mirror of https://github.com/abinit/abinit.git
1736 lines
95 KiB
Plaintext
1736 lines
95 KiB
Plaintext
|
|
.Version 10.1.4.5 of ABINIT, released Sep 2024.
|
|
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
|
|
|
|
.Copyright (C) 1998-2025 ABINIT group .
|
|
ABINIT comes with ABSOLUTELY NO WARRANTY.
|
|
It is free software, and you are welcome to redistribute it
|
|
under certain conditions (GNU General Public License,
|
|
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
|
|
|
|
ABINIT is a project of the Universite Catholique de Louvain,
|
|
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
|
|
Please read https://docs.abinit.org/theory/acknowledgments for suggested
|
|
acknowledgments of the ABINIT effort.
|
|
For more information, see https://www.abinit.org .
|
|
|
|
.Starting date : Fri 13 Sep 2024.
|
|
- ( at 19h13 )
|
|
|
|
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t81/t81.abi
|
|
- output file -> t81.abo
|
|
- root for input files -> t81i
|
|
- root for output files -> t81o
|
|
|
|
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 1.
|
|
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 13
|
|
lnmax = 5 mgfft = 16 mpssoang = 3 mqgrid = 3001
|
|
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
|
|
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
|
|
occopt = 1 xclevel = 1
|
|
- mband = 4 mffmem = 1 mkmem = 29
|
|
mpw = 153 nfft = 4096 nkpt = 29
|
|
PAW method is used; the additional fine FFT grid is defined by:
|
|
mgfftf= 24 nfftf = 13824
|
|
================================================================================
|
|
P This job should need less than 5.038 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 0.273 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
|
|
================================================================================
|
|
|
|
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 2.
|
|
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 13
|
|
lnmax = 5 mgfft = 16 mpssoang = 3 mqgrid = 3001
|
|
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
|
|
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
|
|
occopt = 1 xclevel = 1
|
|
- mband = 11 mffmem = 1 mkmem = 2
|
|
mpw = 150 nfft = 4096 nkpt = 2
|
|
PAW method is used; the additional fine FFT grid is defined by:
|
|
mgfftf= 24 nfftf = 13824
|
|
================================================================================
|
|
P This job should need less than 3.598 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 0.052 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
|
|
================================================================================
|
|
|
|
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 3 (RF).
|
|
intxc = 0 iscf = 7 lmnmax = 13 lnmax = 5
|
|
mgfft = 16 mpssoang = 3 mqgrid = 3001 natom = 2
|
|
nloc_mem = 2 nspden = 1 nspinor = 1 nsppol = 1
|
|
nsym = 48 n1xccc = 1 ntypat = 1 occopt = 1
|
|
xclevel = 1
|
|
- mband = 11 mffmem = 1 mkmem = 2
|
|
- mkqmem = 2 mk1mem = 2 mpw = 150
|
|
nfft = 4096 nkpt = 2
|
|
================================================================================
|
|
P This job should need less than 1.868 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 0.052 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
|
|
================================================================================
|
|
|
|
DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 4 (RF).
|
|
intxc = 0 iscf = 7 lmnmax = 13 lnmax = 5
|
|
mgfft = 16 mpssoang = 3 mqgrid = 3001 natom = 2
|
|
nloc_mem = 2 nspden = 1 nspinor = 1 nsppol = 1
|
|
nsym = 48 n1xccc = 1 ntypat = 1 occopt = 1
|
|
xclevel = 1
|
|
- mband = 11 mffmem = 1 mkmem = 2
|
|
- mkqmem = 2 mk1mem = 2 mpw = 150
|
|
nfft = 4096 nkpt = 2
|
|
================================================================================
|
|
P This job should need less than 1.868 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 0.052 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
|
|
================================================================================
|
|
|
|
--------------------------------------------------------------------------------
|
|
------------- Echo of variables that govern the present computation ------------
|
|
--------------------------------------------------------------------------------
|
|
-
|
|
- outvars: echo of selected default values
|
|
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
|
|
-
|
|
- outvars: echo of global parameters not present in the input file
|
|
- max_nthreads = 0
|
|
-
|
|
-outvars: echo values of preprocessed input variables --------
|
|
acell 1.0263106673E+01 1.0263106673E+01 1.0263106673E+01 Bohr
|
|
amu 2.80855000E+01
|
|
ecut 5.00000000E+00 Hartree
|
|
- fftalg 512
|
|
getden1 0
|
|
getden2 1
|
|
getden3 1
|
|
getden4 1
|
|
getwfk1 0
|
|
getwfk2 0
|
|
getwfk3 2
|
|
getwfk4 2
|
|
iscf1 17
|
|
iscf2 -2
|
|
iscf3 7
|
|
iscf4 7
|
|
istwfk1 2 0 0 0 3 0 0 0 0 0
|
|
0 0 0 0 0 0 0 0 0 0
|
|
7 0 0 0 0 0 0 0 0
|
|
istwfk2 2 0
|
|
istwfk3 1 0
|
|
istwfk4 1 0
|
|
ixc 7
|
|
jdtset 1 2 3 4
|
|
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
1.25000000E-01 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
3.75000000E-01 0.00000000E+00 0.00000000E+00
|
|
5.00000000E-01 0.00000000E+00 0.00000000E+00
|
|
1.25000000E-01 1.25000000E-01 0.00000000E+00
|
|
2.50000000E-01 1.25000000E-01 0.00000000E+00
|
|
3.75000000E-01 1.25000000E-01 0.00000000E+00
|
|
5.00000000E-01 1.25000000E-01 0.00000000E+00
|
|
-3.75000000E-01 1.25000000E-01 0.00000000E+00
|
|
-2.50000000E-01 1.25000000E-01 0.00000000E+00
|
|
-1.25000000E-01 1.25000000E-01 0.00000000E+00
|
|
2.50000000E-01 2.50000000E-01 0.00000000E+00
|
|
3.75000000E-01 2.50000000E-01 0.00000000E+00
|
|
5.00000000E-01 2.50000000E-01 0.00000000E+00
|
|
-3.75000000E-01 2.50000000E-01 0.00000000E+00
|
|
-2.50000000E-01 2.50000000E-01 0.00000000E+00
|
|
3.75000000E-01 3.75000000E-01 0.00000000E+00
|
|
5.00000000E-01 3.75000000E-01 0.00000000E+00
|
|
-3.75000000E-01 3.75000000E-01 0.00000000E+00
|
|
5.00000000E-01 5.00000000E-01 0.00000000E+00
|
|
3.75000000E-01 2.50000000E-01 1.25000000E-01
|
|
5.00000000E-01 2.50000000E-01 1.25000000E-01
|
|
-3.75000000E-01 2.50000000E-01 1.25000000E-01
|
|
5.00000000E-01 3.75000000E-01 1.25000000E-01
|
|
-3.75000000E-01 3.75000000E-01 1.25000000E-01
|
|
-2.50000000E-01 3.75000000E-01 1.25000000E-01
|
|
-3.75000000E-01 5.00000000E-01 1.25000000E-01
|
|
-2.50000000E-01 5.00000000E-01 2.50000000E-01
|
|
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
kpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
kptopt1 1
|
|
kptopt2 0
|
|
kptopt3 0
|
|
kptopt4 0
|
|
kptrlatt 8 0 0 0 8 0 0 0 8
|
|
kptrlen1 5.80568986E+01
|
|
kptrlen2 3.00000000E+01
|
|
kptrlen3 3.00000000E+01
|
|
kptrlen4 3.00000000E+01
|
|
P mkmem1 29
|
|
P mkmem2 2
|
|
P mkmem3 2
|
|
P mkmem4 2
|
|
P mkqmem1 29
|
|
P mkqmem2 2
|
|
P mkqmem3 2
|
|
P mkqmem4 2
|
|
P mk1mem1 29
|
|
P mk1mem2 2
|
|
P mk1mem3 2
|
|
P mk1mem4 2
|
|
natom 2
|
|
nband1 4
|
|
nband2 11
|
|
nband3 11
|
|
nband4 11
|
|
nbdbuf1 0
|
|
nbdbuf2 2
|
|
nbdbuf3 0
|
|
nbdbuf4 0
|
|
ndtset 4
|
|
ngfft 16 16 16
|
|
ngfftdg 24 24 24
|
|
nkpt1 29
|
|
nkpt2 2
|
|
nkpt3 2
|
|
nkpt4 2
|
|
nstep 100
|
|
nsym 48
|
|
ntypat 1
|
|
occ1 2.000000 2.000000 2.000000 2.000000
|
|
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000
|
|
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000
|
|
optdriver1 0
|
|
optdriver2 0
|
|
optdriver3 1
|
|
optdriver4 1
|
|
pawecutdg 1.00000000E+01 Hartree
|
|
prtpot1 0
|
|
prtpot2 0
|
|
prtpot3 1
|
|
prtpot4 1
|
|
rfelfd1 0
|
|
rfelfd2 0
|
|
rfelfd3 2
|
|
rfelfd4 2
|
|
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
|
|
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
|
|
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
|
|
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
shiftk3 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
shiftk4 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
spgroup 227
|
|
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
|
|
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
|
|
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
|
|
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
|
|
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
|
|
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
|
|
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
|
|
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
|
|
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
|
|
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
|
|
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
|
|
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
|
|
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
|
|
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
|
|
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
|
|
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
|
|
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
|
|
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
|
|
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
|
|
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
|
|
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
|
|
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
|
|
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
|
|
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
|
|
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
tolvrs1 1.00000000E-18
|
|
tolvrs2 0.00000000E+00
|
|
tolvrs3 0.00000000E+00
|
|
tolvrs4 0.00000000E+00
|
|
tolwfr1 0.00000000E+00
|
|
tolwfr2 1.00000000E-22
|
|
tolwfr3 1.00000000E-22
|
|
tolwfr4 1.00000000E-22
|
|
typat 1 1
|
|
useylm 1
|
|
wtk1 0.00195 0.01563 0.01563 0.01563 0.00781 0.01172
|
|
0.04688 0.04688 0.04688 0.04688 0.04688 0.02344
|
|
0.01172 0.04688 0.04688 0.04688 0.02344 0.01172
|
|
0.04688 0.02344 0.00586 0.04688 0.09375 0.04688
|
|
0.04688 0.09375 0.04688 0.02344 0.01172
|
|
wtk2 1.00000 1.00000
|
|
wtk3 0.50000 0.50000
|
|
wtk4 0.50000 0.50000
|
|
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
1.3577505352E+00 1.3577505352E+00 1.3577505352E+00
|
|
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
2.5657766683E+00 2.5657766683E+00 2.5657766683E+00
|
|
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
|
|
znucl 14.00000
|
|
|
|
================================================================================
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 1.
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 2.
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 3.
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 4.
|
|
|
|
================================================================================
|
|
== DATASET 1 ==================================================================
|
|
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 1, }
|
|
dimensions: {natom: 2, nkpt: 29, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 153, }
|
|
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
|
|
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
|
|
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
|
|
...
|
|
|
|
Exchange-correlation functional for the present dataset will be:
|
|
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
|
|
Citation for XC functional:
|
|
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 0.0000000 5.1315533 5.1315533 G(1)= -0.0974364 0.0974364 0.0974364
|
|
R(2)= 5.1315533 0.0000000 5.1315533 G(2)= 0.0974364 -0.0974364 0.0974364
|
|
R(3)= 5.1315533 5.1315533 0.0000000 G(3)= 0.0974364 0.0974364 -0.0974364
|
|
Unit cell volume ucvol= 2.7025674E+02 bohr^3
|
|
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
|
|
|
|
Coarse grid specifications (used for wave-functions):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
|
|
ecut(hartree)= 5.000 => boxcut(ratio)= 2.19031
|
|
|
|
Fine grid specifications (used for densities):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
|
|
ecut(hartree)= 10.000 => boxcut(ratio)= 2.32318
|
|
|
|
getcut : COMMENT -
|
|
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
|
|
is sufficient for exact treatment of convolution.
|
|
Such a large boxcut is a waste : you could raise ecut
|
|
e.g. ecut= 13.492877 Hartrees makes boxcut=2
|
|
|
|
|
|
--- Pseudopotential description ------------------------------------------------
|
|
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si-LDA.paw
|
|
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si-LDA.paw
|
|
- Paw atomic data for element Si - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.1.1
|
|
- 14.00000 4.00000 20070412 znucl, zion, pspdat
|
|
7 7 2 0 1398 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
|
|
Pseudopotential format is: paw3
|
|
basis_size (lnmax)= 5 (lmn_size= 13), orbitals= 0 0 1 1 2
|
|
Spheres core radius: rc_sph= 2.00437498
|
|
4 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1398 , AA= 0.43309E-03 BB= 0.60633E-02
|
|
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1393 , AA= 0.43309E-03 BB= 0.60633E-02
|
|
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1508 , AA= 0.43309E-03 BB= 0.60633E-02
|
|
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1658 , AA= 0.43309E-03 BB= 0.60633E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = sphere core radius
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 2
|
|
Radial grid used for (t)core density is grid 3
|
|
Radial grid used for Vloc is grid 4
|
|
Compensation charge density is taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
5.68697669E+01 ecore*ucvol(ha*bohr**3)
|
|
--------------------------------------------------------------------------------
|
|
|
|
_setup2: Arith. and geom. avg. npw (full set) are 144.783 144.750
|
|
|
|
================================================================================
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 1, }
|
|
solver: {iscf: 17, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolvrs: 1.00E-18, }
|
|
...
|
|
|
|
iter Etot(hartree) deltaE(h) residm nres2
|
|
ETOT 1 -8.0405453571882 -8.041E+00 1.327E-02 1.646E+00
|
|
ETOT 2 -8.0286442762100 1.190E-02 9.881E-07 2.548E-01
|
|
ETOT 3 -8.0255034566916 3.141E-03 6.766E-06 3.774E-03
|
|
ETOT 4 -8.0255374852404 -3.403E-05 2.247E-08 1.012E-04
|
|
ETOT 5 -8.0255345545497 2.931E-06 6.480E-09 7.991E-06
|
|
ETOT 6 -8.0255346289897 -7.444E-08 5.910E-10 3.343E-08
|
|
ETOT 7 -8.0255346296810 -6.913E-10 1.578E-12 5.115E-10
|
|
ETOT 8 -8.0255346296850 -4.007E-12 2.549E-14 1.112E-10
|
|
ETOT 9 -8.0255346296838 1.219E-12 2.579E-15 5.273E-13
|
|
ETOT 10 -8.0255346296838 2.309E-14 2.042E-17 1.317E-15
|
|
ETOT 11 -8.0255346296837 1.421E-14 1.915E-19 2.362E-16
|
|
ETOT 12 -8.0255346296837 8.882E-15 3.119E-21 1.198E-18
|
|
ETOT 13 -8.0255346296837 3.730E-14 8.915E-24 7.986E-20
|
|
|
|
At SCF step 13 nres2 = 7.99E-20 < tolvrs= 1.00E-18 =>converged.
|
|
|
|
Cartesian components of stress tensor (hartree/bohr^3)
|
|
sigma(1 1)= 7.24484942E-05 sigma(3 2)= 0.00000000E+00
|
|
sigma(2 2)= 7.24484942E-05 sigma(3 1)= 0.00000000E+00
|
|
sigma(3 3)= 7.24484942E-05 sigma(2 1)= 0.00000000E+00
|
|
|
|
|
|
--- !ResultsGS
|
|
iteration_state: {dtset: 1, }
|
|
comment : Summary of ground state results
|
|
lattice_vectors:
|
|
- [ 0.0000000, 5.1315533, 5.1315533, ]
|
|
- [ 5.1315533, 0.0000000, 5.1315533, ]
|
|
- [ 5.1315533, 5.1315533, 0.0000000, ]
|
|
lattice_lengths: [ 7.25711, 7.25711, 7.25711, ]
|
|
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
|
|
lattice_volume: 2.7025674E+02
|
|
convergence: {deltae: 3.730E-14, res2: 7.986E-20, residm: 8.915E-24, diffor: null, }
|
|
etotal : -8.02553463E+00
|
|
entropy : 0.00000000E+00
|
|
fermie : 1.96909125E-01
|
|
cartesian_stress_tensor: # hartree/bohr^3
|
|
- [ 7.24484942E-05, 0.00000000E+00, 0.00000000E+00, ]
|
|
- [ 0.00000000E+00, 7.24484942E-05, 0.00000000E+00, ]
|
|
- [ 0.00000000E+00, 0.00000000E+00, 7.24484942E-05, ]
|
|
pressure_GPa: -2.1315E+00
|
|
xred :
|
|
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
|
|
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
|
|
cartesian_forces: # hartree/bohr
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
|
|
...
|
|
|
|
Integrated electronic density in atomic spheres:
|
|
------------------------------------------------
|
|
Atom Sphere_radius Integrated_density
|
|
1 2.00437 1.77583302
|
|
2 2.00437 1.77583302
|
|
|
|
PAW TEST:
|
|
==== Compensation charge inside spheres ============
|
|
The following values must be close to each other ...
|
|
Compensation charge over spherical meshes = -0.236110569087938
|
|
Compensation charge over fine fft grid = -0.236113458559824
|
|
|
|
==== Results concerning PAW augmentation regions ====
|
|
|
|
Total pseudopotential strength Dij (hartree):
|
|
Atom # 1
|
|
0.46696 -1.46040 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-1.46040 3.55320 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00000 0.00000 0.00000 0.00000 0.00031 ...
|
|
0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00031 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00031 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00086 ...
|
|
0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 -0.00086 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 -0.00086 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00031 0.00000 0.00000 -0.00086 0.00000 -0.01192 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00031 0.00000 0.00000 -0.00086 0.00000 -0.01192 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01193 0.00000 ...
|
|
0.00000 0.00000 0.00031 0.00000 0.00000 -0.00086 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01192 ...
|
|
... only 12 components have been written...
|
|
Atom # 2
|
|
0.46696 -1.46040 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-1.46040 3.55320 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00031 ...
|
|
0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 -0.00031 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 -0.00031 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00000 0.00000 0.00000 0.00000 0.00086 ...
|
|
0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00086 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00086 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.00031 0.00000 0.00000 0.00086 0.00000 -0.01192 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.00031 0.00000 0.00000 0.00086 0.00000 -0.01192 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01193 0.00000 ...
|
|
0.00000 0.00000 -0.00031 0.00000 0.00000 0.00086 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01192 ...
|
|
... only 12 components have been written...
|
|
|
|
|
|
Augmentation waves occupancies Rhoij:
|
|
Atom # 1
|
|
1.44777 -0.01972 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.01972 0.00038 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.00000 0.00000 0.00000 0.00000 0.14476 ...
|
|
0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.14476 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.14476 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00116 ...
|
|
0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00116 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00116 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.14476 0.00000 0.00000 0.00116 0.00000 0.03412 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.14476 0.00000 0.00000 0.00116 0.00000 0.03412 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01044 0.00000 ...
|
|
0.00000 0.00000 0.14476 0.00000 0.00000 0.00116 0.00000 0.00000 0.00000 0.00000 0.00000 0.03412 ...
|
|
... only 12 components have been written...
|
|
Atom # 2
|
|
1.44777 -0.01972 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.01972 0.00038 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.00000 0.00000 0.00000 0.00000 -0.14476 ...
|
|
0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 -0.14476 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 -0.14476 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00116 ...
|
|
0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 -0.00116 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 -0.00116 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.14476 0.00000 0.00000 -0.00116 0.00000 0.03412 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.14476 0.00000 0.00000 -0.00116 0.00000 0.03412 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01044 0.00000 ...
|
|
0.00000 0.00000 -0.14476 0.00000 0.00000 -0.00116 0.00000 0.00000 0.00000 0.00000 0.00000 0.03412 ...
|
|
... only 12 components have been written...
|
|
|
|
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 25.528E-25; max= 89.154E-25
|
|
reduced coordinates (array xred) for 2 atoms
|
|
0.000000000000 0.000000000000 0.000000000000
|
|
0.250000000000 0.250000000000 0.250000000000
|
|
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
|
|
1 0.000000000000 0.000000000000 0.000000000000
|
|
2 0.000000000000 0.000000000000 0.000000000000
|
|
|
|
cartesian coordinates (angstrom) at end:
|
|
1 0.00000000000000 0.00000000000000 0.00000000000000
|
|
2 1.35775053519535 1.35775053519535 1.35775053519535
|
|
|
|
cartesian forces (hartree/bohr) at end:
|
|
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
|
|
|
|
cartesian forces (eV/Angstrom) at end:
|
|
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
|
|
length scales= 10.263106673193 10.263106673193 10.263106673193 bohr
|
|
= 5.431002140781 5.431002140781 5.431002140781 angstroms
|
|
prteigrs : about to open file t81o_DS1_EIG
|
|
Fermi (or HOMO) energy (hartree) = 0.19691 Average Vxc (hartree)= -0.33840
|
|
Eigenvalues (hartree) for nkpt= 29 k points:
|
|
kpt# 1, nband= 4, wtk= 0.00195, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
-0.24168 0.19691 0.19691 0.19691
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
--- !EnergyTerms
|
|
iteration_state : {dtset: 1, }
|
|
comment : Components of total free energy in Hartree
|
|
kinetic : 2.99153603372500E+00
|
|
hartree : 5.42390544663726E-01
|
|
xc : -2.47333463138248E+00
|
|
Ewald energy : -8.39792194028310E+00
|
|
psp_core : 2.10428670391146E-01
|
|
local_psp : -2.52620673209970E+00
|
|
spherical_terms : 1.62757342622568E+00
|
|
total_energy : -8.02553462875973E+00
|
|
total_energy_eV : -2.18385903464904E+02
|
|
...
|
|
|
|
|
|
--- !EnergyTermsDC
|
|
iteration_state : {dtset: 1, }
|
|
comment : '"Double-counting" decomposition of free energy'
|
|
band_energy : 8.53706924702343E-02
|
|
Ewald energy : -8.39792194028310E+00
|
|
psp_core : 2.10428670391146E-01
|
|
xc_dc : 1.23631714037740E-01
|
|
spherical_terms : -4.70437662997163E-02
|
|
total_energy_dc : -8.02553462968370E+00
|
|
total_energy_dc_eV : -2.18385903490046E+02
|
|
...
|
|
|
|
|
|
Cartesian components of stress tensor (hartree/bohr^3)
|
|
sigma(1 1)= 7.24484942E-05 sigma(3 2)= 0.00000000E+00
|
|
sigma(2 2)= 7.24484942E-05 sigma(3 1)= 0.00000000E+00
|
|
sigma(3 3)= 7.24484942E-05 sigma(2 1)= 0.00000000E+00
|
|
|
|
-Cartesian components of stress tensor (GPa) [Pressure= -2.1315E+00 GPa]
|
|
- sigma(1 1)= 2.13150793E+00 sigma(3 2)= 0.00000000E+00
|
|
- sigma(2 2)= 2.13150793E+00 sigma(3 1)= 0.00000000E+00
|
|
- sigma(3 3)= 2.13150793E+00 sigma(2 1)= 0.00000000E+00
|
|
|
|
================================================================================
|
|
== DATASET 2 ==================================================================
|
|
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 2, }
|
|
dimensions: {natom: 2, nkpt: 2, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
|
|
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
|
|
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
|
|
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
|
|
...
|
|
|
|
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
|
|
|
|
Exchange-correlation functional for the present dataset will be:
|
|
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
|
|
Citation for XC functional:
|
|
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 0.0000000 5.1315533 5.1315533 G(1)= -0.0974364 0.0974364 0.0974364
|
|
R(2)= 5.1315533 0.0000000 5.1315533 G(2)= 0.0974364 -0.0974364 0.0974364
|
|
R(3)= 5.1315533 5.1315533 0.0000000 G(3)= 0.0974364 0.0974364 -0.0974364
|
|
Unit cell volume ucvol= 2.7025674E+02 bohr^3
|
|
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
|
|
|
|
Coarse grid specifications (used for wave-functions):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
|
|
ecut(hartree)= 5.000 => boxcut(ratio)= 2.19031
|
|
|
|
Fine grid specifications (used for densities):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
|
|
ecut(hartree)= 10.000 => boxcut(ratio)= 2.32318
|
|
|
|
getcut : COMMENT -
|
|
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
|
|
is sufficient for exact treatment of convolution.
|
|
Such a large boxcut is a waste : you could raise ecut
|
|
e.g. ecut= 13.492877 Hartrees makes boxcut=2
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
================================================================================
|
|
prteigrs : about to open file t81o_DS2_EIG
|
|
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
|
|
1.38E-23 3.81E-23 6.31E-23 9.53E-23 1.17E-23 6.73E-23 4.38E-23 6.89E-23
|
|
7.33E-23 2.67E-18 3.39E-18
|
|
-2.4168E-01 1.9691E-01 1.9691E-01 1.9691E-01 2.8994E-01 2.8994E-01
|
|
2.8994E-01 3.1903E-01 4.8017E-01 4.8834E-01 4.8834E-01
|
|
Non-SCF case, kpt 2 ( 0.25000 0.00000 0.00000), residuals and eigenvalues=
|
|
2.88E-23 4.65E-23 1.40E-23 4.91E-23 1.84E-23 5.49E-23 3.38E-23 2.32E-23
|
|
2.35E-23 6.06E-23 9.30E-20
|
|
-2.1247E-01 5.2216E-02 1.6849E-01 1.6849E-01 2.6992E-01 3.2463E-01
|
|
3.2463E-01 4.4671E-01 4.6323E-01 4.6323E-01 5.2036E-01
|
|
|
|
|
|
--- !ResultsGS
|
|
iteration_state: {dtset: 2, }
|
|
comment : Summary of ground state results
|
|
lattice_vectors:
|
|
- [ 0.0000000, 5.1315533, 5.1315533, ]
|
|
- [ 5.1315533, 0.0000000, 5.1315533, ]
|
|
- [ 5.1315533, 5.1315533, 0.0000000, ]
|
|
lattice_lengths: [ 7.25711, 7.25711, 7.25711, ]
|
|
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
|
|
lattice_volume: 2.7025674E+02
|
|
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.525E-23, diffor: 0.000E+00, }
|
|
etotal : -8.02553463E+00
|
|
entropy : 0.00000000E+00
|
|
fermie : 1.96909125E-01
|
|
cartesian_stress_tensor: null
|
|
pressure_GPa: null
|
|
xred :
|
|
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
|
|
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
|
|
cartesian_forces: null
|
|
force_length_stats: {min: null, max: null, mean: null, }
|
|
...
|
|
|
|
Integrated electronic density in atomic spheres:
|
|
------------------------------------------------
|
|
Atom Sphere_radius Integrated_density
|
|
1 2.00437 1.77583302
|
|
2 2.00437 1.77583302
|
|
|
|
PAW TEST:
|
|
==== Compensation charge inside spheres ============
|
|
Compensation charge over spherical meshes = -0.236110568547652
|
|
|
|
==== Results concerning PAW augmentation regions ====
|
|
|
|
Total pseudopotential strength Dij (hartree):
|
|
Atom # 1
|
|
0.46696 -1.46040 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-1.46040 3.55320 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00000 0.00000 0.00000 0.00000 0.00031 ...
|
|
0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00031 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00031 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00086 ...
|
|
0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 -0.00086 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 -0.00086 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00031 0.00000 0.00000 -0.00086 0.00000 -0.01192 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00031 0.00000 0.00000 -0.00086 0.00000 -0.01192 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01193 0.00000 ...
|
|
0.00000 0.00000 0.00031 0.00000 0.00000 -0.00086 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01192 ...
|
|
... only 12 components have been written...
|
|
Atom # 2
|
|
0.46696 -1.46040 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-1.46040 3.55320 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00031 ...
|
|
0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 -0.00031 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.11629 0.00000 0.00000 -0.36677 0.00000 -0.00031 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00000 0.00000 0.00000 0.00000 0.00086 ...
|
|
0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00086 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.36677 0.00000 0.00000 1.19836 0.00000 0.00086 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.00031 0.00000 0.00000 0.00086 0.00000 -0.01192 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.00031 0.00000 0.00000 0.00086 0.00000 -0.01192 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01193 0.00000 ...
|
|
0.00000 0.00000 -0.00031 0.00000 0.00000 0.00086 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01192 ...
|
|
... only 12 components have been written...
|
|
|
|
|
|
Augmentation waves occupancies Rhoij:
|
|
Atom # 1
|
|
1.44777 -0.01972 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.01972 0.00038 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.00000 0.00000 0.00000 0.00000 0.14476 ...
|
|
0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.14476 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.14476 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00116 ...
|
|
0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00116 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00116 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.14476 0.00000 0.00000 0.00116 0.00000 0.03412 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.14476 0.00000 0.00000 0.00116 0.00000 0.03412 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01044 0.00000 ...
|
|
0.00000 0.00000 0.14476 0.00000 0.00000 0.00116 0.00000 0.00000 0.00000 0.00000 0.00000 0.03412 ...
|
|
... only 12 components have been written...
|
|
Atom # 2
|
|
1.44777 -0.01972 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.01972 0.00038 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 0.00000 0.00000 0.00000 0.00000 -0.14476 ...
|
|
0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 -0.14476 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.09266 0.00000 0.00000 0.00874 0.00000 -0.14476 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00116 ...
|
|
0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 -0.00116 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00874 0.00000 0.00000 0.00011 0.00000 -0.00116 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.14476 0.00000 0.00000 -0.00116 0.00000 0.03412 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.14476 0.00000 0.00000 -0.00116 0.00000 0.03412 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01044 0.00000 ...
|
|
0.00000 0.00000 -0.14476 0.00000 0.00000 -0.00116 0.00000 0.00000 0.00000 0.00000 0.00000 0.03412 ...
|
|
... only 12 components have been written...
|
|
|
|
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 42.626E-24; max= 95.252E-24
|
|
reduced coordinates (array xred) for 2 atoms
|
|
0.000000000000 0.000000000000 0.000000000000
|
|
0.250000000000 0.250000000000 0.250000000000
|
|
|
|
cartesian coordinates (angstrom) at end:
|
|
1 0.00000000000000 0.00000000000000 0.00000000000000
|
|
2 1.35775053519535 1.35775053519535 1.35775053519535
|
|
length scales= 10.263106673193 10.263106673193 10.263106673193 bohr
|
|
= 5.431002140781 5.431002140781 5.431002140781 angstroms
|
|
prteigrs : about to open file t81o_DS2_EIG
|
|
Eigenvalues (hartree) for nkpt= 2 k points:
|
|
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
-0.24168 0.19691 0.19691 0.19691 0.28994 0.28994 0.28994 0.31903
|
|
0.48017 0.48834 0.48834
|
|
kpt# 2, nband= 11, wtk= 1.00000, kpt= 0.2500 0.0000 0.0000 (reduced coord)
|
|
-0.21247 0.05222 0.16849 0.16849 0.26992 0.32463 0.32463 0.44671
|
|
0.46323 0.46323 0.52036
|
|
|
|
================================================================================
|
|
== DATASET 3 ==================================================================
|
|
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 3, }
|
|
dimensions: {natom: 2, nkpt: 2, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
|
|
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
|
|
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
|
|
meta: {optdriver: 1, rfelfd: 2, }
|
|
...
|
|
|
|
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
|
|
|
|
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
|
|
|
|
Exchange-correlation functional for the present dataset will be:
|
|
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
|
|
Citation for XC functional:
|
|
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 0.0000000 5.1315533 5.1315533 G(1)= -0.0974364 0.0974364 0.0974364
|
|
R(2)= 5.1315533 0.0000000 5.1315533 G(2)= 0.0974364 -0.0974364 0.0974364
|
|
R(3)= 5.1315533 5.1315533 0.0000000 G(3)= 0.0974364 0.0974364 -0.0974364
|
|
Unit cell volume ucvol= 2.7025674E+02 bohr^3
|
|
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
|
|
|
|
Coarse grid specifications (used for wave-functions):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
|
|
ecut(hartree)= 5.000 => boxcut(ratio)= 2.19031
|
|
|
|
Fine grid specifications (used for densities):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
|
|
ecut(hartree)= 10.000 => boxcut(ratio)= 2.32318
|
|
|
|
getcut : COMMENT -
|
|
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
|
|
is sufficient for exact treatment of convolution.
|
|
Such a large boxcut is a waste : you could raise ecut
|
|
e.g. ecut= 13.492877 Hartrees makes boxcut=2
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
==> initialize data related to q vector <==
|
|
|
|
The list of irreducible perturbations for this q vector is:
|
|
1) idir= 1 ipert= 3
|
|
2) idir= 2 ipert= 3
|
|
3) idir= 3 ipert= 3
|
|
|
|
================================================================================
|
|
|
|
--------------------------------------------------------------------------------
|
|
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
|
|
Perturbation : derivative vs k along direction 1
|
|
|
|
dfpt_looppert : COMMENT -
|
|
In a d/dk calculation, iscf is set to -3 automatically.
|
|
The set of symmetries contains only one element for this perturbation.
|
|
symkpt : not enough symmetry to change the number of k points.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Initialisation of the first-order wave-functions :
|
|
ireadwf= 0
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 3, }
|
|
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolwfr: 1.00E-22, }
|
|
...
|
|
|
|
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
|
|
-ETOT 1 -20.285789857971 -2.029E+01 5.529E-03 0.000E+00
|
|
ETOT 2 -20.285877249695 -8.739E-05 2.585E-07 0.000E+00
|
|
ETOT 3 -20.285877263701 -1.401E-08 2.538E-10 0.000E+00
|
|
ETOT 4 -20.285877263706 -5.119E-12 1.663E-14 0.000E+00
|
|
ETOT 5 -20.285877263706 -3.553E-15 4.899E-17 0.000E+00
|
|
ETOT 6 -20.285877263706 0.000E+00 3.041E-21 0.000E+00
|
|
ETOT 7 -20.285877263706 0.000E+00 8.637E-23 0.000E+00
|
|
|
|
At SCF step 7 max residual= 8.64E-23 < tolwfr= 1.00E-22 =>converged.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 33.097E-24; max= 86.368E-24
|
|
dfpt_looppert : ek2= 1.7990502263E+01
|
|
f-sum rule ratio= 2.5678722263E+00
|
|
prteigrs : about to open file t81t_1WF1_EIG
|
|
Expectation of eigenvalue derivatives (hartree) for nkpt= 2 k points:
|
|
(in case of degenerate eigenvalues, averaged derivative)
|
|
kpt# 1, nband= 11, wtk= 0.50000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
|
|
0.00000 0.00000 0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
Nine components of 2nd-order total energy (hartree) are
|
|
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
|
|
kin0= 7.70131481E-01 eigvalue= -6.77710422E-02 local= -3.39638423E-01
|
|
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
|
|
kin1= -4.61973111E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
|
|
7,8,9: eventually, occupation + non-local contributions
|
|
edocc= 1.97602064E+01 enl0= 1.36025596E-01 enl1= 5.65247986E+00
|
|
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
|
|
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
|
|
erelax= -2.02858773E+01
|
|
11 Contribution from 1st-order change of wavefunctions overlap
|
|
eovl1 = -1.34616431E-02
|
|
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
|
|
2DEtotal= -0.2028587726E+02 Ha. Also 2DEtotal= -0.552006793160E+03 eV
|
|
( non-var. 2DEtotal : -2.0285877264E+01 Ha)
|
|
|
|
--------------------------------------------------------------------------------
|
|
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
|
|
Perturbation : derivative vs k along direction 2
|
|
The set of symmetries contains only one element for this perturbation.
|
|
symkpt : not enough symmetry to change the number of k points.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Initialisation of the first-order wave-functions :
|
|
ireadwf= 0
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 3, }
|
|
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolwfr: 1.00E-22, }
|
|
...
|
|
|
|
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
|
|
-ETOT 1 -30.247353120613 -3.025E+01 4.407E-03 0.000E+00
|
|
ETOT 2 -30.247486464824 -1.333E-04 1.084E-06 0.000E+00
|
|
ETOT 3 -30.247486479596 -1.477E-08 2.485E-09 0.000E+00
|
|
ETOT 4 -30.247486479601 -4.999E-12 3.920E-12 0.000E+00
|
|
ETOT 5 -30.247486479601 0.000E+00 9.986E-15 0.000E+00
|
|
ETOT 6 -30.247486479601 1.066E-14 1.796E-17 0.000E+00
|
|
ETOT 7 -30.247486479601 -7.105E-15 4.707E-20 0.000E+00
|
|
ETOT 8 -30.247486479601 -2.842E-14 9.054E-23 0.000E+00
|
|
|
|
At SCF step 8 max residual= 9.05E-23 < tolwfr= 1.00E-22 =>converged.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 33.575E-24; max= 90.539E-24
|
|
dfpt_looppert : ek2= 1.7990502263E+01
|
|
f-sum rule ratio= 3.8389721031E+00
|
|
prteigrs : about to open file t81t_1WF1_EIG
|
|
Expectation of eigenvalue derivatives (hartree) for nkpt= 2 k points:
|
|
(in case of degenerate eigenvalues, averaged derivative)
|
|
kpt# 1, nband= 11, wtk= 0.50000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
|
|
0.00000 -0.00000 -0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
Nine components of 2nd-order total energy (hartree) are
|
|
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
|
|
kin0= 6.87669401E-01 eigvalue= -4.95734451E-02 local= -4.03837020E-01
|
|
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
|
|
kin1= -6.90650363E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
|
|
7,8,9: eventually, occupation + non-local contributions
|
|
edocc= 2.97903051E+01 enl0= 2.12650477E-01 enl1= 8.58033528E+00
|
|
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
|
|
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
|
|
erelax= -3.02474865E+01
|
|
11 Contribution from 1st-order change of wavefunctions overlap
|
|
eovl1 = -5.13596485E-03
|
|
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
|
|
2DEtotal= -0.3024748648E+02 Ha. Also 2DEtotal= -0.823075965397E+03 eV
|
|
( non-var. 2DEtotal : -3.0247486480E+01 Ha)
|
|
|
|
--------------------------------------------------------------------------------
|
|
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
|
|
Perturbation : derivative vs k along direction 3
|
|
The set of symmetries contains only one element for this perturbation.
|
|
symkpt : not enough symmetry to change the number of k points.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Initialisation of the first-order wave-functions :
|
|
ireadwf= 0
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 3, }
|
|
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolwfr: 1.00E-22, }
|
|
...
|
|
|
|
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
|
|
-ETOT 1 -30.247339752041 -3.025E+01 5.529E-03 0.000E+00
|
|
ETOT 2 -30.247486468357 -1.467E-04 1.084E-06 0.000E+00
|
|
ETOT 3 -30.247486479416 -1.106E-08 2.485E-09 0.000E+00
|
|
ETOT 4 -30.247486479421 -4.746E-12 3.920E-12 0.000E+00
|
|
ETOT 5 -30.247486479421 -7.105E-15 9.986E-15 0.000E+00
|
|
ETOT 6 -30.247486479421 -7.105E-15 1.796E-17 0.000E+00
|
|
ETOT 7 -30.247486479421 0.000E+00 4.707E-20 0.000E+00
|
|
ETOT 8 -30.247486479421 -7.105E-15 9.054E-23 0.000E+00
|
|
|
|
At SCF step 8 max residual= 9.05E-23 < tolwfr= 1.00E-22 =>converged.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 40.371E-24; max= 90.539E-24
|
|
dfpt_looppert : ek2= 1.7990502263E+01
|
|
f-sum rule ratio= 3.8389721030E+00
|
|
prteigrs : about to open file t81t_1WF1_EIG
|
|
Expectation of eigenvalue derivatives (hartree) for nkpt= 2 k points:
|
|
(in case of degenerate eigenvalues, averaged derivative)
|
|
kpt# 1, nband= 11, wtk= 0.50000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
|
|
0.00000 0.00000 0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
Nine components of 2nd-order total energy (hartree) are
|
|
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
|
|
kin0= 6.87669401E-01 eigvalue= -4.95734451E-02 local= -4.03837020E-01
|
|
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
|
|
kin1= -6.90650363E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
|
|
7,8,9: eventually, occupation + non-local contributions
|
|
edocc= 2.97903051E+01 enl0= 2.12650477E-01 enl1= 8.58033528E+00
|
|
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
|
|
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
|
|
erelax= -3.02474865E+01
|
|
11 Contribution from 1st-order change of wavefunctions overlap
|
|
eovl1 = -5.13596485E-03
|
|
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
|
|
2DEtotal= -0.3024748648E+02 Ha. Also 2DEtotal= -0.823075965392E+03 eV
|
|
( non-var. 2DEtotal : -3.0247486479E+01 Ha)
|
|
|
|
CALCULATION OF EFFECTIVE MASSES
|
|
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
|
|
|
|
K-point ( 0.000, 0.000, 0.000) | band = 8
|
|
Effective mass tensor:
|
|
0.1724424053 0.0000000000 -0.0000000000
|
|
0.0000000000 0.1724424053 -0.0000000000
|
|
-0.0000000000 -0.0000000000 0.1724424053
|
|
Effective mass tensor eigenvalues:
|
|
0.1724424053 0.1724424053 0.1724424054
|
|
Angular average effective mass 1/(<1/m>)= 0.1724424053
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= 0.1724424053
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 0.1724424053
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> 0.1724424053
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> 0.1724424053
|
|
|
|
K-point ( 0.250, 0.000, 0.000) | band = 8
|
|
Effective mass tensor:
|
|
-0.2096039197 0.1768030017 0.1768030017
|
|
0.1768030017 -0.2096039196 -0.1768030017
|
|
0.1768030017 -0.1768030017 -0.2096039196
|
|
Effective mass tensor eigenvalues:
|
|
-0.5632099230 -0.0328009179 -0.0328009179
|
|
Angular average effective mass 1/(<1/m>)= -0.0478091914
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.0613377659
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.0478091914
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.0478091914
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -0.0478091914
|
|
|
|
END OF EFFECTIVE MASSES SECTION
|
|
|
|
================================================================================
|
|
|
|
---- first-order wavefunction calculations are completed ----
|
|
|
|
|
|
respfn : d/dk was computed, but no 2DTE, so no DDB output.
|
|
|
|
================================================================================
|
|
== DATASET 4 ==================================================================
|
|
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 4, }
|
|
dimensions: {natom: 2, nkpt: 2, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
|
|
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
|
|
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
|
|
meta: {optdriver: 1, rfelfd: 2, }
|
|
...
|
|
|
|
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
|
|
|
|
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
|
|
|
|
Exchange-correlation functional for the present dataset will be:
|
|
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
|
|
Citation for XC functional:
|
|
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 0.0000000 5.1315533 5.1315533 G(1)= -0.0974364 0.0974364 0.0974364
|
|
R(2)= 5.1315533 0.0000000 5.1315533 G(2)= 0.0974364 -0.0974364 0.0974364
|
|
R(3)= 5.1315533 5.1315533 0.0000000 G(3)= 0.0974364 0.0974364 -0.0974364
|
|
Unit cell volume ucvol= 2.7025674E+02 bohr^3
|
|
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
|
|
|
|
Coarse grid specifications (used for wave-functions):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
|
|
ecut(hartree)= 5.000 => boxcut(ratio)= 2.19031
|
|
|
|
Fine grid specifications (used for densities):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
|
|
ecut(hartree)= 10.000 => boxcut(ratio)= 2.32318
|
|
|
|
getcut : COMMENT -
|
|
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
|
|
is sufficient for exact treatment of convolution.
|
|
Such a large boxcut is a waste : you could raise ecut
|
|
e.g. ecut= 13.492877 Hartrees makes boxcut=2
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
==> initialize data related to q vector <==
|
|
|
|
The list of irreducible perturbations for this q vector is:
|
|
1) idir= 1 ipert= 3
|
|
2) idir= 2 ipert= 3
|
|
3) idir= 3 ipert= 3
|
|
|
|
================================================================================
|
|
|
|
--------------------------------------------------------------------------------
|
|
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
|
|
Perturbation : derivative vs k along direction 1
|
|
|
|
dfpt_looppert : COMMENT -
|
|
In a d/dk calculation, iscf is set to -3 automatically.
|
|
The set of symmetries contains only one element for this perturbation.
|
|
symkpt : not enough symmetry to change the number of k points.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Initialisation of the first-order wave-functions :
|
|
ireadwf= 0
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 4, }
|
|
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolwfr: 1.00E-22, }
|
|
...
|
|
|
|
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
|
|
-ETOT 1 -20.285789857971 -2.029E+01 5.529E-03 0.000E+00
|
|
ETOT 2 -20.285877249695 -8.739E-05 2.585E-07 0.000E+00
|
|
ETOT 3 -20.285877263701 -1.401E-08 2.538E-10 0.000E+00
|
|
ETOT 4 -20.285877263706 -5.119E-12 1.663E-14 0.000E+00
|
|
ETOT 5 -20.285877263706 -3.553E-15 4.899E-17 0.000E+00
|
|
ETOT 6 -20.285877263706 0.000E+00 3.041E-21 0.000E+00
|
|
ETOT 7 -20.285877263706 0.000E+00 8.637E-23 0.000E+00
|
|
|
|
At SCF step 7 max residual= 8.64E-23 < tolwfr= 1.00E-22 =>converged.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 33.097E-24; max= 86.368E-24
|
|
dfpt_looppert : ek2= 1.7990502263E+01
|
|
f-sum rule ratio= 2.5678722263E+00
|
|
prteigrs : about to open file t81t_1WF1_EIG
|
|
Expectation of eigenvalue derivatives (hartree) for nkpt= 2 k points:
|
|
(in case of degenerate eigenvalues, averaged derivative)
|
|
kpt# 1, nband= 11, wtk= 0.50000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
|
|
0.00000 0.00000 0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
Nine components of 2nd-order total energy (hartree) are
|
|
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
|
|
kin0= 7.70131481E-01 eigvalue= -6.77710422E-02 local= -3.39638423E-01
|
|
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
|
|
kin1= -4.61973111E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
|
|
7,8,9: eventually, occupation + non-local contributions
|
|
edocc= 1.97602064E+01 enl0= 1.36025596E-01 enl1= 5.65247986E+00
|
|
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
|
|
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
|
|
erelax= -2.02858773E+01
|
|
11 Contribution from 1st-order change of wavefunctions overlap
|
|
eovl1 = -1.34616431E-02
|
|
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
|
|
2DEtotal= -0.2028587726E+02 Ha. Also 2DEtotal= -0.552006793160E+03 eV
|
|
( non-var. 2DEtotal : -2.0285877264E+01 Ha)
|
|
|
|
--------------------------------------------------------------------------------
|
|
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
|
|
Perturbation : derivative vs k along direction 2
|
|
The set of symmetries contains only one element for this perturbation.
|
|
symkpt : not enough symmetry to change the number of k points.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Initialisation of the first-order wave-functions :
|
|
ireadwf= 0
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 4, }
|
|
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolwfr: 1.00E-22, }
|
|
...
|
|
|
|
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
|
|
-ETOT 1 -30.247353120613 -3.025E+01 4.407E-03 0.000E+00
|
|
ETOT 2 -30.247486464824 -1.333E-04 1.084E-06 0.000E+00
|
|
ETOT 3 -30.247486479596 -1.477E-08 2.485E-09 0.000E+00
|
|
ETOT 4 -30.247486479601 -4.999E-12 3.920E-12 0.000E+00
|
|
ETOT 5 -30.247486479601 0.000E+00 9.986E-15 0.000E+00
|
|
ETOT 6 -30.247486479601 1.066E-14 1.796E-17 0.000E+00
|
|
ETOT 7 -30.247486479601 -7.105E-15 4.707E-20 0.000E+00
|
|
ETOT 8 -30.247486479601 -2.842E-14 9.054E-23 0.000E+00
|
|
|
|
At SCF step 8 max residual= 9.05E-23 < tolwfr= 1.00E-22 =>converged.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 33.575E-24; max= 90.539E-24
|
|
dfpt_looppert : ek2= 1.7990502263E+01
|
|
f-sum rule ratio= 3.8389721031E+00
|
|
prteigrs : about to open file t81t_1WF1_EIG
|
|
Expectation of eigenvalue derivatives (hartree) for nkpt= 2 k points:
|
|
(in case of degenerate eigenvalues, averaged derivative)
|
|
kpt# 1, nband= 11, wtk= 0.50000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
|
|
0.00000 -0.00000 -0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
Nine components of 2nd-order total energy (hartree) are
|
|
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
|
|
kin0= 6.87669401E-01 eigvalue= -4.95734451E-02 local= -4.03837020E-01
|
|
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
|
|
kin1= -6.90650363E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
|
|
7,8,9: eventually, occupation + non-local contributions
|
|
edocc= 2.97903051E+01 enl0= 2.12650477E-01 enl1= 8.58033528E+00
|
|
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
|
|
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
|
|
erelax= -3.02474865E+01
|
|
11 Contribution from 1st-order change of wavefunctions overlap
|
|
eovl1 = -5.13596485E-03
|
|
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
|
|
2DEtotal= -0.3024748648E+02 Ha. Also 2DEtotal= -0.823075965397E+03 eV
|
|
( non-var. 2DEtotal : -3.0247486480E+01 Ha)
|
|
|
|
--------------------------------------------------------------------------------
|
|
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
|
|
Perturbation : derivative vs k along direction 3
|
|
The set of symmetries contains only one element for this perturbation.
|
|
symkpt : not enough symmetry to change the number of k points.
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
Initialisation of the first-order wave-functions :
|
|
ireadwf= 0
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 4, }
|
|
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
|
|
tolerances: {tolwfr: 1.00E-22, }
|
|
...
|
|
|
|
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
|
|
-ETOT 1 -30.247339752041 -3.025E+01 5.529E-03 0.000E+00
|
|
ETOT 2 -30.247486468357 -1.467E-04 1.084E-06 0.000E+00
|
|
ETOT 3 -30.247486479416 -1.106E-08 2.485E-09 0.000E+00
|
|
ETOT 4 -30.247486479421 -4.746E-12 3.920E-12 0.000E+00
|
|
ETOT 5 -30.247486479421 -7.105E-15 9.986E-15 0.000E+00
|
|
ETOT 6 -30.247486479421 -7.105E-15 1.796E-17 0.000E+00
|
|
ETOT 7 -30.247486479421 0.000E+00 4.707E-20 0.000E+00
|
|
ETOT 8 -30.247486479421 -7.105E-15 9.054E-23 0.000E+00
|
|
|
|
At SCF step 8 max residual= 9.05E-23 < tolwfr= 1.00E-22 =>converged.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 40.371E-24; max= 90.539E-24
|
|
dfpt_looppert : ek2= 1.7990502263E+01
|
|
f-sum rule ratio= 3.8389721030E+00
|
|
prteigrs : about to open file t81t_1WF1_EIG
|
|
Expectation of eigenvalue derivatives (hartree) for nkpt= 2 k points:
|
|
(in case of degenerate eigenvalues, averaged derivative)
|
|
kpt# 1, nband= 11, wtk= 0.50000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
|
|
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
|
|
0.00000 0.00000 0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
Nine components of 2nd-order total energy (hartree) are
|
|
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
|
|
kin0= 6.87669401E-01 eigvalue= -4.95734451E-02 local= -4.03837020E-01
|
|
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
|
|
kin1= -6.90650363E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
|
|
7,8,9: eventually, occupation + non-local contributions
|
|
edocc= 2.97903051E+01 enl0= 2.12650477E-01 enl1= 8.58033528E+00
|
|
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
|
|
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
|
|
erelax= -3.02474865E+01
|
|
11 Contribution from 1st-order change of wavefunctions overlap
|
|
eovl1 = -5.13596485E-03
|
|
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
|
|
2DEtotal= -0.3024748648E+02 Ha. Also 2DEtotal= -0.823075965392E+03 eV
|
|
( non-var. 2DEtotal : -3.0247486479E+01 Ha)
|
|
|
|
CALCULATION OF EFFECTIVE MASSES
|
|
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
|
|
|
|
K-point ( 0.000, 0.000, 0.000) | band = 1
|
|
Effective mass tensor:
|
|
1.1601043154 0.0000000000 0.0000000000
|
|
0.0000000000 1.1601043154 -0.0000000000
|
|
0.0000000000 -0.0000000000 1.1601043154
|
|
Effective mass tensor eigenvalues:
|
|
1.1601043154 1.1601043154 1.1601043154
|
|
Angular average effective mass 1/(<1/m>)= 1.1601043154
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= 1.1601043154
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 1.1601043154
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> 1.1601043154
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> 1.1601043154
|
|
|
|
COMMENTS:
|
|
- At k-point ( 0.000, 0.000, 0.000), bands 2 through 4
|
|
are DEGENERATE (effective mass tensor is therefore not defined).
|
|
See Section IIIB Eqs. (67)-(70) and Appendix E of PRB 93 205147 (2016).
|
|
- Angular average effective mass for Frohlich model is to be averaged over degenerate bands. See later.
|
|
- Associated theta integrals calculated with ntheta= 100 points.
|
|
|
|
K-point ( 0.000, 0.000, 0.000) | band = 2
|
|
Transport equivalent effective mass tensor:
|
|
-0.1349013719 0.0000000000 0.0000000000
|
|
0.0000000000 -0.1349013711 -0.0000000000
|
|
0.0000000000 -0.0000000000 -0.1349013689
|
|
Transport equivalent effective mass tensor eigenvalues:
|
|
-0.1349013719 -0.1349013711 -0.1349013689
|
|
Angular average effective mass 1/(<1/m>)= -0.1111184102
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.1124625941
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.1688509446
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.1688509446
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -0.1688509446
|
|
|
|
K-point ( 0.000, 0.000, 0.000) | band = 3
|
|
Transport equivalent effective mass tensor:
|
|
-0.5730753780 0.0000000000 -0.0000000000
|
|
0.0000000000 -0.5729034949 -0.0000000000
|
|
-0.0000000000 -0.0000000000 -0.5732381960
|
|
Transport equivalent effective mass tensor eigenvalues:
|
|
-0.5732381960 -0.5730753780 -0.5729034949
|
|
Angular average effective mass 1/(<1/m>)= -0.3044853585
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.3128379385
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2595025911
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.2595025911
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -0.2595025911
|
|
|
|
K-point ( 0.000, 0.000, 0.000) | band = 4
|
|
Transport equivalent effective mass tensor:
|
|
-10.3314555548 0.0000000005 0.0000000005
|
|
0.0000000005 -10.3316661631 -0.0000000013
|
|
0.0000000005 -0.0000000013 -10.3279047287
|
|
Transport equivalent effective mass tensor eigenvalues:
|
|
-10.3316661631 -10.3314555548 -10.3279047287
|
|
Angular average effective mass 1/(<1/m>)= -0.7430544605
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.9284306303
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2595025911
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.2595025911
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> -0.2595025911
|
|
|
|
Angular average effective mass for Frohlich model, averaged over degenerate bands.
|
|
Value of (<<m**0.5>>)**2 = 3.836665E-01
|
|
Absolute Value of <<m**0.5>> = 6.194082E-01
|
|
|
|
|
|
K-point ( 0.250, 0.000, 0.000) | band = 5
|
|
Effective mass tensor:
|
|
1.1624046261 -1.0249511079 -1.0249511079
|
|
-1.0249511079 1.1624046261 1.0249511079
|
|
-1.0249511079 1.0249511079 1.1624046261
|
|
Effective mass tensor eigenvalues:
|
|
0.1374535182 0.1374535182 3.2123068419
|
|
Angular average effective mass 1/(<1/m>)= 0.2018614852
|
|
Angular average effective mass for Frohlich model (<m**0.5>)**2= 0.2665509766
|
|
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
|
|
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 0.2018614852
|
|
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> 0.2018614852
|
|
3: 0.000000 0.000000 1.000000 / 0.707107 0.707107 0.000000 -> 0.2018614852
|
|
|
|
END OF EFFECTIVE MASSES SECTION
|
|
|
|
================================================================================
|
|
|
|
---- first-order wavefunction calculations are completed ----
|
|
|
|
|
|
respfn : d/dk was computed, but no 2DTE, so no DDB output.
|
|
|
|
== END DATASET(S) ==============================================================
|
|
================================================================================
|
|
|
|
-outvars: echo values of variables after computation --------
|
|
acell 1.0263106673E+01 1.0263106673E+01 1.0263106673E+01 Bohr
|
|
amu 2.80855000E+01
|
|
ecut 5.00000000E+00 Hartree
|
|
etotal1 -8.0255346297E+00
|
|
etotal3 -3.0247486479E+01
|
|
etotal4 -3.0247486479E+01
|
|
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
- fftalg 512
|
|
getden1 0
|
|
getden2 1
|
|
getden3 1
|
|
getden4 1
|
|
getwfk1 0
|
|
getwfk2 0
|
|
getwfk3 2
|
|
getwfk4 2
|
|
iscf1 17
|
|
iscf2 -2
|
|
iscf3 7
|
|
iscf4 7
|
|
istwfk1 2 0 0 0 3 0 0 0 0 0
|
|
0 0 0 0 0 0 0 0 0 0
|
|
7 0 0 0 0 0 0 0 0
|
|
istwfk2 2 0
|
|
istwfk3 1 0
|
|
istwfk4 1 0
|
|
ixc 7
|
|
jdtset 1 2 3 4
|
|
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
1.25000000E-01 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
3.75000000E-01 0.00000000E+00 0.00000000E+00
|
|
5.00000000E-01 0.00000000E+00 0.00000000E+00
|
|
1.25000000E-01 1.25000000E-01 0.00000000E+00
|
|
2.50000000E-01 1.25000000E-01 0.00000000E+00
|
|
3.75000000E-01 1.25000000E-01 0.00000000E+00
|
|
5.00000000E-01 1.25000000E-01 0.00000000E+00
|
|
-3.75000000E-01 1.25000000E-01 0.00000000E+00
|
|
-2.50000000E-01 1.25000000E-01 0.00000000E+00
|
|
-1.25000000E-01 1.25000000E-01 0.00000000E+00
|
|
2.50000000E-01 2.50000000E-01 0.00000000E+00
|
|
3.75000000E-01 2.50000000E-01 0.00000000E+00
|
|
5.00000000E-01 2.50000000E-01 0.00000000E+00
|
|
-3.75000000E-01 2.50000000E-01 0.00000000E+00
|
|
-2.50000000E-01 2.50000000E-01 0.00000000E+00
|
|
3.75000000E-01 3.75000000E-01 0.00000000E+00
|
|
5.00000000E-01 3.75000000E-01 0.00000000E+00
|
|
-3.75000000E-01 3.75000000E-01 0.00000000E+00
|
|
5.00000000E-01 5.00000000E-01 0.00000000E+00
|
|
3.75000000E-01 2.50000000E-01 1.25000000E-01
|
|
5.00000000E-01 2.50000000E-01 1.25000000E-01
|
|
-3.75000000E-01 2.50000000E-01 1.25000000E-01
|
|
5.00000000E-01 3.75000000E-01 1.25000000E-01
|
|
-3.75000000E-01 3.75000000E-01 1.25000000E-01
|
|
-2.50000000E-01 3.75000000E-01 1.25000000E-01
|
|
-3.75000000E-01 5.00000000E-01 1.25000000E-01
|
|
-2.50000000E-01 5.00000000E-01 2.50000000E-01
|
|
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
kpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
2.50000000E-01 0.00000000E+00 0.00000000E+00
|
|
kptopt1 1
|
|
kptopt2 0
|
|
kptopt3 0
|
|
kptopt4 0
|
|
kptrlatt 8 0 0 0 8 0 0 0 8
|
|
kptrlen1 5.80568986E+01
|
|
kptrlen2 3.00000000E+01
|
|
kptrlen3 3.00000000E+01
|
|
kptrlen4 3.00000000E+01
|
|
P mkmem1 29
|
|
P mkmem2 2
|
|
P mkmem3 2
|
|
P mkmem4 2
|
|
P mkqmem1 29
|
|
P mkqmem2 2
|
|
P mkqmem3 2
|
|
P mkqmem4 2
|
|
P mk1mem1 29
|
|
P mk1mem2 2
|
|
P mk1mem3 2
|
|
P mk1mem4 2
|
|
natom 2
|
|
nband1 4
|
|
nband2 11
|
|
nband3 11
|
|
nband4 11
|
|
nbdbuf1 0
|
|
nbdbuf2 2
|
|
nbdbuf3 0
|
|
nbdbuf4 0
|
|
ndtset 4
|
|
ngfft 16 16 16
|
|
ngfftdg 24 24 24
|
|
nkpt1 29
|
|
nkpt2 2
|
|
nkpt3 2
|
|
nkpt4 2
|
|
nstep 100
|
|
nsym 48
|
|
ntypat 1
|
|
occ1 2.000000 2.000000 2.000000 2.000000
|
|
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000
|
|
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000
|
|
optdriver1 0
|
|
optdriver2 0
|
|
optdriver3 1
|
|
optdriver4 1
|
|
pawecutdg 1.00000000E+01 Hartree
|
|
prtpot1 0
|
|
prtpot2 0
|
|
prtpot3 1
|
|
prtpot4 1
|
|
rfelfd1 0
|
|
rfelfd2 0
|
|
rfelfd3 2
|
|
rfelfd4 2
|
|
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
|
|
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
|
|
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
|
|
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
|
|
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
shiftk3 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
shiftk4 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
spgroup 227
|
|
strten1 7.2448494167E-05 7.2448494167E-05 7.2448494167E-05
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
|
|
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
|
|
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
|
|
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
|
|
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
|
|
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
|
|
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
|
|
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
|
|
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
|
|
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
|
|
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
|
|
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
|
|
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
|
|
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
|
|
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
|
|
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
|
|
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
|
|
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
|
|
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
|
|
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
|
|
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
|
|
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
|
|
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
|
|
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
|
|
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
|
|
tolvrs1 1.00000000E-18
|
|
tolvrs2 0.00000000E+00
|
|
tolvrs3 0.00000000E+00
|
|
tolvrs4 0.00000000E+00
|
|
tolwfr1 0.00000000E+00
|
|
tolwfr2 1.00000000E-22
|
|
tolwfr3 1.00000000E-22
|
|
tolwfr4 1.00000000E-22
|
|
typat 1 1
|
|
useylm 1
|
|
wtk1 0.00195 0.01563 0.01563 0.01563 0.00781 0.01172
|
|
0.04688 0.04688 0.04688 0.04688 0.04688 0.02344
|
|
0.01172 0.04688 0.04688 0.04688 0.02344 0.01172
|
|
0.04688 0.02344 0.00586 0.04688 0.09375 0.04688
|
|
0.04688 0.09375 0.04688 0.02344 0.01172
|
|
wtk2 1.00000 1.00000
|
|
wtk3 0.50000 0.50000
|
|
wtk4 0.50000 0.50000
|
|
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
1.3577505352E+00 1.3577505352E+00 1.3577505352E+00
|
|
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
2.5657766683E+00 2.5657766683E+00 2.5657766683E+00
|
|
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
|
|
znucl 14.00000
|
|
|
|
================================================================================
|
|
|
|
|
|
- Timing analysis has been suppressed with timopt=0
|
|
|
|
|
|
|
|
================================================================================
|
|
|
|
Suggested references for the acknowledgment of ABINIT usage.
|
|
|
|
The users of ABINIT have little formal obligations with respect to the ABINIT group
|
|
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
|
|
However, it is common practice in the scientific literature,
|
|
to acknowledge the efforts of people that have made the research possible.
|
|
In this spirit, please find below suggested citations of work written by ABINIT developers,
|
|
corresponding to implementations inside of ABINIT that you have used in the present run.
|
|
Note also that it will be of great value to readers of publications presenting these results,
|
|
to read papers enabling them to understand the theoretical formalism and details
|
|
of the ABINIT implementation.
|
|
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
|
|
-
|
|
- [1] Precise effective masses from density functional perturbation theory
|
|
- J. Laflamme Janssen, Y. Gillet, S. Ponce, A. Martin, M. Torrent, and X. Gonze. Phys. Rev. B 93, 205147 (2016)
|
|
- Comment: in case the DFPT prediction of effective masses is used.
|
|
- Strong suggestion to cite this paper in your publications.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#laflamme2016
|
|
-
|
|
- [2] Projector augmented-wave formulation of response to strain and electric-field perturbation
|
|
- within density functional perturbation theory
|
|
- A. Martin, M. Torrent, and R. Caracas. Phys. Rev. B 99, 094112 (2019)
|
|
- Comment: in case Elastic constants, Born Effective charges, piezoelectric tensor
|
|
- are computed within the Projector Augmented-Wave (PAW) approach.
|
|
- Strong suggestion to cite this paper in your publications.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#martin2019
|
|
-
|
|
- [3] Projector augmented-wave approach to density-functional perturbation theory.
|
|
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 73, 235101 (2006).
|
|
- Comparison between projector augmented-wave and ultrasoft pseudopotential formalisms
|
|
- at the density-functional perturbation theory level.
|
|
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 78, 035105 (2008).
|
|
- Comment: to be cited in case the computation of response function with PAW, i.e. (rfphon=1 or rfelfd=1) and usepaw=1.
|
|
- Strong suggestion to cite these papers.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#audouze2006,
|
|
- and https://docs.abinit.org/theory/bibliography/#audouze2008
|
|
-
|
|
- [4] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
|
|
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
|
|
- Comment: PAW calculations. Strong suggestion to cite this paper.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
|
|
-
|
|
- [5] The Abinit project: Impact, environment and recent developments.
|
|
- Computer Phys. Comm. 248, 107042 (2020).
|
|
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
|
|
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
|
|
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
|
|
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
|
|
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
|
|
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
|
|
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
|
|
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
|
|
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
|
|
- Comment: the fifth generic paper describing the ABINIT project.
|
|
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
|
|
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
|
|
- The licence allows the authors to put it on the Web.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
|
|
-
|
|
- [6] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
|
|
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
|
|
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
|
|
-
|
|
- [7] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
|
|
- interatomic force constants from density-functional perturbation theory,
|
|
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
|
|
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
|
|
-
|
|
- [8] ABINIT: Overview, and focus on selected capabilities
|
|
- J. Chem. Phys. 152, 124102 (2020).
|
|
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
|
|
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
|
|
- G.Brunin, D.Caliste, M.Cote,
|
|
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
|
|
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
|
|
- A.Martin,
|
|
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
|
|
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
|
|
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
|
|
- Comment: a global overview of ABINIT, with focus on selected capabilities .
|
|
- Note that a version of this paper, that is not formatted for J. Chem. Phys
|
|
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
|
|
- The licence allows the authors to put it on the Web.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
|
|
-
|
|
- [9] Recent developments in the ABINIT software package.
|
|
- Computer Phys. Comm. 205, 106 (2016).
|
|
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
|
|
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
|
|
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
|
|
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
|
|
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
|
|
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
|
|
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
|
|
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
|
|
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
|
|
- B.Xu, A.Zhou, J.W.Zwanziger.
|
|
- Comment: the fourth generic paper describing the ABINIT project.
|
|
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
|
|
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
|
|
- The licence allows the authors to put it on the Web.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
|
|
-
|
|
- Proc. 0 individual time (sec): cpu= 2.4 wall= 2.5
|
|
|
|
================================================================================
|
|
|
|
Calculation completed.
|
|
.Delivered 17 WARNINGs and 29 COMMENTs to log file.
|
|
+Overall time at end (sec) : cpu= 2.4 wall= 2.5
|