abinit/tests/v7/Refs/t83.abo

1537 lines
75 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h13 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t83/t83.abi
- output file -> t83.abo
- root for input files -> t83i
- root for output files -> t83o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 30 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 2 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 1503 nfft = 27000 nkpt = 1
================================================================================
P This job should need less than 12.964 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.461 Mbytes ; DEN or POT disk file : 0.414 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 1
lnmax = 1 mgfft = 30 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 2 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 1503 nfft = 27000 nkpt = 1
================================================================================
P This job should need less than 6.372 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.461 Mbytes ; DEN or POT disk file : 0.414 Mbytes.
================================================================================
DATASET 3 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 1
lnmax = 1 mgfft = 30 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 2 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
mpw = 1503 nfft = 27000 nkpt = 1
================================================================================
P This job should need less than 6.372 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.461 Mbytes ; DEN or POT disk file : 0.414 Mbytes.
================================================================================
DATASET 4 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 30 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 2 nspinor = 1 nsppol = 2
nsym = 1 n1xccc = 2501 ntypat = 1 occopt = 2
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 1503
nfft = 27000 nkpt = 1
================================================================================
P This job should need less than 9.481 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.461 Mbytes ; DEN or POT disk file : 0.414 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.59994000E+01
bdeigrf1 -1
bdeigrf2 -1
bdeigrf3 -1
bdeigrf4 10
ecut 1.00000000E+01 Hartree
elph2_imagden 3.67493254E-03 Hartree
enunit 2
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 0
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 2
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 3
ieig2rf1 0
ieig2rf2 0
ieig2rf3 0
ieig2rf4 5
iscf1 7
iscf2 -2
iscf3 -2
iscf4 7
istwfk 1
jdtset 1 2 3 4
kptopt1 1
kptopt2 1
kptopt3 1
kptopt4 3
kptrlatt 1 0 0 0 1 0 0 0 1
kptrlen 1.00000000E+01
P mkmem 1
P mkqmem 1
P mk1mem 1
natom 2
nband 10 10
nbdbuf1 0
nbdbuf2 2
nbdbuf3 2
nbdbuf4 2
ndtset 4
ngfft 30 30 30
nkpt 1
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 0
nspden 2
nsppol 2
nstep 50
nsym 1
ntypat 1
occ 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 1.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occopt 2
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
smdelta1 0
smdelta2 0
smdelta3 0
smdelta4 1
spgroup 1
spinat 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
tolvrs1 1.00000000E-16
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-08
tolwfr3 1.00000000E-08
tolwfr4 1.00000000E-08
typat 1 1
xangst -6.2159466759E-01 0.0000000000E+00 0.0000000000E+00
6.2159466759E-01 0.0000000000E+00 0.0000000000E+00
xcart -1.1746436874E+00 0.0000000000E+00 0.0000000000E+00
1.1746436874E+00 0.0000000000E+00 0.0000000000E+00
xred -1.1746436874E-01 0.0000000000E+00 0.0000000000E+00
1.1746436874E-01 0.0000000000E+00 0.0000000000E+00
znucl 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 10, nsppol: 2, nspinor: 1, nspden: 2, mpw: 1503, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 10.000 => boxcut(ratio)= 2.10744
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/8o.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/8o.pspnc
- Troullier-Martins psp for element O Thu Oct 27 17:29:57 EDT 1994
- 8.00000 6.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 5.480 16.893 1 1.4482335 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 20.911 28.075 0 1.4482335 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.56990156784787 3.95561236318184 0.63894027514378 rchrg,fchrg,qchrg
pspatm : epsatm= 1.57752239
--- l ekb(1:nproj) -->
0 5.670783
pspatm: atomic psp has been read and splines computed
3.78605374E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 1503.000 1503.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -30.452609634759 -3.045E+01 1.355E-02 1.335E+03
ETOT 2 -31.085992426953 -6.334E-01 8.213E-03 2.085E+02
ETOT 3 -31.212238838225 -1.262E-01 7.309E-03 1.583E+01
ETOT 4 -31.218587170712 -6.348E-03 1.424E-04 3.482E+00
ETOT 5 -31.218037862926 5.493E-04 6.081E-05 2.169E+00
ETOT 6 -31.218654666095 -6.168E-04 4.627E-05 8.505E-01
ETOT 7 -31.218758529418 -1.039E-04 2.987E-06 2.290E-01
ETOT 8 -31.218788369515 -2.984E-05 1.746E-06 2.342E-02
ETOT 9 -31.218793199539 -4.830E-06 3.665E-07 4.015E-04
ETOT 10 -31.218793281273 -8.173E-08 5.126E-07 9.165E-06
ETOT 11 -31.218793281574 -3.013E-10 2.621E-08 1.603E-06
ETOT 12 -31.218793281604 -3.003E-11 2.321E-07 3.074E-07
ETOT 13 -31.218793281611 -6.530E-12 1.395E-08 4.586E-08
ETOT 14 -31.218793281613 -1.862E-12 1.243E-07 6.642E-09
ETOT 15 -31.218793281613 -2.522E-13 7.634E-09 4.657E-10
ETOT 16 -31.218793281612 5.720E-13 6.645E-08 1.145E-10
ETOT 17 -31.218793281613 -7.603E-13 4.124E-09 5.324E-12
ETOT 18 -31.218793281613 3.411E-13 3.540E-08 1.008E-12
ETOT 19 -31.218793281613 -1.670E-13 2.211E-09 2.254E-13
ETOT 20 -31.218793281612 6.466E-13 1.882E-08 3.466E-14
ETOT 21 -31.218793281613 -8.846E-13 1.180E-09 2.469E-15
ETOT 22 -31.218793281613 4.761E-13 9.990E-09 3.412E-16
ETOT 23 -31.218793281613 6.750E-14 6.271E-10 8.602E-17
At SCF step 23 vres2 = 8.60E-17 < tolvrs= 1.00E-16 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.21079045E-03 sigma(3 2)= -1.63577831E-14
sigma(2 2)= 2.00108005E-03 sigma(3 1)= 3.18317009E-15
sigma(3 3)= 2.00108005E-03 sigma(2 1)= 1.13793392E-14
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 10.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0000000E+03
convergence: {deltae: 6.750E-14, res2: 8.602E-17, residm: 6.271E-10, diffor: null, }
etotal : -3.12187933E+01
entropy : 0.00000000E+00
fermie : -1.30134754E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.21079045E-03, 1.13793392E-14, 3.18317009E-15, ]
- [ 1.13793392E-14, 2.00108005E-03, -1.63577831E-14, ]
- [ 3.18317009E-15, -1.63577831E-14, 2.00108005E-03, ]
pressure_GPa: -5.1123E+01
xred :
- [ -1.1746E-01, 0.0000E+00, 0.0000E+00, O]
- [ 1.1746E-01, 0.0000E+00, 0.0000E+00, O]
cartesian_forces: # hartree/bohr
- [ -4.49728014E-01, -3.12852987E-12, -6.18343745E-13, ]
- [ 4.49728014E-01, 3.12852987E-12, 6.18343745E-13, ]
force_length_stats: {min: 4.49728014E-01, max: 4.49728014E-01, mean: 4.49728014E-01, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 3.664695 2.743566 6.408261 0.921129
2 2.00000 3.664695 2.743566 6.408261 0.921129
---------------------------------------------------------------------
Sum: 7.329390 5.487133 12.816522 1.842257
Total magnetization (from the atomic spheres): 1.842257
Total magnetization (exact up - dn): 2.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.504E-12; max= 62.713E-11
reduced coordinates (array xred) for 2 atoms
-0.117464368740 0.000000000000 0.000000000000
0.117464368740 0.000000000000 0.000000000000
rms dE/dt= 2.5965E+00; max dE/dt= 4.4973E+00; dE/dt below (all hartree)
1 4.497280142946 0.000000000046 0.000000000032
2 -4.497280142961 -0.000000000017 0.000000000020
cartesian coordinates (angstrom) at end:
1 -0.62159466758620 0.00000000000000 0.00000000000000
2 0.62159466758620 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.44972801429532 -0.00000000000313 -0.00000000000062
2 0.44972801429532 0.00000000000313 0.00000000000062
frms,max,avg= 2.5965059E-01 4.4972801E-01 7.485E-13 -1.435E-12 -2.597E-12 h/b
cartesian forces (eV/Angstrom) at end:
1 -23.12594237040770 -0.00000000016088 -0.00000000003180
2 23.12594237040770 0.00000000016088 0.00000000003180
frms,max,avg= 1.3351769E+01 2.3125942E+01 3.849E-11 -7.378E-11 -1.336E-10 e/A
length scales= 10.000000000000 10.000000000000 10.000000000000 bohr
= 5.291772085900 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t83o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.13013 Average Vxc (hartree)= -0.11810
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.29940 -0.88944 -0.40988 -0.39912 -0.39912 -0.13013 -0.13013 -0.00629
0.14615 0.15940
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.25392 -0.82921 -0.37395 -0.34442 -0.34442 -0.06495 -0.06495 -0.00027
0.16418 0.16458
Fermi (or HOMO) energy (eV) = -3.54115 Average Vxc (eV)= -3.21359
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-35.35850 -24.20282 -11.15348 -10.86074 -10.86074 -3.54115 -3.54115 -0.17125
3.97695 4.33743
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-34.12083 -22.56401 -10.17565 -9.37217 -9.37217 -1.76745 -1.76745 -0.00734
4.46752 4.47849
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.68419280630589E+01
hartree : 2.05295186445639E+01
xc : -7.67747450980096E+00
Ewald energy : -4.65406910907273E+00
psp_core : 3.78605374107025E-02
local_psp : -6.16021268832984E+01
non_local_psp : 5.30556997552607E+00
total_energy : -3.12187932816125E+01
total_energy_eV : -8.49506567631948E+02
band_energy : -6.80316039192715E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.21079045E-03 sigma(3 2)= -1.63577831E-14
sigma(2 2)= 2.00108005E-03 sigma(3 1)= 3.18317009E-15
sigma(3 3)= 2.00108005E-03 sigma(2 1)= 1.13793392E-14
-Cartesian components of stress tensor (GPa) [Pressure= -5.1123E+01 GPa]
- sigma(1 1)= 3.56226788E+01 sigma(3 2)= -4.81262513E-10
- sigma(2 2)= 5.88737978E+01 sigma(3 1)= 9.36520816E-11
- sigma(3 3)= 5.88737978E+01 sigma(2 1)= 3.34791662E-10
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 10, nsppol: 2, nspinor: 1, nspden: 2, mpw: 1503, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 10.000 => boxcut(ratio)= 2.10744
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t83o_DS2_EIG
SPIN UP channel
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
3.75E-09 2.61E-09 7.30E-09 4.47E-09 7.87E-09 3.78E-09 6.17E-09 3.13E-09
1.00E-05 1.03E-05
-1.2994E+00 -8.8944E-01 -4.0988E-01 -3.9912E-01 -3.9912E-01 -1.3013E-01
-1.3013E-01 -6.2935E-03 1.4622E-01 1.5985E-01
SPIN DOWN channel
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
3.80E-09 7.14E-09 2.76E-09 1.40E-09 8.53E-09 8.06E-09 4.14E-09 7.65E-09
6.25E-08 4.53E-09
-1.2539E+00 -8.2921E-01 -3.7395E-01 -3.4442E-01 -3.4442E-01 -6.4952E-02
-6.4952E-02 -2.6980E-04 1.6420E-01 1.6461E-01
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 10.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0000000E+03
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 8.532E-09, diffor: 0.000E+00, }
etotal : -3.12187933E+01
entropy : 0.00000000E+00
fermie : -1.30134754E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ -1.1746E-01, 0.0000E+00, 0.0000E+00, O]
- [ 1.1746E-01, 0.0000E+00, 0.0000E+00, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 3.664695 2.743566 6.408261 0.921129
2 2.00000 3.664695 2.743566 6.408261 0.921129
---------------------------------------------------------------------
Sum: 7.329390 5.487133 12.816522 1.842257
Total magnetization (from the atomic spheres): 1.842257
Total magnetization (exact up - dn): 2.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 51.585E-10; max= 85.316E-10
reduced coordinates (array xred) for 2 atoms
-0.117464368740 0.000000000000 0.000000000000
0.117464368740 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -0.62159466758620 0.00000000000000 0.00000000000000
2 0.62159466758620 0.00000000000000 0.00000000000000
length scales= 10.000000000000 10.000000000000 10.000000000000 bohr
= 5.291772085900 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t83o_DS2_EIG
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.29940 -0.88944 -0.40988 -0.39912 -0.39912 -0.13013 -0.13013 -0.00629
0.14622 0.15985
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.25392 -0.82921 -0.37395 -0.34442 -0.34442 -0.06495 -0.06495 -0.00027
0.16420 0.16461
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-35.35850 -24.20282 -11.15348 -10.86074 -10.86074 -3.54115 -3.54115 -0.17125
3.97872 4.34968
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-34.12083 -22.56401 -10.17565 -9.37217 -9.37217 -1.76745 -1.76745 -0.00734
4.46800 4.47934
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 1, mband: 10, nsppol: 2, nspinor: 1, nspden: 2, mpw: 1503, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 10.000 => boxcut(ratio)= 2.10744
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t83o_DS2_WFK
================================================================================
prteigrs : about to open file t83o_DS3_EIG
SPIN UP channel
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
3.75E-09 2.61E-09 7.29E-09 4.46E-09 7.86E-09 3.78E-09 6.16E-09 3.13E-09
2.63E-06 1.34E-05
-1.2994E+00 -8.8944E-01 -4.0988E-01 -3.9912E-01 -3.9912E-01 -1.3013E-01
-1.3013E-01 -6.2935E-03 1.4617E-01 1.5966E-01
SPIN DOWN channel
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
3.80E-09 7.14E-09 2.76E-09 1.40E-09 8.53E-09 3.66E-09 8.53E-09 7.65E-09
1.14E-06 4.52E-09
-1.2539E+00 -8.2921E-01 -3.7395E-01 -3.4442E-01 -3.4442E-01 -6.4952E-02
-6.4952E-02 -2.6980E-04 1.6419E-01 1.6461E-01
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 10.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0000000E+03
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 8.532E-09, diffor: 0.000E+00, }
etotal : -3.12187933E+01
entropy : 0.00000000E+00
fermie : -1.30134754E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ -1.1746E-01, 0.0000E+00, 0.0000E+00, O]
- [ 1.1746E-01, 0.0000E+00, 0.0000E+00, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 3.664695 2.743566 6.408261 0.921129
2 2.00000 3.664695 2.743566 6.408261 0.921129
---------------------------------------------------------------------
Sum: 7.329390 5.487133 12.816522 1.842257
Total magnetization (from the atomic spheres): 1.842257
Total magnetization (exact up - dn): 2.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 51.573E-10; max= 85.323E-10
reduced coordinates (array xred) for 2 atoms
-0.117464368740 0.000000000000 0.000000000000
0.117464368740 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -0.62159466758620 0.00000000000000 0.00000000000000
2 0.62159466758620 0.00000000000000 0.00000000000000
length scales= 10.000000000000 10.000000000000 10.000000000000 bohr
= 5.291772085900 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t83o_DS3_EIG
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.29940 -0.88944 -0.40988 -0.39912 -0.39912 -0.13013 -0.13013 -0.00629
0.14617 0.15966
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.25392 -0.82921 -0.37395 -0.34442 -0.34442 -0.06495 -0.06495 -0.00027
0.16419 0.16461
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-35.35850 -24.20282 -11.15348 -10.86074 -10.86074 -3.54115 -3.54115 -0.17125
3.97749 4.34451
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-34.12083 -22.56401 -10.17565 -9.37217 -9.37217 -1.76745 -1.76745 -0.00734
4.46783 4.47934
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 1, mband: 10, nsppol: 2, nspinor: 1, nspden: 2, mpw: 1503, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 10.000 => boxcut(ratio)= 2.10744
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1440.3284327563 -9.176E+02 5.411E+00 1.421E+06
ETOT 2 1227.2276683039 -2.131E+02 1.562E+00 7.291E+05
ETOT 3 200.51601964484 -1.027E+03 6.357E-01 1.436E+05
ETOT 4 43.449252837817 -1.571E+02 5.211E-02 1.060E+04
ETOT 5 40.758798452669 -2.690E+00 1.346E-03 1.753E+03
ETOT 6 40.637194259271 -1.216E-01 6.630E-04 1.945E+02
ETOT 7 40.628456504084 -8.738E-03 6.742E-05 1.963E+01
ETOT 8 40.625226468455 -3.230E-03 4.863E-06 7.539E-01
ETOT 9 40.625156400011 -7.007E-05 7.354E-07 1.028E-01
ETOT 10 40.625151668217 -4.732E-06 2.456E-08 2.208E-02
ETOT 11 40.625149472915 -2.195E-06 9.322E-09 4.049E-03
At SCF step 11 max residual= 9.32E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 45.506E-10; max= 93.224E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.55137407E+03 eigvalue= 2.54030664E+02 local= -1.40476012E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.45615890E+03 Hartree= 7.22632973E+02 xc= -1.55989659E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.33664674E+01 enl0= 3.26664114E+02 enl1= -1.17847842E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.31731882E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.29549318E+03 fr.nonlo= 5.21045713E+02 Ewald= 5.78088732E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -2.47689120E+02 frxc 2 = 2.11005462E+02
Resulting in :
2DEtotal= 0.4062514947E+02 Ha. Also 2DEtotal= 0.110546653668E+04 eV
(2DErelax= -2.3173188197E+03 Ha. 2DEnonrelax= 2.3579439692E+03 Ha)
( non-var. 2DEtotal : 4.0625307892E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 585.21935458393 -1.845E+03 3.190E+00 6.485E+05
ETOT 2 33.085139149027 -5.521E+02 6.408E-01 2.442E+04
ETOT 3 20.185196290796 -1.290E+01 3.269E-02 1.426E+04
ETOT 4 17.633761518113 -2.551E+00 1.125E-03 2.456E+03
ETOT 5 17.477890775873 -1.559E-01 3.140E-04 2.271E+02
ETOT 6 17.470163782057 -7.727E-03 7.422E-05 2.222E+01
ETOT 7 17.469651676360 -5.121E-04 3.378E-06 1.288E+00
ETOT 8 17.469726167330 7.449E-05 1.978E-07 1.899E-01
ETOT 9 17.469588324439 -1.378E-04 1.753E-07 6.375E-02
ETOT 10 17.469512388744 -7.594E-05 2.771E-08 2.019E-03
ETOT 11 17.469512218183 -1.706E-07 9.690E-09 2.622E-04
At SCF step 11 max residual= 9.69E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 54.675E-10; max= 96.897E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.65235709E+03 eigvalue= 2.22300587E+02 local= -1.50761457E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.32810644E+03 Hartree= 7.18572792E+02 xc= -1.73500924E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 5.43820820E+01 enl0= 4.46446609E+02 enl1= -1.49778106E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.41294385E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.88328176E+03 fr.nonlo= 7.90873735E+02 Ewald= -2.66424899E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -2.29642238E+02 frxc 2 = 2.52325001E+02
Resulting in :
2DEtotal= 0.1746951222E+02 Ha. Also 2DEtotal= 0.475369602816E+03 eV
(2DErelax= -2.4129438457E+03 Ha. 2DEnonrelax= 2.4304133579E+03 Ha)
( non-var. 2DEtotal : 1.7469606999E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 584.99102771764 -1.845E+03 3.016E+00 6.485E+05
ETOT 2 33.036990906905 -5.520E+02 6.267E-01 2.440E+04
ETOT 3 20.144145874292 -1.289E+01 3.228E-02 1.426E+04
ETOT 4 17.590561079618 -2.554E+00 1.025E-03 2.444E+03
ETOT 5 17.437152108085 -1.534E-01 2.945E-04 2.289E+02
ETOT 6 17.434571498136 -2.581E-03 7.602E-05 2.736E+01
ETOT 7 17.442451511501 7.880E-03 1.345E-05 1.333E+01
ETOT 8 17.427829496160 -1.462E-02 6.164E-06 5.983E-01
ETOT 9 17.427549634347 -2.799E-04 8.551E-08 1.910E-02
ETOT 10 17.427548602125 -1.032E-06 9.180E-09 1.941E-03
At SCF step 10 max residual= 9.18E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 54.397E-10; max= 91.804E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.64941385E+03 eigvalue= 2.21686190E+02 local= -1.50366616E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.32846123E+03 Hartree= 7.18648305E+02 xc= -1.73517327E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 5.56361170E+01 enl0= 4.44793866E+02 enl1= -1.49753093E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.41299732E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.88327023E+03 fr.nonlo= 7.90897365E+02 Ewald= -2.66424899E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -2.29642005E+02 frxc 2 = 2.52324177E+02
Resulting in :
2DEtotal= 0.1742754860E+02 Ha. Also 2DEtotal= 0.474227714751E+03 eV
(2DErelax= -2.4129973163E+03 Ha. 2DEnonrelax= 2.4304248649E+03 Ha)
( non-var. 2DEtotal : 1.7428785116E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1440.7477088810 -9.172E+02 5.453E+00 1.422E+06
ETOT 2 1229.7670663276 -2.110E+02 1.598E+00 7.304E+05
ETOT 3 200.44062358762 -1.029E+03 6.261E-01 1.434E+05
ETOT 4 43.456316189097 -1.570E+02 5.618E-02 1.057E+04
ETOT 5 40.777326172896 -2.679E+00 1.085E-03 1.738E+03
ETOT 6 40.656449366512 -1.209E-01 4.792E-04 1.935E+02
ETOT 7 40.647920080078 -8.529E-03 5.251E-05 1.971E+01
ETOT 8 40.644720604591 -3.199E-03 1.037E-05 7.440E-01
ETOT 9 40.644650341140 -7.026E-05 2.975E-07 1.025E-01
ETOT 10 40.644645468313 -4.873E-06 1.215E-08 2.173E-02
ETOT 11 40.644643267642 -2.201E-06 9.342E-09 3.996E-03
At SCF step 11 max residual= 9.34E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 46.188E-10; max= 93.425E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.53512480E+03 eigvalue= 2.51359543E+02 local= -1.38148212E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.45614823E+03 Hartree= 7.22595370E+02 xc= -1.55983374E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.72671283E+01 enl0= 3.18395175E+02 enl1= -1.17840485E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.31727655E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.29548987E+03 fr.nonlo= 5.21025589E+02 Ewald= 5.78088732E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -2.47689421E+02 frxc 2 = 2.11006419E+02
Resulting in :
2DEtotal= 0.4064464327E+02 Ha. Also 2DEtotal= 0.110599698981E+04 eV
(2DErelax= -2.3172765483E+03 Ha. 2DEnonrelax= 2.3579211916E+03 Ha)
( non-var. 2DEtotal : 4.0644654101E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 585.32227685229 -1.845E+03 3.198E+00 6.484E+05
ETOT 2 33.074213027201 -5.522E+02 6.737E-01 2.441E+04
ETOT 3 20.209556128969 -1.286E+01 3.205E-02 1.426E+04
ETOT 4 17.654796889580 -2.555E+00 1.163E-03 2.451E+03
ETOT 5 17.499676379431 -1.551E-01 3.071E-04 2.265E+02
ETOT 6 17.491957416029 -7.719E-03 7.402E-05 2.202E+01
ETOT 7 17.491464055877 -4.934E-04 3.349E-06 1.317E+00
ETOT 8 17.491593720397 1.297E-04 2.715E-07 2.517E-01
ETOT 9 17.491354634880 -2.391E-04 2.059E-07 5.564E-02
ETOT 10 17.491292476609 -6.216E-05 2.292E-08 1.988E-03
ETOT 11 17.491292338017 -1.386E-07 8.452E-09 2.592E-04
At SCF step 11 max residual= 8.45E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 46.717E-10; max= 84.521E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.65103195E+03 eigvalue= 2.22155939E+02 local= -1.50598784E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.32782804E+03 Hartree= 7.18541502E+02 xc= -1.73494421E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 5.46335917E+01 enl0= 4.46029013E+02 enl1= -1.49799129E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.41290959E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.88327672E+03 fr.nonlo= 7.90866232E+02 Ewald= -2.66424899E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -2.29642489E+02 frxc 2 = 2.52325320E+02
Resulting in :
2DEtotal= 0.1749129234E+02 Ha. Also 2DEtotal= 0.475962270017E+03 eV
(2DErelax= -2.4129095875E+03 Ha. 2DEnonrelax= 2.4304008799E+03 Ha)
( non-var. 2DEtotal : 1.7491216417E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 585.18969376098 -1.845E+03 3.056E+00 6.485E+05
ETOT 2 32.929151802625 -5.523E+02 6.885E-01 2.439E+04
ETOT 3 20.075297119410 -1.285E+01 3.225E-02 1.427E+04
ETOT 4 17.513707565369 -2.562E+00 1.276E-03 2.438E+03
ETOT 5 17.362167813970 -1.515E-01 3.253E-04 2.289E+02
ETOT 6 17.363704467716 1.537E-03 7.717E-05 3.107E+01
ETOT 7 17.367653748155 3.949E-03 1.796E-05 1.524E+01
ETOT 8 17.351783076240 -1.587E-02 6.251E-06 5.334E-01
ETOT 9 17.351606360960 -1.767E-04 5.910E-08 1.901E-02
ETOT 10 17.351605460138 -9.008E-07 9.959E-09 1.929E-03
At SCF step 10 max residual= 9.96E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 56.247E-10; max= 99.594E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.64652260E+03 eigvalue= 2.21373275E+02 local= -1.50313215E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.32807670E+03 Hartree= 7.18644296E+02 xc= -1.73525670E+02
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 5.62266369E+01 enl0= 4.46955517E+02 enl1= -1.49805441E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.41306661E+03
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.88325580E+03 fr.nonlo= 7.90905403E+02 Ewald= -2.66424899E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -2.29642135E+02 frxc 2 = 2.52324042E+02
Resulting in :
2DEtotal= 0.1735160546E+02 Ha. Also 2DEtotal= 0.472161196763E+03 eV
(2DErelax= -2.4130666070E+03 Ha. 2DEnonrelax= 2.4304182124E+03 Ha)
( non-var. 2DEtotal : 1.7352656855E+01 Ha)
Components of the Sternheimer part only of the second-order derivatives of the electronic energy,
EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -2.1675838981E+01 0.0000000000E+00
1 1 2 1 -2.7723680991E-04 7.9875356502E-05
1 1 3 1 1.9837256895E-03 -4.4728291949E-03
2 1 1 1 -2.7723680991E-04 -7.9875356502E-05
2 1 2 1 -1.0668282522E+01 0.0000000000E+00
2 1 3 1 1.8790728684E-04 8.4032462124E-05
3 1 1 1 1.9837256895E-03 4.4728291949E-03
3 1 2 1 1.8790728684E-04 -8.4032462124E-05
3 1 3 1 -1.0667419306E+01 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 3.6429088430E+02 0.0000000000E+00
1 1 2 1 -3.1235984377E-02 2.3419930181E-08
1 1 3 1 7.4138120800E-03 -1.7483706704E-06
2 1 1 1 -3.1235984377E-02 -2.3419930181E-08
2 1 2 1 2.6783176908E-06 0.0000000000E+00
2 1 3 1 -6.3569451866E-07 1.4943675598E-10
3 1 1 1 7.4138120800E-03 1.7483706704E-06
3 1 2 1 -6.3569451866E-07 -1.4943675598E-10
3 1 3 1 1.5088110898E-07 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 40.6253078918 0.0000000000
1 1 2 1 -0.0365034677 0.0000000000
1 1 3 1 -0.0136664903 0.0000000000
1 1 1 2 -73.7296042059 0.0000000000
1 1 2 2 0.0149365535 -0.0000000000
1 1 3 2 -0.0185712559 -0.0000000000
2 1 1 1 -0.0348656166 0.0000000000
2 1 2 1 17.4696069993 0.0000000000
2 1 3 1 0.0076727711 0.0000000000
2 1 1 2 0.0170041912 -0.0000000000
2 1 2 2 17.5077206476 0.0000000000
2 1 3 2 0.0025473674 -0.0000000000
3 1 1 1 -0.0143044175 0.0000000000
3 1 2 1 0.0077239633 0.0000000000
3 1 3 1 17.4287851160 0.0000000000
3 1 1 2 -0.0127026068 -0.0000000000
3 1 2 2 -0.0077129513 -0.0000000000
3 1 3 2 17.5465108214 0.0000000000
1 2 1 1 -73.7295737639 -0.0000000000
1 2 2 1 0.0149733706 0.0000000000
1 2 3 1 -0.0113965267 0.0000000000
1 2 1 2 40.6446541010 0.0000000000
1 2 2 2 -0.0543085562 0.0000000000
1 2 3 2 0.0228429843 0.0000000000
2 2 1 1 0.0162494195 0.0000000000
2 2 2 1 17.5076577845 -0.0000000000
2 2 3 1 -0.0075662568 0.0000000000
2 2 1 2 -0.0523916402 0.0000000000
2 2 2 2 17.4912164169 0.0000000000
2 2 3 2 -0.0039984005 0.0000000000
3 2 1 1 -0.0174117610 0.0000000000
3 2 2 1 0.0025126019 0.0000000000
3 2 3 1 17.5468007986 -0.0000000000
3 2 1 2 0.0233584285 0.0000000000
3 2 2 2 -0.0038322734 0.0000000000
3 2 3 2 17.3526568547 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.7372960421 -0.0000000000
1 1 2 1 -0.0001493655 0.0000000000
1 1 3 1 0.0001857126 0.0000000000
1 1 1 2 -0.7372960421 0.0000000000
1 1 2 2 0.0001493655 -0.0000000000
1 1 3 2 -0.0001857126 -0.0000000000
2 1 1 1 -0.0001700419 0.0000000000
2 1 2 1 -0.1750772065 -0.0000000000
2 1 3 1 -0.0000254737 0.0000000000
2 1 1 2 0.0001700419 -0.0000000000
2 1 2 2 0.1750772065 0.0000000000
2 1 3 2 0.0000254737 -0.0000000000
3 1 1 1 0.0001270261 0.0000000000
3 1 2 1 0.0000771295 0.0000000000
3 1 3 1 -0.1754651082 -0.0000000000
3 1 1 2 -0.0001270261 -0.0000000000
3 1 2 2 -0.0000771295 -0.0000000000
3 1 3 2 0.1754651082 0.0000000000
1 2 1 1 -0.7372957376 -0.0000000000
1 2 2 1 0.0001497337 0.0000000000
1 2 3 1 -0.0001139653 0.0000000000
1 2 1 2 0.7372957376 0.0000000000
1 2 2 2 -0.0001497337 -0.0000000000
1 2 3 2 0.0001139653 -0.0000000000
2 2 1 1 0.0001624942 0.0000000000
2 2 2 1 0.1750765778 -0.0000000000
2 2 3 1 -0.0000756626 0.0000000000
2 2 1 2 -0.0001624942 -0.0000000000
2 2 2 2 -0.1750765778 0.0000000000
2 2 3 2 0.0000756626 -0.0000000000
3 2 1 1 -0.0001741176 0.0000000000
3 2 2 1 0.0000251260 0.0000000000
3 2 3 1 0.1754680080 -0.0000000000
3 2 1 2 0.0001741176 -0.0000000000
3 2 2 2 -0.0000251260 -0.0000000000
3 2 3 2 -0.1754680080 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-3.468825E-03 -3.464938E-03 0.000000E+00 4.920298E-07 6.136078E-07
7.110564E-03
Phonon energies in meV :
- -9.439153E+01 -9.428576E+01 0.000000E+00 1.338881E-02 1.669712E-02
- 1.934883E+02
Phonon frequencies in cm-1 :
- -7.613191E+02 -7.604660E+02 0.000000E+00 1.079881E-01 1.346714E-01
- 1.560588E+03
Phonon frequencies in Thz :
- -2.282377E+01 -2.279820E+01 0.000000E+00 3.237400E-03 4.037346E-03
- 4.678526E+01
Phonon energies in Kelvin :
- -1.095367E+03 -1.094140E+03 0.000000E+00 1.553705E-01 1.937618E-01
- 2.245336E+03
Components of second-order derivatives of the electronic energy, EIGR2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -5.1269535356E+01 0.0000000000E+00
1 1 2 1 7.7515809064E-04 -1.8368986839E-04
1 1 3 1 6.8530093225E-04 1.0850048170E-04
2 1 1 1 7.7515809064E-04 1.8368986839E-04
2 1 2 1 -2.7396712419E+01 0.0000000000E+00
2 1 3 1 8.9380231517E-04 1.3888364083E-05
3 1 1 1 6.8530093225E-04 -1.0850048170E-04
3 1 2 1 8.9380231517E-04 -1.3888364083E-05
3 1 3 1 -2.7394492809E+01 0.0000000000E+00
1 1 1 1 -5.1524316584E+01 0.0000000000E+00
1 1 2 1 2.0411155532E-03 -2.3595648009E-05
1 1 3 1 -6.1511693085E-04 4.3141254614E-05
2 1 1 1 2.0411155532E-03 2.3595648009E-05
2 1 2 1 -2.7038646660E+01 0.0000000000E+00
2 1 3 1 2.3769119557E-03 2.2043755891E-05
3 1 1 1 -6.1511693085E-04 -4.3141254615E-05
3 1 2 1 2.3769119557E-03 -2.2043755891E-05
3 1 3 1 -2.7033533816E+01 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 3.6429088430E+02 0.0000000000E+00
1 1 2 1 -3.1235984377E-02 2.3419930181E-08
1 1 3 1 7.4138120800E-03 -1.7483706704E-06
2 1 1 1 -3.1235984377E-02 -2.3419930181E-08
2 1 2 1 2.6783176908E-06 0.0000000000E+00
2 1 3 1 -6.3569451866E-07 1.4943675598E-10
3 1 1 1 7.4138120800E-03 1.7483706704E-06
3 1 2 1 -6.3569451866E-07 -1.4943675598E-10
3 1 3 1 1.5088110898E-07 0.0000000000E+00
1 1 1 1 3.8409998498E+02 0.0000000000E+00
1 1 2 1 -4.4708948289E-02 -4.9368638567E-08
1 1 3 1 1.4266299477E-02 -8.0406263457E-08
2 1 1 1 -4.4708948289E-02 4.9368638567E-08
2 1 2 1 5.2040878295E-06 0.0000000000E+00
2 1 3 1 -1.6605864893E-06 0.0000000000E+00
3 1 1 1 1.4266299477E-02 8.0406263457E-08
3 1 2 1 -1.6605864893E-06 0.0000000000E+00
3 1 3 1 5.2988104329E-07 0.0000000000E+00
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Phonons at gamma, also compute the Diagonal Debye-Waller shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.29940 -0.88944 -0.40988 -0.39912 -0.39912 -0.13013 -0.13013 -0.00629
0.14622 0.15985
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.25392 -0.82921 -0.37395 -0.34442 -0.34442 -0.06495 -0.06495 -0.00027
0.16420 0.16461
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-35.35850 -24.20282 -11.15348 -10.86074 -10.86074 -3.54115 -3.54115 -0.17125
3.97872 4.34968
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-34.12083 -22.56401 -10.17565 -9.37217 -9.37217 -1.76745 -1.76745 -0.00734
4.46800 4.47934
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 1 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00207 -0.00054 -0.00420 -0.00202 -0.00202 -0.00174 -0.00174 -0.00013
0.00058 0.00003
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 1 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00209 -0.00053 -0.00408 -0.00190 -0.00190 -0.00161 -0.00161 -0.00014
-0.00001 0.00011
Fan corrections to eigenvalues at T=0 ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.05629 -0.01470 -0.11437 -0.05495 -0.05495 -0.04732 -0.04732 -0.00351
0.01578 0.00083
Fan corrections to eigenvalues at T=0 ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.05674 -0.01436 -0.11108 -0.05170 -0.05170 -0.04375 -0.04375 -0.00369
-0.00017 0.00287
DDW corrections to eigenvalues at T=0 (hartree) for nkpt= 1 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00040 0.00058 0.00332 0.00134 0.00134 0.00191 0.00191 0.00013
-0.00031 -0.00000
DDW corrections to eigenvalues at T=0 (hartree) for nkpt= 1 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00040 0.00053 0.00324 0.00121 0.00121 0.00174 0.00174 0.00014
-0.00001 -0.00001
DDW corrections to eigenvalues at T=0 ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.01099 0.01565 0.09040 0.03648 0.03648 0.05185 0.05185 0.00355
-0.00843 -0.00008
DDW corrections to eigenvalues at T=0 ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.01086 0.01437 0.08805 0.03304 0.03304 0.04747 0.04747 0.00371
-0.00025 -0.00040
Fan+DDW corrs to eigenvalues at T=0 (hartree) for nkpt= 1 k points, SPIN UP:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00166 0.00003 -0.00088 -0.00068 -0.00068 0.00017 0.00017 0.00000
0.00027 0.00003
Fan+DDW corrs to eigenvalues at T=0 (hartree) for nkpt= 1 k points, SPIN DOWN:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00169 0.00000 -0.00085 -0.00069 -0.00069 0.00014 0.00014 0.00000
-0.00002 0.00009
Fan+DDW corrs to eigenvalues at T=0 ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.04530 0.00095 -0.02397 -0.01847 -0.01847 0.00453 0.00453 0.00005
0.00735 0.00075
Fan+DDW corrs to eigenvalues at T=0 ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 10, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.04588 0.00001 -0.02303 -0.01866 -0.01866 0.00372 0.00372 0.00002
-0.00042 0.00246
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.59994000E+01
bdeigrf1 -1
bdeigrf2 -1
bdeigrf3 -1
bdeigrf4 10
ecut 1.00000000E+01 Hartree
elph2_imagden 3.67493254E-03 Hartree
enunit 2
etotal1 -3.1218793282E+01
etotal4 1.7351605460E+01
fcart1 -4.4972801430E-01 -3.1285298721E-12 -6.1834374465E-13
4.4972801430E-01 3.1285298721E-12 6.1834374465E-13
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 0
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 2
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 3
ieig2rf1 0
ieig2rf2 0
ieig2rf3 0
ieig2rf4 5
iscf1 7
iscf2 -2
iscf3 -2
iscf4 7
istwfk 1
jdtset 1 2 3 4
kptopt1 1
kptopt2 1
kptopt3 1
kptopt4 3
kptrlatt 1 0 0 0 1 0 0 0 1
kptrlen 1.00000000E+01
P mkmem 1
P mkqmem 1
P mk1mem 1
natom 2
nband 10 10
nbdbuf1 0
nbdbuf2 2
nbdbuf3 2
nbdbuf4 2
ndtset 4
ngfft 30 30 30
nkpt 1
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 0
nspden 2
nsppol 2
nstep 50
nsym 1
ntypat 1
occ 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 1.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occopt 2
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
smdelta1 0
smdelta2 0
smdelta3 0
smdelta4 1
spgroup 1
spinat 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
strten1 1.2107904453E-03 2.0010800520E-03 2.0010800519E-03
-1.6357783104E-14 3.1831700899E-15 1.1379339218E-14
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
tolvrs1 1.00000000E-16
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-08
tolwfr3 1.00000000E-08
tolwfr4 1.00000000E-08
typat 1 1
xangst -6.2159466759E-01 0.0000000000E+00 0.0000000000E+00
6.2159466759E-01 0.0000000000E+00 0.0000000000E+00
xcart -1.1746436874E+00 0.0000000000E+00 0.0000000000E+00
1.1746436874E+00 0.0000000000E+00 0.0000000000E+00
xred -1.1746436874E-01 0.0000000000E+00 0.0000000000E+00
1.1746436874E-01 0.0000000000E+00 0.0000000000E+00
znucl 8.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Verification of first-principles codes: Comparison of total energies, phonon frequencies,
- electron--phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo
- S. Ponce, G. Antonius, P. Boulanger, E. Cannuccia, A. Marini, M. Cote and X. Gonze. Computational Material Science 83, 341 (2014)
- Comment: the temperature-dependence of the electronic structure is computed (or the zero-point renormalisation).
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex : see https://docs.abinit.org/theory/bibliography/#ponce2014
-
- [2] Temperature dependence of the electronic structure of semiconductors and insulators
- S. Ponce, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete and X. Gonze. J. Chem. Phys. 143, 102813 (2015)
- Comment: the temperature-dependence of the electronic structure is computed (or the zero-point renormalisation).
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#ponce2015
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [5] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 5.1 wall= 5.2
================================================================================
Calculation completed.
.Delivered 14 WARNINGs and 19 COMMENTs to log file.
+Overall time at end (sec) : cpu= 5.1 wall= 5.2