Hartree
typat 1
usexcnhat1 1
usexcnhat2 1
usexcnhat3 1
usexcnhat4 1
usexcnhat5 1
usexcnhat6 1
usexcnhat12 1
usexcnhat13 0
useylm 1
wtk1 0.75000 0.25000
wtk2 0.75000 0.25000
wtk3 0.12500 0.12500 0.12500 0.25000 0.25000 0.12500
wtk4 0.12500 0.12500 0.25000 0.25000 0.12500 0.12500
wtk5 0.12500 0.12500 0.12500 0.25000 0.25000 0.12500
wtk6 0.12500 0.12500 0.25000 0.25000 0.12500 0.12500
wtk12 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk13 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
znucl 13.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Projector augmented-wave formulation of response to strain and electric-field perturbation
- within density functional perturbation theory
- A. Martin, M. Torrent, and R. Caracas. Phys. Rev. B 99, 094112 (2019)
- Comment: in case Elastic constants, Born Effective charges, piezoelectric tensor
- are computed within the Projector Augmented-Wave (PAW) approach.
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#martin2019
-
- [2] Metric tensor formulation of strain in density-functional perturbation theory,
- D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B71, 035117 (2005).
- Comment: Non-vanishing rfstrs. Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2005
-
- [3] Projector augmented-wave approach to density-functional perturbation theory.
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 73, 235101 (2006).
- Comparison between projector augmented-wave and ultrasoft pseudopotential formalisms
- at the density-functional perturbation theory level.
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 78, 035105 (2008).
- Comment: to be cited in case the computation of response function with PAW, i.e. (rfphon=1 or rfelfd=1) and usepaw=1.
- Strong suggestion to cite these papers.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#audouze2006,
- and https://docs.abinit.org/theory/bibliography/#audouze2008
-
- [4] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [5] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [6] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [7] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [8] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [9] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 3.7 wall= 3.8
================================================================================
Calculation completed.
.Delivered 53 WARNINGs and 59 COMMENTs to log file.
+Overall time at end (sec) : cpu= 3.7 wall= 3.8