abinit/tests/v7/Refs/t80.abo

2968 lines
145 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h13 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t80/t80.abi
- output file -> t80.abo
- root for input files -> t80i
- root for output files -> t80o
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 8
mpw = 165 nfft = 4096 nkpt = 8
================================================================================
P This job should need less than 1.828 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.123 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
mpw = 85 nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.193 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.016 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 2
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 169
nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.433 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.030 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 2
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 169
nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.433 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.030 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 5 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 2
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 169
nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.433 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.030 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 6 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 2
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 169
nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.433 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.030 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 7 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 7 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 2
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 169
nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.433 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.030 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 8 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 8.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
mpw = 162 nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.218 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 9 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 9 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 2
mgfft = 16 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 11 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 162
nfft = 4096 nkpt = 1
================================================================================
P This job should need less than 1.424 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.029 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0691904599E+01 1.0691904599E+01 1.0691904599E+01 Bohr
amu 7.26100000E+01
ecut 5.00000000E+00 Hartree
ecutsm 1.00000000E-01 Hartree
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 1
getden5 1
getden6 1
getden7 1
getden8 1
getden9 1
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 0
getwfk9 8
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
iscf5 7
iscf6 7
iscf7 7
iscf8 -2
iscf9 7
istwfk1 2 0 3 0 0 0 7 0
istwfk2 2
istwfk3 1
istwfk4 1
istwfk5 1
istwfk6 1
istwfk7 1
ixc 7
jdtset 1 2 3 4 5 6 7 8 9
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 2.50000000E-01
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt7 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt8 2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt9 2.50000000E-01 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 0
kptopt3 0
kptopt4 0
kptopt5 0
kptopt6 0
kptopt7 0
kptopt8 0
kptopt9 0
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen1 3.02412730E+01
kptrlen2 3.00000000E+01
kptrlen3 3.00000000E+01
kptrlen4 3.00000000E+01
kptrlen5 3.00000000E+01
kptrlen6 3.00000000E+01
kptrlen7 3.00000000E+01
kptrlen8 3.00000000E+01
kptrlen9 3.00000000E+01
P mkmem1 8
P mkmem2 1
P mkmem3 1
P mkmem4 1
P mkmem5 1
P mkmem6 1
P mkmem7 1
P mkmem8 1
P mkmem9 1
P mkqmem1 8
P mkqmem2 1
P mkqmem3 1
P mkqmem4 1
P mkqmem5 1
P mkqmem6 1
P mkqmem7 1
P mkqmem8 1
P mkqmem9 1
P mk1mem1 8
P mk1mem2 1
P mk1mem3 1
P mk1mem4 1
P mk1mem5 1
P mk1mem6 1
P mk1mem7 1
P mk1mem8 1
P mk1mem9 1
natom 2
nband1 6
nband2 11
nband3 11
nband4 11
nband5 11
nband6 11
nband7 11
nband8 11
nband9 11
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
nbdbuf7 0
nbdbuf8 2
nbdbuf9 0
ndtset 9
ngfft 16 16 16
nkpt1 8
nkpt2 1
nkpt3 1
nkpt4 1
nkpt5 1
nkpt6 1
nkpt7 1
nkpt8 1
nkpt9 1
nstep 100
nsym 48
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ7 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ9 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 1
optdriver6 1
optdriver7 1
optdriver8 0
optdriver9 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 1
prtpot6 1
prtpot7 1
prtpot8 0
prtpot9 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 2
rfelfd5 2
rfelfd6 2
rfelfd7 2
rfelfd8 0
rfelfd9 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk3 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk4 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk5 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk6 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk7 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk8 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk9 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs1 1.00000000E-25
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolvrs5 0.00000000E+00
tolvrs6 0.00000000E+00
tolvrs7 0.00000000E+00
tolvrs8 0.00000000E+00
tolvrs9 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-25
tolwfr3 1.00000000E-25
tolwfr4 1.00000000E-25
tolwfr5 1.00000000E-25
tolwfr6 1.00000000E-25
tolwfr7 1.00000000E-25
tolwfr8 1.00000000E-25
tolwfr9 1.00000000E-25
typat 1 1
useylm1 0
useylm2 0
useylm3 1
useylm4 1
useylm5 1
useylm6 1
useylm7 1
useylm8 0
useylm9 1
wtk1 0.01563 0.12500 0.06250 0.09375 0.37500 0.18750
0.04688 0.09375
wtk2 1.00000
wtk3 1.00000
wtk4 1.00000
wtk5 1.00000
wtk6 1.00000
wtk7 1.00000
wtk8 1.00000
wtk9 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4144780576E+00 1.4144780576E+00 1.4144780576E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6729761498E+00 2.6729761498E+00 2.6729761498E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 32.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 9.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 8, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 165, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- Germanium, fhi98PP : Troullier Martins-type, LDA PW+x, l=1 local
- 32.00000 4.00000 140700 znucl, zion, pspdat
6 7 1 1 529 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.024700 amesh (Hamman grid)
pspatm : epsatm= 21.87011590
--- l ekb(1:nproj) -->
0 8.047411
pspatm: atomic psp has been read and splines computed
3.49921854E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 162.766 162.716
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-25, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -7.9646620692394 -7.965E+00 3.794E-02 4.016E-01
ETOT 2 -7.9662146389136 -1.553E-03 3.787E-04 1.408E-02
ETOT 3 -7.9662315005200 -1.686E-05 2.381E-04 2.967E-04
ETOT 4 -7.9662316889821 -1.885E-07 1.546E-04 9.145E-06
ETOT 5 -7.9662316974392 -8.457E-09 7.948E-05 2.385E-08
ETOT 6 -7.9662316974733 -3.417E-11 4.224E-05 6.131E-11
ETOT 7 -7.9662316974734 -5.329E-14 2.251E-05 1.567E-12
ETOT 8 -7.9662316974733 3.464E-14 2.648E-05 1.909E-15
ETOT 9 -7.9662316974734 -4.352E-14 5.947E-06 1.836E-18
ETOT 10 -7.9662316974734 -2.665E-14 1.966E-05 2.528E-21
ETOT 11 -7.9662316974733 1.315E-13 2.179E-06 6.569E-24
ETOT 12 -7.9662316974733 -1.776E-14 1.330E-05 2.568E-26
At SCF step 12 vres2 = 2.57E-26 < tolvrs= 1.00E-25 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.03283330E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.03283330E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.03283330E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3459523, 5.3459523, ]
- [ 5.3459523, 0.0000000, 5.3459523, ]
- [ 5.3459523, 5.3459523, 0.0000000, ]
lattice_lengths: [ 7.56032, 7.56032, 7.56032, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0556614E+02
convergence: {deltae: -1.776E-14, res2: 2.568E-26, residm: 1.330E-05, diffor: null, }
etotal : -7.96623170E+00
entropy : 0.00000000E+00
fermie : 5.00548063E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.03283330E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.03283330E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.03283330E-04, ]
pressure_GPa: -3.0387E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ge]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Ge]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.55556113
2 2.00000 1.55556113
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.312E-08; max= 13.305E-06
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.41447805755609 1.41447805755609 1.41447805755609
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.691904599028 10.691904599028 10.691904599028 bohr
= 5.657912230224 5.657912230224 5.657912230224 angstroms
prteigrs : about to open file t80o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.05005 Average Vxc (hartree)= -0.32082
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 6, wtk= 0.01563, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.40687 0.05005 0.05005 0.05005 0.07469 0.14271
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.85475968600674E+00
hartree : 5.85770684154843E-01
xc : -2.32774419449122E+00
Ewald energy : -8.06112399413874E+00
psp_core : 1.14515911316270E+00
local_psp : -2.20308469396243E+00
non_local_psp : 4.00317017948068E-02
total_energy : -7.96623169747330E+00
total_energy_eV : -2.16772188637645E+02
band_energy : -1.17259753227097E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.03283330E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.03283330E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.03283330E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -3.0387E+00 GPa]
- sigma(1 1)= 3.03869998E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 3.03869998E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 3.03869998E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 85, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t80o_DS2_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
9.02E-26 8.60E-26 8.49E-26 6.42E-26 1.55E-26 5.53E-27 6.03E-26 4.64E-27
6.01E-26 9.21E-16 3.74E-17
-4.0687E-01 5.0055E-02 5.0055E-02 5.0055E-02 7.4687E-02 1.4271E-01
1.4271E-01 1.4271E-01 2.9754E-01 3.6710E-01 3.6710E-01
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3459523, 5.3459523, ]
- [ 5.3459523, 0.0000000, 5.3459523, ]
- [ 5.3459523, 5.3459523, 0.0000000, ]
lattice_lengths: [ 7.56032, 7.56032, 7.56032, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0556614E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.018E-26, diffor: 0.000E+00, }
etotal : -7.96623170E+00
entropy : 0.00000000E+00
fermie : 5.00548063E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ge]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Ge]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.55556113
2 2.00000 1.55556113
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 52.371E-27; max= 90.181E-27
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.41447805755609 1.41447805755609 1.41447805755609
length scales= 10.691904599028 10.691904599028 10.691904599028 bohr
= 5.657912230224 5.657912230224 5.657912230224 angstroms
prteigrs : about to open file t80o_DS2_EIG
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.40687 0.05005 0.05005 0.05005 0.07469 0.14271 0.14271 0.14271
0.29754 0.36710 0.36710
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 169, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- Germanium, fhi98PP : Troullier Martins-type, LDA PW+x, l=1 local
- 32.00000 4.00000 140700 znucl, zion, pspdat
6 7 1 1 529 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.024700 amesh (Hamman grid)
pspatm : epsatm= 21.87011590
--- l ekb(1:nproj) -->
0 8.047411
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342236391 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379186591 -3.695E-05 4.123E-07 0.000E+00
ETOT 3 -86.300379190367 -3.777E-09 4.820E-09 0.000E+00
ETOT 4 -86.300379190368 -5.116E-13 8.287E-13 0.000E+00
ETOT 5 -86.300379190368 -2.842E-14 6.620E-14 0.000E+00
ETOT 6 -86.300379190368 9.948E-14 1.627E-17 0.000E+00
ETOT 7 -86.300379190368 -4.263E-14 1.831E-18 0.000E+00
ETOT 8 -86.300379190368 1.421E-14 3.802E-22 0.000E+00
ETOT 9 -86.300379190368 1.421E-14 6.498E-23 0.000E+00
ETOT 10 -86.300379190368 -1.421E-14 4.280E-26 0.000E+00
At SCF step 10 max residual= 4.28E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.771E-27; max= 42.802E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759610E-01 eigvalue= -2.58400783E-03 local= -1.07474168E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274541E+04 eV
( non-var. 2DEtotal : -8.6300379190E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300325047289 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379187606 -5.414E-05 4.074E-07 0.000E+00
ETOT 3 -86.300379191906 -4.299E-09 8.796E-10 0.000E+00
ETOT 4 -86.300379191906 -6.253E-13 7.726E-13 0.000E+00
ETOT 5 -86.300379191906 3.837E-13 1.038E-14 0.000E+00
ETOT 6 -86.300379191906 -3.126E-13 5.376E-18 0.000E+00
ETOT 7 -86.300379191906 1.421E-13 1.258E-18 0.000E+00
ETOT 8 -86.300379191906 0.000E+00 7.511E-22 0.000E+00
ETOT 9 -86.300379191906 -1.421E-14 2.141E-22 0.000E+00
ETOT 10 -86.300379191906 1.421E-14 1.392E-25 0.000E+00
ETOT 11 -86.300379191906 0.000E+00 6.643E-26 0.000E+00
At SCF step 11 max residual= 6.64E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.433E-27; max= 66.428E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759605E-01 eigvalue= -2.58400771E-03 local= -1.07474166E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274545E+04 eV
( non-var. 2DEtotal : -8.6300379192E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342235140 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379180435 -3.695E-05 4.165E-07 0.000E+00
ETOT 3 -86.300379184211 -3.776E-09 3.624E-09 0.000E+00
ETOT 4 -86.300379184211 -4.690E-13 1.818E-12 0.000E+00
ETOT 5 -86.300379184211 0.000E+00 1.833E-13 0.000E+00
ETOT 6 -86.300379184211 5.684E-14 9.579E-17 0.000E+00
ETOT 7 -86.300379184211 -2.842E-14 1.378E-17 0.000E+00
ETOT 8 -86.300379184211 0.000E+00 7.642E-21 0.000E+00
ETOT 9 -86.300379184211 2.842E-14 1.086E-21 0.000E+00
ETOT 10 -86.300379184211 -4.263E-14 6.102E-25 0.000E+00
ETOT 11 -86.300379184211 0.000E+00 9.188E-26 0.000E+00
At SCF step 11 max residual= 9.19E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.840E-27; max= 91.877E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711230E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759608E-01 eigvalue= -2.58400779E-03 local= -1.07474167E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037918E+02 Ha. Also 2DEtotal= -0.234835274525E+04 eV
( non-var. 2DEtotal : -8.6300379184E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
K-point ( 0.000, 0.000, 0.000) | band = 5
Effective mass tensor:
0.0332030643 0.0000000000 -0.0000000000
0.0000000000 0.0332030643 -0.0000000000
-0.0000000000 -0.0000000000 0.0332030643
Effective mass tensor eigenvalues:
0.0332030643 0.0332030643 0.0332030643
Angular average effective mass 1/(<1/m>)= 0.0332030643
Angular average effective mass for Frohlich model (<m**0.5>)**2= 0.0332030643
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 0.0332030643
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 243.8544339704 0.0000000000
1 2 121.9272169767 0.0000000000
1 3 121.9272169937 0.0000000000
2 1 121.9272169767 0.0000000000
2 2 243.8544339858 0.0000000000
2 3 121.9272170091 0.0000000000
3 1 121.9272169937 0.0000000000
3 2 121.9272170091 0.0000000000
3 3 243.8544340028 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 169, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342236391 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379186591 -3.695E-05 4.123E-07 0.000E+00
ETOT 3 -86.300379190367 -3.777E-09 4.820E-09 0.000E+00
ETOT 4 -86.300379190368 -5.116E-13 8.287E-13 0.000E+00
ETOT 5 -86.300379190368 -2.842E-14 6.620E-14 0.000E+00
ETOT 6 -86.300379190368 9.948E-14 1.627E-17 0.000E+00
ETOT 7 -86.300379190368 -4.263E-14 1.831E-18 0.000E+00
ETOT 8 -86.300379190368 1.421E-14 3.802E-22 0.000E+00
ETOT 9 -86.300379190368 1.421E-14 6.498E-23 0.000E+00
ETOT 10 -86.300379190368 -1.421E-14 4.280E-26 0.000E+00
At SCF step 10 max residual= 4.28E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.771E-27; max= 42.802E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759610E-01 eigvalue= -2.58400783E-03 local= -1.07474168E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274541E+04 eV
( non-var. 2DEtotal : -8.6300379190E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300325047289 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379187606 -5.414E-05 4.074E-07 0.000E+00
ETOT 3 -86.300379191906 -4.299E-09 8.796E-10 0.000E+00
ETOT 4 -86.300379191906 -6.253E-13 7.726E-13 0.000E+00
ETOT 5 -86.300379191906 3.837E-13 1.038E-14 0.000E+00
ETOT 6 -86.300379191906 -3.126E-13 5.376E-18 0.000E+00
ETOT 7 -86.300379191906 1.421E-13 1.258E-18 0.000E+00
ETOT 8 -86.300379191906 0.000E+00 7.511E-22 0.000E+00
ETOT 9 -86.300379191906 -1.421E-14 2.141E-22 0.000E+00
ETOT 10 -86.300379191906 1.421E-14 1.392E-25 0.000E+00
ETOT 11 -86.300379191906 0.000E+00 6.643E-26 0.000E+00
At SCF step 11 max residual= 6.64E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.433E-27; max= 66.428E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759605E-01 eigvalue= -2.58400771E-03 local= -1.07474166E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274545E+04 eV
( non-var. 2DEtotal : -8.6300379192E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342235140 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379180435 -3.695E-05 4.165E-07 0.000E+00
ETOT 3 -86.300379184211 -3.776E-09 3.624E-09 0.000E+00
ETOT 4 -86.300379184211 -4.690E-13 1.818E-12 0.000E+00
ETOT 5 -86.300379184211 0.000E+00 1.833E-13 0.000E+00
ETOT 6 -86.300379184211 5.684E-14 9.579E-17 0.000E+00
ETOT 7 -86.300379184211 -2.842E-14 1.378E-17 0.000E+00
ETOT 8 -86.300379184211 0.000E+00 7.642E-21 0.000E+00
ETOT 9 -86.300379184211 2.842E-14 1.086E-21 0.000E+00
ETOT 10 -86.300379184211 -4.263E-14 6.102E-25 0.000E+00
ETOT 11 -86.300379184211 0.000E+00 9.188E-26 0.000E+00
At SCF step 11 max residual= 9.19E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.840E-27; max= 91.877E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711230E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759608E-01 eigvalue= -2.58400779E-03 local= -1.07474167E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037918E+02 Ha. Also 2DEtotal= -0.234835274525E+04 eV
( non-var. 2DEtotal : -8.6300379184E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
K-point ( 0.000, 0.000, 0.000) | band = 5
Effective mass tensor:
0.0332030643 0.0000000000
0.0000000000 0.0332030643
Effective mass tensor eigenvalues:
0.0332030643 0.0332030643
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 0.0332030643
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> 0.0332030643
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 243.8544339704 0.0000000000
1 2 121.9272169767 0.0000000000
1 3 121.9272169937 0.0000000000
2 1 121.9272169767 0.0000000000
2 2 243.8544339858 0.0000000000
2 3 121.9272170091 0.0000000000
3 1 121.9272169937 0.0000000000
3 2 121.9272170091 0.0000000000
3 3 243.8544340028 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 169, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342236391 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379186591 -3.695E-05 4.123E-07 0.000E+00
ETOT 3 -86.300379190367 -3.777E-09 4.820E-09 0.000E+00
ETOT 4 -86.300379190368 -5.116E-13 8.287E-13 0.000E+00
ETOT 5 -86.300379190368 -2.842E-14 6.620E-14 0.000E+00
ETOT 6 -86.300379190368 9.948E-14 1.627E-17 0.000E+00
ETOT 7 -86.300379190368 -4.263E-14 1.831E-18 0.000E+00
ETOT 8 -86.300379190368 1.421E-14 3.802E-22 0.000E+00
ETOT 9 -86.300379190368 1.421E-14 6.498E-23 0.000E+00
ETOT 10 -86.300379190368 -1.421E-14 4.280E-26 0.000E+00
At SCF step 10 max residual= 4.28E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.771E-27; max= 42.802E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759610E-01 eigvalue= -2.58400783E-03 local= -1.07474168E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274541E+04 eV
( non-var. 2DEtotal : -8.6300379190E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300325047289 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379187606 -5.414E-05 4.074E-07 0.000E+00
ETOT 3 -86.300379191906 -4.299E-09 8.796E-10 0.000E+00
ETOT 4 -86.300379191906 -6.253E-13 7.726E-13 0.000E+00
ETOT 5 -86.300379191906 3.837E-13 1.038E-14 0.000E+00
ETOT 6 -86.300379191906 -3.126E-13 5.376E-18 0.000E+00
ETOT 7 -86.300379191906 1.421E-13 1.258E-18 0.000E+00
ETOT 8 -86.300379191906 0.000E+00 7.511E-22 0.000E+00
ETOT 9 -86.300379191906 -1.421E-14 2.141E-22 0.000E+00
ETOT 10 -86.300379191906 1.421E-14 1.392E-25 0.000E+00
ETOT 11 -86.300379191906 0.000E+00 6.643E-26 0.000E+00
At SCF step 11 max residual= 6.64E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.433E-27; max= 66.428E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759605E-01 eigvalue= -2.58400771E-03 local= -1.07474166E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274545E+04 eV
( non-var. 2DEtotal : -8.6300379192E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342235140 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379180435 -3.695E-05 4.165E-07 0.000E+00
ETOT 3 -86.300379184211 -3.776E-09 3.624E-09 0.000E+00
ETOT 4 -86.300379184211 -4.690E-13 1.818E-12 0.000E+00
ETOT 5 -86.300379184211 0.000E+00 1.833E-13 0.000E+00
ETOT 6 -86.300379184211 5.684E-14 9.579E-17 0.000E+00
ETOT 7 -86.300379184211 -2.842E-14 1.378E-17 0.000E+00
ETOT 8 -86.300379184211 0.000E+00 7.642E-21 0.000E+00
ETOT 9 -86.300379184211 2.842E-14 1.086E-21 0.000E+00
ETOT 10 -86.300379184211 -4.263E-14 6.102E-25 0.000E+00
ETOT 11 -86.300379184211 0.000E+00 9.188E-26 0.000E+00
At SCF step 11 max residual= 9.19E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.840E-27; max= 91.877E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711230E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759608E-01 eigvalue= -2.58400779E-03 local= -1.07474167E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037918E+02 Ha. Also 2DEtotal= -0.234835274525E+04 eV
( non-var. 2DEtotal : -8.6300379184E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
COMMENTS:
- At k-point ( 0.000, 0.000, 0.000), bands 2 through 4
are DEGENERATE (effective mass tensor is therefore not defined).
See Section IIIB Eqs. (67)-(70) and Appendix E of PRB 93 205147 (2016).
- Angular average effective mass for Frohlich model is to be averaged over degenerate bands. See later.
- Associated theta integrals calculated with ntheta= 100 points.
K-point ( 0.000, 0.000, 0.000) | band = 2
Transport equivalent effective mass tensor:
-0.0306073442 -0.0000000000 0.0000000000
-0.0000000000 -0.0306073442 0.0000000000
0.0000000000 0.0000000000 -0.0306073442
Transport equivalent effective mass tensor eigenvalues:
-0.0306073442 -0.0306073442 -0.0306073442
Angular average effective mass 1/(<1/m>)= -0.0301363110
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.0301685451
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.0330796770
2: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> -0.0285367709
3: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> -0.0295513595
K-point ( 0.000, 0.000, 0.000) | band = 3
Transport equivalent effective mass tensor:
-0.5171761528 -0.0000000000 -0.0000000000
-0.0000000000 -0.5170371011 -0.0000000001
-0.0000000000 -0.0000000001 -0.5173612401
Transport equivalent effective mass tensor eigenvalues:
-0.5173612401 -0.5171761528 -0.5170371011
Angular average effective mass 1/(<1/m>)= -0.2836731539
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.2908133565
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2441591321
2: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> -0.5919063318
3: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> -0.2441591321
K-point ( 0.000, 0.000, 0.000) | band = 4
Transport equivalent effective mass tensor:
-8.1623821725 0.0000000004 -0.0000000004
0.0000000004 -8.1625680967 0.0000000010
-0.0000000004 0.0000000010 -8.1595897335
Transport equivalent effective mass tensor eigenvalues:
-8.1625680967 -8.1623821725 -8.1595897335
Angular average effective mass 1/(<1/m>)= -0.5835413152
Angular average effective mass for Frohlich model (<m**0.5>)**2= -0.7235660659
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2441591321
2: 0.577350 0.577350 0.577350 / 0.577350 0.577350 0.577350 -> -0.5919063322
3: 0.707107 0.707107 0.000000 / 0.408248 0.408248 0.816497 -> -2.0561747480
Angular average effective mass for Frohlich model, averaged over degenerate bands.
Value of (<<m**0.5>>)**2 = 2.716456E-01
Absolute Value of <<m**0.5>> = 5.211963E-01
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 243.8544339704 0.0000000000
1 2 121.9272169767 0.0000000000
1 3 121.9272169937 0.0000000000
2 1 121.9272169767 0.0000000000
2 2 243.8544339858 0.0000000000
2 3 121.9272170091 0.0000000000
3 1 121.9272169937 0.0000000000
3 2 121.9272170091 0.0000000000
3 3 243.8544340028 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 169, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342236391 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379186591 -3.695E-05 4.123E-07 0.000E+00
ETOT 3 -86.300379190367 -3.777E-09 4.820E-09 0.000E+00
ETOT 4 -86.300379190368 -5.116E-13 8.287E-13 0.000E+00
ETOT 5 -86.300379190368 -2.842E-14 6.620E-14 0.000E+00
ETOT 6 -86.300379190368 9.948E-14 1.627E-17 0.000E+00
ETOT 7 -86.300379190368 -4.263E-14 1.831E-18 0.000E+00
ETOT 8 -86.300379190368 1.421E-14 3.802E-22 0.000E+00
ETOT 9 -86.300379190368 1.421E-14 6.498E-23 0.000E+00
ETOT 10 -86.300379190368 -1.421E-14 4.280E-26 0.000E+00
At SCF step 10 max residual= 4.28E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.771E-27; max= 42.802E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759610E-01 eigvalue= -2.58400783E-03 local= -1.07474168E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274541E+04 eV
( non-var. 2DEtotal : -8.6300379190E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300325047289 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379187606 -5.414E-05 4.074E-07 0.000E+00
ETOT 3 -86.300379191906 -4.299E-09 8.796E-10 0.000E+00
ETOT 4 -86.300379191906 -6.253E-13 7.726E-13 0.000E+00
ETOT 5 -86.300379191906 3.837E-13 1.038E-14 0.000E+00
ETOT 6 -86.300379191906 -3.126E-13 5.376E-18 0.000E+00
ETOT 7 -86.300379191906 1.421E-13 1.258E-18 0.000E+00
ETOT 8 -86.300379191906 0.000E+00 7.511E-22 0.000E+00
ETOT 9 -86.300379191906 -1.421E-14 2.141E-22 0.000E+00
ETOT 10 -86.300379191906 1.421E-14 1.392E-25 0.000E+00
ETOT 11 -86.300379191906 0.000E+00 6.643E-26 0.000E+00
At SCF step 11 max residual= 6.64E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.433E-27; max= 66.428E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759605E-01 eigvalue= -2.58400771E-03 local= -1.07474166E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274545E+04 eV
( non-var. 2DEtotal : -8.6300379192E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342235140 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379180435 -3.695E-05 4.165E-07 0.000E+00
ETOT 3 -86.300379184211 -3.776E-09 3.624E-09 0.000E+00
ETOT 4 -86.300379184211 -4.690E-13 1.818E-12 0.000E+00
ETOT 5 -86.300379184211 0.000E+00 1.833E-13 0.000E+00
ETOT 6 -86.300379184211 5.684E-14 9.579E-17 0.000E+00
ETOT 7 -86.300379184211 -2.842E-14 1.378E-17 0.000E+00
ETOT 8 -86.300379184211 0.000E+00 7.642E-21 0.000E+00
ETOT 9 -86.300379184211 2.842E-14 1.086E-21 0.000E+00
ETOT 10 -86.300379184211 -4.263E-14 6.102E-25 0.000E+00
ETOT 11 -86.300379184211 0.000E+00 9.188E-26 0.000E+00
At SCF step 11 max residual= 9.19E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.840E-27; max= 91.877E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711230E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759608E-01 eigvalue= -2.58400779E-03 local= -1.07474167E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037918E+02 Ha. Also 2DEtotal= -0.234835274525E+04 eV
( non-var. 2DEtotal : -8.6300379184E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
COMMENTS:
- At k-point ( 0.000, 0.000, 0.000), bands 2 through 4
are DEGENERATE (effective mass tensor is therefore not defined).
- Also, 2D requested (perpendicular to Z axis).
See Section IIIB and Appendix F, Eqs. (F12)-(F14) of PRB 93 205147 (2016).
- Associated theta integrals calculated with ntheta= 100 points.
K-point ( 0.000, 0.000, 0.000) | band = 2
Transport equivalent effective mass tensor:
-0.0311628267 -0.0000000000
-0.0000000000 -0.0311628267
Transport equivalent effective mass tensor eigenvalues:
-0.0311628267 -0.0311628267
Scaling of transport tensor (Eq. (FXX)) = 1.0063733362
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.0330796770
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.0330796770
K-point ( 0.000, 0.000, 0.000) | band = 3
Transport equivalent effective mass tensor:
-0.2441591321 0.0000000000
0.0000000000 -0.2441591321
Transport equivalent effective mass tensor eigenvalues:
-0.2441591321 -0.2441591321
Scaling of transport tensor (Eq. (FXX)) = 1.0000000000
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2441591321
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.2441591320
K-point ( 0.000, 0.000, 0.000) | band = 4
Transport equivalent effective mass tensor:
-0.4471840731 -0.0000000000
-0.0000000000 -0.4471840731
Transport equivalent effective mass tensor eigenvalues:
-0.4471840731 -0.4471840731
Scaling of transport tensor (Eq. (FXX)) = 3.4224242865
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2441591321
2: 0.000000 1.000000 0.000000 / 0.707107 0.000000 0.707107 -> -0.2441591321
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 243.8544339704 0.0000000000
1 2 121.9272169767 0.0000000000
1 3 121.9272169937 0.0000000000
2 1 121.9272169767 0.0000000000
2 2 243.8544339858 0.0000000000
2 3 121.9272170091 0.0000000000
3 1 121.9272169937 0.0000000000
3 2 121.9272170091 0.0000000000
3 3 243.8544340028 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 169, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 7, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342236391 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379186591 -3.695E-05 4.123E-07 0.000E+00
ETOT 3 -86.300379190367 -3.777E-09 4.820E-09 0.000E+00
ETOT 4 -86.300379190368 -5.116E-13 8.287E-13 0.000E+00
ETOT 5 -86.300379190368 -2.842E-14 6.620E-14 0.000E+00
ETOT 6 -86.300379190368 9.948E-14 1.627E-17 0.000E+00
ETOT 7 -86.300379190368 -4.263E-14 1.831E-18 0.000E+00
ETOT 8 -86.300379190368 1.421E-14 3.802E-22 0.000E+00
ETOT 9 -86.300379190368 1.421E-14 6.498E-23 0.000E+00
ETOT 10 -86.300379190368 -1.421E-14 4.280E-26 0.000E+00
At SCF step 10 max residual= 4.28E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.771E-27; max= 42.802E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759610E-01 eigvalue= -2.58400783E-03 local= -1.07474168E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274541E+04 eV
( non-var. 2DEtotal : -8.6300379190E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 7, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300325047289 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379187606 -5.414E-05 4.074E-07 0.000E+00
ETOT 3 -86.300379191906 -4.299E-09 8.796E-10 0.000E+00
ETOT 4 -86.300379191906 -6.253E-13 7.726E-13 0.000E+00
ETOT 5 -86.300379191906 3.837E-13 1.038E-14 0.000E+00
ETOT 6 -86.300379191906 -3.126E-13 5.376E-18 0.000E+00
ETOT 7 -86.300379191906 1.421E-13 1.258E-18 0.000E+00
ETOT 8 -86.300379191906 0.000E+00 7.511E-22 0.000E+00
ETOT 9 -86.300379191906 -1.421E-14 2.141E-22 0.000E+00
ETOT 10 -86.300379191906 1.421E-14 1.392E-25 0.000E+00
ETOT 11 -86.300379191906 0.000E+00 6.643E-26 0.000E+00
At SCF step 11 max residual= 6.64E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.433E-27; max= 66.428E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711231E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759605E-01 eigvalue= -2.58400771E-03 local= -1.07474166E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037919E+02 Ha. Also 2DEtotal= -0.234835274545E+04 eV
( non-var. 2DEtotal : -8.6300379192E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 7, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -86.300342235140 -8.630E+01 3.980E-02 0.000E+00
ETOT 2 -86.300379180435 -3.695E-05 4.165E-07 0.000E+00
ETOT 3 -86.300379184211 -3.776E-09 3.624E-09 0.000E+00
ETOT 4 -86.300379184211 -4.690E-13 1.818E-12 0.000E+00
ETOT 5 -86.300379184211 0.000E+00 1.833E-13 0.000E+00
ETOT 6 -86.300379184211 5.684E-14 9.579E-17 0.000E+00
ETOT 7 -86.300379184211 -2.842E-14 1.378E-17 0.000E+00
ETOT 8 -86.300379184211 0.000E+00 7.642E-21 0.000E+00
ETOT 9 -86.300379184211 2.842E-14 1.086E-21 0.000E+00
ETOT 10 -86.300379184211 -4.263E-14 6.102E-25 0.000E+00
ETOT 11 -86.300379184211 0.000E+00 9.188E-26 0.000E+00
At SCF step 11 max residual= 9.19E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.840E-27; max= 91.877E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.0036711230E+01 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.13759608E-01 eigvalue= -2.58400779E-03 local= -1.07474167E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.66372772E+02 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 8.58209177E+01 enl0= 1.75760028E-01 enl1= -6.22798616E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63003792E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8630037918E+02 Ha. Also 2DEtotal= -0.234835274525E+04 eV
( non-var. 2DEtotal : -8.6300379184E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
COMMENTS:
- At k-point ( 0.000, 0.000, 0.000), bands 2 through 4
are DEGENERATE.
- Also, 1D requested (parallel to X axis).
K-point ( 0.000, 0.000, 0.000) | band = 2
Effective mass tensor:
-0.0330796770
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.0330796770
K-point ( 0.000, 0.000, 0.000) | band = 3
Effective mass tensor:
-0.2441591321
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2441591321
K-point ( 0.000, 0.000, 0.000) | band = 4
Effective mass tensor:
-0.2441591321
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> -0.2441591321
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 243.8544339704 0.0000000000
1 2 121.9272169767 0.0000000000
1 3 121.9272169937 0.0000000000
2 1 121.9272169767 0.0000000000
2 2 243.8544339858 0.0000000000
2 3 121.9272170091 0.0000000000
3 1 121.9272169937 0.0000000000
3 2 121.9272170091 0.0000000000
3 3 243.8544340028 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 162, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- Germanium, fhi98PP : Troullier Martins-type, LDA PW+x, l=1 local
- 32.00000 4.00000 140700 znucl, zion, pspdat
6 7 1 1 529 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.024700 amesh (Hamman grid)
pspatm : epsatm= 21.87011590
--- l ekb(1:nproj) -->
0 8.047411
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t80o_DS8_EIG
Non-SCF case, kpt 1 ( 0.25000 0.00000 0.00000), residuals and eigenvalues=
8.60E-26 2.50E-26 4.44E-26 8.42E-26 5.04E-26 4.47E-26 4.35E-26 4.29E-26
8.57E-26 9.01E-26 6.15E-26
-3.7891E-01 -1.1200E-01 2.1300E-02 2.1300E-02 8.7085E-02 1.7950E-01
1.7950E-01 2.6502E-01 3.3537E-01 3.3537E-01 3.5164E-01
--- !ResultsGS
iteration_state: {dtset: 8, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3459523, 5.3459523, ]
- [ 5.3459523, 0.0000000, 5.3459523, ]
- [ 5.3459523, 5.3459523, 0.0000000, ]
lattice_lengths: [ 7.56032, 7.56032, 7.56032, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0556614E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 8.597E-26, diffor: 0.000E+00, }
etotal : -7.96623170E+00
entropy : 0.00000000E+00
fermie : 5.00548063E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ge]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Ge]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.55556113
2 2.00000 1.55556113
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 56.319E-27; max= 85.972E-27
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.41447805755609 1.41447805755609 1.41447805755609
length scales= 10.691904599028 10.691904599028 10.691904599028 bohr
= 5.657912230224 5.657912230224 5.657912230224 angstroms
prteigrs : about to open file t80o_DS8_EIG
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.2500 0.0000 0.0000 (reduced coord)
-0.37891 -0.11200 0.02130 0.02130 0.08708 0.17950 0.17950 0.26502
0.33537 0.33537 0.35164
================================================================================
== DATASET 9 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 9, }
dimensions: {natom: 2, nkpt: 1, mband: 11, nsppol: 1, nspinor: 1, nspden: 1, mpw: 162, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 8.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3459523 5.3459523 G(1)= -0.0935287 0.0935287 0.0935287
R(2)= 5.3459523 0.0000000 5.3459523 G(2)= 0.0935287 -0.0935287 0.0935287
R(3)= 5.3459523 5.3459523 0.0000000 G(3)= 0.0935287 0.0935287 -0.0935287
Unit cell volume ucvol= 3.0556614E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10247
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/32ge_lda.fhi
- Germanium, fhi98PP : Troullier Martins-type, LDA PW+x, l=1 local
- 32.00000 4.00000 140700 znucl, zion, pspdat
6 7 1 1 529 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.024700 amesh (Hamman grid)
pspatm : epsatm= 21.87011590
--- l ekb(1:nproj) -->
0 8.047411
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.327781320803 -1.033E+01 7.030E-02 0.000E+00
ETOT 2 -10.329110185964 -1.329E-03 2.292E-05 0.000E+00
ETOT 3 -10.329110244152 -5.819E-08 1.403E-07 0.000E+00
ETOT 4 -10.329110244162 -9.942E-12 4.364E-10 0.000E+00
ETOT 5 -10.329110244162 -5.329E-15 3.756E-12 0.000E+00
ETOT 6 -10.329110244162 5.329E-15 1.277E-14 0.000E+00
ETOT 7 -10.329110244162 0.000E+00 1.121E-16 0.000E+00
ETOT 8 -10.329110244162 -1.776E-15 3.984E-19 0.000E+00
ETOT 9 -10.329110244162 1.776E-15 3.503E-21 0.000E+00
ETOT 10 -10.329110244162 -1.776E-15 1.285E-23 0.000E+00
ETOT 11 -10.329110244162 0.000E+00 1.131E-25 0.000E+00
ETOT 12 -10.329110244162 3.553E-15 8.828E-26 0.000E+00
At SCF step 12 max residual= 8.83E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 35.186E-27; max= 88.282E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 1.2355383666E+00 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.2500 0.0000 0.0000 (reduced coord)
0.22250 -0.62729 -0.12474 -0.12474 -0.10485 0.09455 0.09455 0.67413
0.16212 0.16212 -0.11708
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.72834703E+00 eigvalue= 1.64177112E-01 local= -6.12987892E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.04808068E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 2.97248419E+00 enl0= 7.70898095E-02 enl1= -1.77413727E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.03291102E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1032911024E+02 Ha. Also 2DEtotal= -0.281069383786E+03 eV
( non-var. 2DEtotal : -1.0329110244E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -47.243859165296 -4.724E+01 2.380E-02 0.000E+00
ETOT 2 -47.247515470314 -3.656E-03 5.772E-05 0.000E+00
ETOT 3 -47.247516371317 -9.010E-07 2.644E-07 0.000E+00
ETOT 4 -47.247516371665 -3.482E-10 1.198E-09 0.000E+00
ETOT 5 -47.247516371665 -1.847E-13 1.080E-11 0.000E+00
ETOT 6 -47.247516371665 1.421E-14 6.582E-14 0.000E+00
ETOT 7 -47.247516371665 -2.132E-14 5.924E-16 0.000E+00
ETOT 8 -47.247516371665 -2.132E-14 3.744E-18 0.000E+00
ETOT 9 -47.247516371665 -1.421E-14 3.394E-20 0.000E+00
ETOT 10 -47.247516371665 7.105E-15 2.205E-22 0.000E+00
ETOT 11 -47.247516371665 -7.105E-15 2.021E-24 0.000E+00
ETOT 12 -47.247516371665 2.842E-14 9.847E-26 0.000E+00
At SCF step 12 max residual= 9.85E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 54.105E-27; max= 98.469E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 5.5939288960E+00 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.2500 0.0000 0.0000 (reduced coord)
-0.07417 0.20910 0.04158 0.04158 0.03495 -0.03152 -0.03152 -0.22471
-0.05404 -0.05404 0.03903
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.67040162E+01 eigvalue= 3.52646012E-01 local= -7.86109242E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -9.27273324E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 3.08473577E+01 enl0= 1.29605782E-01 enl1= -1.76770039E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.72475164E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.4724751637E+02 Ha. Also 2DEtotal= -0.128567030442E+04 eV
( non-var. 2DEtotal : -4.7247516372E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-25, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -47.243857191808 -4.724E+01 2.416E-02 0.000E+00
ETOT 2 -47.247515444565 -3.658E-03 5.772E-05 0.000E+00
ETOT 3 -47.247516355963 -9.114E-07 3.126E-07 0.000E+00
ETOT 4 -47.247516356308 -3.452E-10 1.732E-09 0.000E+00
ETOT 5 -47.247516356308 -1.279E-13 3.244E-11 0.000E+00
ETOT 6 -47.247516356308 2.842E-14 2.165E-13 0.000E+00
ETOT 7 -47.247516356308 -1.421E-14 4.377E-15 0.000E+00
ETOT 8 -47.247516356308 -2.842E-14 3.037E-17 0.000E+00
ETOT 9 -47.247516356308 -7.105E-15 6.235E-19 0.000E+00
ETOT 10 -47.247516356308 1.421E-14 4.343E-21 0.000E+00
ETOT 11 -47.247516356308 0.000E+00 9.109E-23 0.000E+00
ETOT 12 -47.247516356308 0.000E+00 6.320E-25 0.000E+00
ETOT 13 -47.247516356308 0.000E+00 9.844E-26 0.000E+00
At SCF step 13 max residual= 9.84E-26 < tolwfr= 1.00E-25 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 56.498E-27; max= 98.436E-27
dfpt_looppert : ek2= 1.6576423132E+01
f-sum rule ratio= 5.5939288941E+00 (note : ecutsm/=0)
prteigrs : about to open file t80t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 11, wtk= 1.00000, kpt= 0.2500 0.0000 0.0000 (reduced coord)
-0.07417 0.20910 0.04158 0.04158 0.03495 -0.03152 -0.03152 -0.22471
-0.05404 -0.05404 0.03903
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.67040161E+01 eigvalue= 3.52646012E-01 local= -7.86109242E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -9.27273323E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 3.08473577E+01 enl0= 1.29605782E-01 enl1= -1.76770039E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.72475164E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.4724751636E+02 Ha. Also 2DEtotal= -0.128567030400E+04 eV
( non-var. 2DEtotal : -4.7247516356E+01 Ha)
CALCULATION OF EFFECTIVE MASSES
NOTE : Additional infos (eff. mass eigenvalues, eigenvectors and, if degenerate, average mass) are available in stdout.
K-point ( 0.250, 0.000, 0.000) | band = 5
Effective mass tensor:
0.8491600529 -0.7684708094 -0.7684708094
-0.7684708094 0.8491600534 0.7684708096
-0.7684708094 0.7684708096 0.8491600534
Effective mass tensor eigenvalues:
0.0806892438 0.0806892438 2.3861016721
Angular average effective mass 1/(<1/m>)= 0.1190214307
Angular average effective mass for Frohlich model (<m**0.5>)**2= 0.1603944757
Effective masses along directions: (cart. coord. / red. coord. -> eff. mass)
1: 1.000000 0.000000 0.000000 / 0.000000 0.707107 0.707107 -> 0.1190214306
2: 0.500000 0.500000 0.707107 / 0.610131 0.610131 0.505449 -> 0.0961766241
END OF EFFECTIVE MASSES SECTION
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 34.2291844757 0.0000000000
1 2 17.1145922373 0.0000000000
1 3 17.1145922385 0.0000000000
2 1 17.1145922373 0.0000000000
2 2 17.6493718676 0.0000000000
2 3 0.5347796304 0.0000000000
3 1 17.1145922385 0.0000000000
3 2 0.5347796304 0.0000000000
3 3 17.6493718688 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0691904599E+01 1.0691904599E+01 1.0691904599E+01 Bohr
amu 7.26100000E+01
ecut 5.00000000E+00 Hartree
ecutsm 1.00000000E-01 Hartree
etotal1 -7.9662316975E+00
etotal3 -8.6300379184E+01
etotal4 -8.6300379184E+01
etotal5 -8.6300379184E+01
etotal6 -8.6300379184E+01
etotal7 -8.6300379184E+01
etotal9 -4.7247516356E+01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 1
getden5 1
getden6 1
getden7 1
getden8 1
getden9 1
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 0
getwfk9 8
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
iscf5 7
iscf6 7
iscf7 7
iscf8 -2
iscf9 7
istwfk1 2 0 3 0 0 0 7 0
istwfk2 2
istwfk3 1
istwfk4 1
istwfk5 1
istwfk6 1
istwfk7 1
ixc 7
jdtset 1 2 3 4 5 6 7 8 9
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 2.50000000E-01
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt7 0.00000000E+00 0.00000000E+00 0.00000000E+00
kpt8 2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt9 2.50000000E-01 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 0
kptopt3 0
kptopt4 0
kptopt5 0
kptopt6 0
kptopt7 0
kptopt8 0
kptopt9 0
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen1 3.02412730E+01
kptrlen2 3.00000000E+01
kptrlen3 3.00000000E+01
kptrlen4 3.00000000E+01
kptrlen5 3.00000000E+01
kptrlen6 3.00000000E+01
kptrlen7 3.00000000E+01
kptrlen8 3.00000000E+01
kptrlen9 3.00000000E+01
P mkmem1 8
P mkmem2 1
P mkmem3 1
P mkmem4 1
P mkmem5 1
P mkmem6 1
P mkmem7 1
P mkmem8 1
P mkmem9 1
P mkqmem1 8
P mkqmem2 1
P mkqmem3 1
P mkqmem4 1
P mkqmem5 1
P mkqmem6 1
P mkqmem7 1
P mkqmem8 1
P mkqmem9 1
P mk1mem1 8
P mk1mem2 1
P mk1mem3 1
P mk1mem4 1
P mk1mem5 1
P mk1mem6 1
P mk1mem7 1
P mk1mem8 1
P mk1mem9 1
natom 2
nband1 6
nband2 11
nband3 11
nband4 11
nband5 11
nband6 11
nband7 11
nband8 11
nband9 11
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
nbdbuf7 0
nbdbuf8 2
nbdbuf9 0
ndtset 9
ngfft 16 16 16
nkpt1 8
nkpt2 1
nkpt3 1
nkpt4 1
nkpt5 1
nkpt6 1
nkpt7 1
nkpt8 1
nkpt9 1
nstep 100
nsym 48
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ7 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
occ9 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 1
optdriver6 1
optdriver7 1
optdriver8 0
optdriver9 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 1
prtpot6 1
prtpot7 1
prtpot8 0
prtpot9 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 2
rfelfd5 2
rfelfd6 2
rfelfd7 2
rfelfd8 0
rfelfd9 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk3 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk4 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk5 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk6 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk7 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk8 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk9 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
strten1 1.0328333028E-04 1.0328333028E-04 1.0328333028E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs1 1.00000000E-25
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolvrs5 0.00000000E+00
tolvrs6 0.00000000E+00
tolvrs7 0.00000000E+00
tolvrs8 0.00000000E+00
tolvrs9 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-25
tolwfr3 1.00000000E-25
tolwfr4 1.00000000E-25
tolwfr5 1.00000000E-25
tolwfr6 1.00000000E-25
tolwfr7 1.00000000E-25
tolwfr8 1.00000000E-25
tolwfr9 1.00000000E-25
typat 1 1
useylm1 0
useylm2 0
useylm3 1
useylm4 1
useylm5 1
useylm6 1
useylm7 1
useylm8 0
useylm9 1
wtk1 0.01563 0.12500 0.06250 0.09375 0.37500 0.18750
0.04688 0.09375
wtk2 1.00000
wtk3 1.00000
wtk4 1.00000
wtk5 1.00000
wtk6 1.00000
wtk7 1.00000
wtk8 1.00000
wtk9 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4144780576E+00 1.4144780576E+00 1.4144780576E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6729761498E+00 2.6729761498E+00 2.6729761498E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 32.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Precise effective masses from density functional perturbation theory
- J. Laflamme Janssen, Y. Gillet, S. Ponce, A. Martin, M. Torrent, and X. Gonze. Phys. Rev. B 93, 205147 (2016)
- Comment: in case the DFPT prediction of effective masses is used.
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#laflamme2016
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [4] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [5] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.4 wall= 2.6
================================================================================
Calculation completed.
.Delivered 16 WARNINGs and 32 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.4 wall= 2.6