abinit/tests/v7/Refs/t78.abo

3301 lines
168 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h13 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t78/t78.abi
- output file -> t78.abo
- root for input files -> t78i
- root for output files -> t78o
DATASET 1 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 22
lnmax = 8 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 25 mffmem = 1 mkmem = 4
mpw = 136 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 15 nfftf = 3375
================================================================================
P This job should need less than 7.063 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.210 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 2 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 22
lnmax = 8 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 25 mffmem = 1 mkmem = 4
mpw = 136 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 15 nfftf = 3375
================================================================================
P This job should need less than 7.063 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.210 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 3 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 22
lnmax = 8 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 25 mffmem = 1 mkmem = 4
mpw = 136 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 15 nfftf = 3375
================================================================================
P This job should need less than 7.063 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.210 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 4 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 22
lnmax = 8 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 25 mffmem = 1 mkmem = 4
mpw = 136 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 15 nfftf = 3375
================================================================================
P This job should need less than 7.063 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.210 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 5 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 22
lnmax = 8 mgfft = 15 mpssoang = 3 mqgrid = 300
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 25 mffmem = 1 mkmem = 4
mpw = 136 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 15 nfftf = 3375
================================================================================
P This job should need less than 5.786 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.210 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 6.7605000000E+00 6.7605000000E+00 6.7605000000E+00 Bohr
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
dmatpuopt 1
ecut 4.00000000E+00 Hartree
ecuteps 3.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 0.00000000E+00 Hartree
ecutsigx4 0.00000000E+00 Hartree
ecutsigx5 3.00000000E+00 Hartree
ecutwfn1 0.00000000E+00 Hartree
ecutwfn2 0.00000000E+00 Hartree
ecutwfn3 0.00000000E+00 Hartree
ecutwfn4 4.00000000E+00 Hartree
ecutwfn5 4.00000000E+00 Hartree
- fftalg 512
freqremax1 0.00000000E+00 Hartree
freqremax2 0.00000000E+00 Hartree
freqremax3 0.00000000E+00 Hartree
freqremax4 2.20495952E-01 Hartree
freqremax5 0.00000000E+00 Hartree
freqspmax1 0.00000000E+00 Hartree
freqspmax2 0.00000000E+00 Hartree
freqspmax3 0.00000000E+00 Hartree
freqspmax4 0.00000000E+00 Hartree
freqspmax5 2.20495952E-01 Hartree
getden1 0
getden2 -1
getden3 0
getden4 0
getden5 0
getscr1 0
getscr2 0
getscr3 0
getscr4 0
getscr5 4
getwfk1 0
getwfk2 0
getwfk3 -1
getwfk4 -1
getwfk5 3
gwcalctyp1 0
gwcalctyp2 0
gwcalctyp3 0
gwcalctyp4 2
gwcalctyp5 2
- gwpara1 2
- gwpara2 2
- gwpara3 2
- gwpara4 1
- gwpara5 2
iatsph2 1 2 3 4 5
istwfk 0 0 0 1
ixc 7
jdtset 1 2 3 4 5
kpt 1.66666667E-01 1.66666667E-01 1.66666667E-01
5.00000000E-01 1.66666667E-01 1.66666667E-01
5.00000000E-01 5.00000000E-01 1.66666667E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptrlatt 3 0 0 0 3 0 0 0 3
kptrlen 2.02815000E+01
kssform 3
lpawu 2 -1 -1
P mkmem 4
mqgrid1 0
mqgrid2 0
mqgrid3 0
mqgrid4 0
mqgrid5 300
mqgriddg1 0
mqgriddg2 0
mqgriddg3 0
mqgriddg4 0
mqgriddg5 300
natom 5
natsph2 5
nband 25
nbandkss1 0
nbandkss2 0
nbandkss3 -1
nbandkss4 0
nbandkss5 0
ndtset 5
nfreqim1 -1
nfreqim2 -1
nfreqim3 -1
nfreqim4 0
nfreqim5 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 -1
nfreqre4 4
nfreqre5 -1
nfreqsp1 0
nfreqsp2 0
nfreqsp3 0
nfreqsp4 0
nfreqsp5 4
ngfft 15 15 15
ngfftdg 15 15 15
nkpt 4
nline 5
nnsclo1 2
nnsclo2 5
nnsclo3 2
nnsclo4 2
nnsclo5 2
npweps1 0
npweps2 0
npweps3 0
npweps4 81
npweps5 81
npwsigx1 0
npwsigx2 0
npwsigx3 0
npwsigx4 0
npwsigx5 81
npwwfn1 0
npwwfn2 0
npwwfn3 0
npwwfn4 123
npwwfn5 123
nstep 15
nsym 48
ntypat 3
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 3
optdriver5 4
pawecutdg 4.10000000E+00 Hartree
pawoptosc 2
pawprtdos1 0
pawprtdos2 2
pawprtdos3 0
pawprtdos4 0
pawprtdos5 0
pawprtvol 3
plowan_bandi 12
plowan_bandf 25
plowan_compute1 0
plowan_compute2 0
plowan_compute3 1
plowan_compute4 10
plowan_compute5 10
plowan_natom 1
plowan_nt 1
plowan_realspace 1
plowan_it1 0 0 0
plowan_it2 0 0 0
plowan_it3 0 0 0
plowan_it4 0 0 0
plowan_it5 0 0 0
plowan_iatom1 1
plowan_iatom2 1
plowan_iatom3 1
plowan_iatom4 1
plowan_iatom5 1
plowan_nbl1 1
plowan_nbl2 1
plowan_nbl3 1
plowan_nbl4 1
plowan_nbl5 1
plowan_lcalc1 2
plowan_lcalc2 2
plowan_lcalc3 2
plowan_lcalc4 2
plowan_lcalc5 2
plowan_projcalc1 7
plowan_projcalc2 7
plowan_projcalc3 7
plowan_projcalc4 7
plowan_projcalc5 7
ppmodel 2
prtdos1 0
prtdos2 3
prtdos3 0
prtdos4 0
prtdos5 0
prtvol 1
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
symchi 0
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
symsigma 0
tolvrs1 1.00000000E-15
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-13
tolvrs4 1.00000000E-15
tolvrs5 1.00000000E-15
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-12
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tsmear 3.67493254E-03 Hartree
typat 1 2 3 3 3
ucrpa 2
ucrpa_bands1 -1 -1
ucrpa_bands2 -1 -1
ucrpa_bands3 -1 -1
ucrpa_bands4 12 25
ucrpa_bands5 -1 -1
usepawu 1
useylm 1
wtk 0.29630 0.44444 0.22222 0.03704
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.7887512593E+00 1.7887512593E+00 1.7887512593E+00
1.7887512593E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 1.7887512593E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.7887512593E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.3802500000E+00 3.3802500000E+00 3.3802500000E+00
3.3802500000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 3.3802500000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.3802500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 23.00000 38.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 5, nkpt: 4, mband: 25, nsppol: 1, nspinor: 1, nspden: 1, mpw: 136, }
cutoff_energies: {ecut: 4.0, pawecutdg: 4.1, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 6.7605000 0.0000000 0.0000000 G(1)= 0.1479181 0.0000000 0.0000000
R(2)= 0.0000000 6.7605000 0.0000000 G(2)= 0.0000000 0.1479181 0.0000000
R(3)= 0.0000000 0.0000000 6.7605000 G(3)= 0.0000000 0.0000000 0.1479181
Unit cell volume ucvol= 3.0898433E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.000 => boxcut(ratio)= 2.30014
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.290640 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.100 => boxcut(ratio)= 2.27192
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.290640 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/23v.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/23v.paw
- Paw atomic data for element V - Generated by AtomPAW + AtomPAW2Abinit v3.2.0
- 23.00000 13.00000 20070917 znucl, zion, pspdat
7 7 2 0 1505 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 8 (lmn_size= 22), orbitals= 0 0 0 1 1 1 2 2
Spheres core radius: rc_sph= 2.35000000
3 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1505 , AA= 0.26380E-03 BB= 0.60673E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.26380E-03 BB= 0.60673E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1738 , AA= 0.26380E-03 BB= 0.60673E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 2.00701120
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 3
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/38sr.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/38sr.paw
- Paw atomic data for element Sr - Generated by AtomPAW + AtomPAW2Abinit v3.2.0
- 38.00000 10.00000 20070917 znucl, zion, pspdat
7 7 2 0 1068 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 1.92519986
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1068 , AA= 0.22443E-03 BB= 0.85283E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1063 , AA= 0.22443E-03 BB= 0.85283E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1134 , AA= 0.22443E-03 BB= 0.85283E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1256 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/8o.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/8o.paw
- Paw atomic data for element O - Generated by AtomPAW (N. Holzwarth)
- 8.00000 6.00000 20040423 znucl, zion, pspdat
7 7 1 0 350 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw2
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41000000
2 radial meshes are used:
- mesh 1: r(i)=AA*exp(BB*(i-2)), size= 350 , AA= 0.72362E-05 BB= 0.35000E-01
- mesh 2: r(i)=step*(i-1), size= 566 , step= 0.25000E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
2.50191820E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 25 bands with npw= 111 for ikpt= 1 by node 0
P newkpt: treating 25 bands with npw= 118 for ikpt= 2 by node 0
P newkpt: treating 25 bands with npw= 124 for ikpt= 3 by node 0
P newkpt: treating 25 bands with npw= 136 for ikpt= 4 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 117.926 117.783
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 2.4224
Max value of the mesh in atomic data file = 1505
PAW radius is = 2.3500
PAW value of the mesh for integration is = 1500
Integral of atomic wavefunction until rpaw = 0.8685
For an atomic wfn truncated at rmax = 2.4224
The norm of the wfn is = 0.8798
The bare interaction (no renormalization) = 15.8151 eV
The bare interaction (for a renorm. wfn ) = 20.4327 eV
( WARNING: The radial mesh in the atomic data file is cut at 2.42
Use XML atomic data files to compute the bare Coulomb interaction
on a true normalized atomic wavefunction )
For an atomic wfn truncated at rmax = 2.3500
The norm of the wfn is = 0.8685
The bare interaction (no renormalization) = 15.7021 eV
The bare interaction (for a renorm. wfn ) = 20.8160 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 15, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-15, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -143.14217305292 -1.431E+02 2.891E+00 2.579E+01
ETOT 2 -143.22751339835 -8.534E-02 1.601E-02 2.135E+00
ETOT 3 -143.11905014043 1.085E-01 2.544E-04 2.011E-01
ETOT 4 -143.10758484012 1.147E-02 1.139E-05 1.572E-03
ETOT 5 -143.10751225399 7.259E-05 6.732E-07 1.281E-05
ETOT 6 -143.10751045931 1.795E-06 6.581E-08 1.130E-06
ETOT 7 -143.10751037361 8.569E-08 7.400E-09 1.159E-08
ETOT 8 -143.10751037321 4.004E-10 2.624E-09 1.893E-10
ETOT 9 -143.10751037319 2.197E-11 1.553E-09 1.149E-11
ETOT 10 -143.10751037319 -6.821E-13 9.592E-10 4.485E-14
ETOT 11 -143.10751037319 1.251E-12 6.026E-10 2.416E-15
ETOT 12 -143.10751037319 -1.023E-12 3.803E-10 9.538E-17
At SCF step 12 nres2 = 9.54E-17 < tolvrs= 1.00E-15 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.22496961E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.22496961E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.22496961E-02 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 6.7605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 6.7605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 6.7605000, ]
lattice_lengths: [ 6.76050, 6.76050, 6.76050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0898433E+02
convergence: {deltae: -1.023E-12, res2: 9.538E-17, residm: 3.803E-10, diffor: null, }
etotal : -1.43107510E+02
entropy : 0.00000000E+00
fermie : 5.75649606E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.22496961E-02, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.22496961E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.22496961E-02, ]
pressure_GPa: -9.4882E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.35000 13.74358034
2 1.92520 6.24939516
3 1.41000 3.46540630
4 1.41000 3.46540630
5 1.41000 3.46540630
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 4.079518913326320
Compensation charge over fft grid = 4.079147770752396
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.71467 0.39935 -2.31208 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.39935 0.15598 -1.43580 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-2.31208 -1.43580 15.31555 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 ...
0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 ...
0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 ...
... only 12 components have been written...
Atom # 5
0.10044 0.04346 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.04346 0.04397 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756 0.00000 0.00000
0.00000 0.00000 0.00000 -0.80618 0.00000 0.00000 0.07650 0.00000
0.00000 0.00000 0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756
0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060 0.00000 0.00000
0.00000 0.00000 0.00000 0.07650 0.00000 0.00000 -1.26198 0.00000
0.00000 0.00000 0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060
Augmentation waves occupancies Rhoij:
Atom # 1
1.99090 -0.08694 -0.00381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.08694 2.91152 0.01609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.00381 0.01609 0.00114 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 ...
0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 ...
0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 ...
... only 12 components have been written...
Atom # 5
1.68216 0.10840 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10840 0.00802 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.52484 0.00000 0.00000 0.13752 0.00000 0.00000
0.00000 0.00000 0.00000 0.52802 0.00000 0.00000 0.14221 0.00000
0.00000 0.00000 0.00000 0.00000 0.52484 0.00000 0.00000 0.13752
0.00000 0.00000 0.13752 0.00000 0.00000 0.03611 0.00000 0.00000
0.00000 0.00000 0.00000 0.14221 0.00000 0.00000 0.03882 0.00000
0.00000 0.00000 0.00000 0.00000 0.13752 0.00000 0.00000 0.03611
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000
0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000
0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000
0.00000 0.00000 0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000
0.00000 0.00000 0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828
0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000 0.00000
0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000
0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401 0.00000 0.00000
0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000
0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.09959 0.00000 0.00000 0.00000 0.00000
0.00000 0.09959 0.00000 0.00000 0.00000
0.00000 0.00000 0.17178 0.00000 0.00000
0.00000 0.00000 0.00000 0.09959 0.00000
0.00000 0.00000 0.00000 0.00000 0.17178
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.028E-13; max= 38.026E-11
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.78875125933635 1.78875125933635 1.78875125933635
3 1.78875125933635 0.00000000000000 0.00000000000000
4 0.00000000000000 1.78875125933635 0.00000000000000
5 0.00000000000000 0.00000000000000 1.78875125933635
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.760500000000 6.760500000000 6.760500000000 bohr
= 3.577502518673 3.577502518673 3.577502518673 angstroms
prteigrs : about to open file t78o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.57565 Average Vxc (hartree)= -0.50844
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 25, wtk= 0.29630, kpt= 0.1667 0.1667 0.1667 (reduced coord)
-2.42121 -1.27215 -1.27215 -1.25236 -0.82025 -0.58174 -0.52752 -0.52752
-0.07384 -0.07384 -0.04745 0.16756 0.28417 0.28417 0.32375 0.32375
0.38778 0.43137 0.47466 0.47466 0.68805 0.68805 0.70696 0.76096
0.76096
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 0.00000 0.00000 0.00000 0.00000
0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 4.00142951430994E+01
hartree : 1.97494698901370E+01
xc : -2.12207015723415E+01
Ewald energy : -1.22667940452101E+02
psp_core : 8.09723334916530E+00
local_psp : -7.04463119696818E+01
spherical_terms : 3.36789747275981E+00
internal : -1.43106058138963E+02
'-kT*entropy' : -1.45220580414232E-03
total_energy : -1.43107510344767E+02
total_energy_eV : -3.89415339724038E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.17118377341059E+01
Ewald energy : -1.22667940452101E+02
psp_core : 8.09723334916530E+00
xc_dc : -1.32218545211691E+01
spherical_terms : -3.60165880917754E+00
internal : -1.43106058167388E+02
'-kT*entropy' : -1.45220580414232E-03
total_energy_dc : -1.43107510373192E+02
total_energy_dc_eV : -3.89415339801387E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.22496961E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.22496961E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.22496961E-02 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -9.4882E+02 GPa]
- sigma(1 1)= 9.48818658E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 9.48818658E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 9.48818658E+02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 5, nkpt: 4, mband: 25, nsppol: 1, nspinor: 1, nspden: 1, mpw: 136, }
cutoff_energies: {ecut: 4.0, pawecutdg: 4.1, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 6.7605000 0.0000000 0.0000000 G(1)= 0.1479181 0.0000000 0.0000000
R(2)= 0.0000000 6.7605000 0.0000000 G(2)= 0.0000000 0.1479181 0.0000000
R(3)= 0.0000000 0.0000000 6.7605000 G(3)= 0.0000000 0.0000000 0.1479181
Unit cell volume ucvol= 3.0898433E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.000 => boxcut(ratio)= 2.30014
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.290640 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.100 => boxcut(ratio)= 2.27192
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.290640 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
P newkpt: treating 25 bands with npw= 111 for ikpt= 1 by node 0
P newkpt: treating 25 bands with npw= 118 for ikpt= 2 by node 0
P newkpt: treating 25 bands with npw= 124 for ikpt= 3 by node 0
P newkpt: treating 25 bands with npw= 136 for ikpt= 4 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 117.926 117.783
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 2.4224
Max value of the mesh in atomic data file = 1505
PAW radius is = 2.3500
PAW value of the mesh for integration is = 1500
Integral of atomic wavefunction until rpaw = 0.8685
For an atomic wfn truncated at rmax = 2.4224
The norm of the wfn is = 0.8798
The bare interaction (no renormalization) = 15.8151 eV
The bare interaction (for a renorm. wfn ) = 20.4327 eV
( WARNING: The radial mesh in the atomic data file is cut at 2.42
Use XML atomic data files to compute the bare Coulomb interaction
on a true normalized atomic wavefunction )
For an atomic wfn truncated at rmax = 2.3500
The norm of the wfn is = 0.8685
The bare interaction (no renormalization) = 15.7021 eV
The bare interaction (for a renorm. wfn ) = 20.8160 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 15, nline: 5, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -143.10747732026 -1.431E+02 5.203E-03 1.059E-06
ETOT 2 -143.10751038338 -3.306E-05 6.842E-06 5.212E-07
ETOT 3 -143.10751037653 6.847E-09 1.680E-06 1.797E-07
ETOT 4 -143.10751037447 2.066E-09 1.113E-06 7.042E-08
ETOT 5 -143.10751037380 6.675E-10 2.548E-07 3.418E-08
ETOT 6 -143.10751037375 4.800E-11 1.725E-07 3.156E-08
ETOT 7 -143.10751037378 -3.163E-11 3.944E-08 3.316E-08
ETOT 8 -143.10751037381 -2.368E-11 2.775E-08 3.439E-08
ETOT 9 -143.10751037382 -1.378E-11 6.367E-09 3.523E-08
ETOT 10 -143.10751037327 5.481E-10 4.542E-09 3.827E-10
ETOT 11 -143.10751037325 2.493E-11 1.044E-09 3.079E-10
ETOT 12 -143.10751037329 -4.709E-11 7.441E-10 4.495E-10
ETOT 13 -143.10751037319 1.013E-10 1.702E-10 1.629E-11
ETOT 14 -143.10751037320 -7.674E-12 1.220E-10 4.039E-11
ETOT 15 -143.10751037320 -1.734E-12 2.788E-11 4.674E-11
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.22496363E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.22496363E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.22496363E-02 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 15 was not enough SCF cycles to converge;
maximum residual= 2.788E-11 exceeds tolwfr= 1.000E-12
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 6.7605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 6.7605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 6.7605000, ]
lattice_lengths: [ 6.76050, 6.76050, 6.76050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0898433E+02
convergence: {deltae: -1.734E-12, res2: 4.674E-11, residm: 2.788E-11, diffor: null, }
etotal : -1.43107510E+02
entropy : 0.00000000E+00
fermie : 5.75650397E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.22496363E-02, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.22496363E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.22496363E-02, ]
pressure_GPa: -9.4882E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.35000 13.74357955
2 1.92520 6.24939576
3 1.41000 3.46540577
4 1.41000 3.46540577
5 1.41000 3.46540577
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 4.079520328506856
Compensation charge over fft grid = 4.079147267254641
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.71467 0.39935 -2.31208 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.39935 0.15598 -1.43580 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-2.31208 -1.43580 15.31555 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 ...
0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 ...
0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 ...
... only 12 components have been written...
Atom # 5
0.10044 0.04346 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.04346 0.04397 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756 0.00000 0.00000
0.00000 0.00000 0.00000 -0.80618 0.00000 0.00000 0.07650 0.00000
0.00000 0.00000 0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756
0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060 0.00000 0.00000
0.00000 0.00000 0.00000 0.07650 0.00000 0.00000 -1.26198 0.00000
0.00000 0.00000 0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060
Augmentation waves occupancies Rhoij:
Atom # 1
1.99090 -0.08694 -0.00381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.08694 2.91152 0.01609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.00381 0.01609 0.00114 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 ...
0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 ...
0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 ...
... only 12 components have been written...
Atom # 5
1.68216 0.10840 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10840 0.00802 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.52484 0.00000 0.00000 0.13752 0.00000 0.00000
0.00000 0.00000 0.00000 0.52802 0.00000 0.00000 0.14221 0.00000
0.00000 0.00000 0.00000 0.00000 0.52484 0.00000 0.00000 0.13752
0.00000 0.00000 0.13752 0.00000 0.00000 0.03611 0.00000 0.00000
0.00000 0.00000 0.00000 0.14221 0.00000 0.00000 0.03882 0.00000
0.00000 0.00000 0.00000 0.00000 0.13752 0.00000 0.00000 0.03611
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000
0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000
0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000
0.00000 0.00000 0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000
0.00000 0.00000 0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828
0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000 0.00000
0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000
0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401 0.00000 0.00000
0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000
0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.09959 0.00000 0.00000 0.00000 0.00000
0.00000 0.09959 0.00000 0.00000 0.00000
0.00000 0.00000 0.17178 0.00000 0.00000
0.00000 0.00000 0.00000 0.09959 0.00000
0.00000 0.00000 0.00000 0.00000 0.17178
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 56.727E-14; max= 27.882E-12
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.78875125933635 1.78875125933635 1.78875125933635
3 1.78875125933635 0.00000000000000 0.00000000000000
4 0.00000000000000 1.78875125933635 0.00000000000000
5 0.00000000000000 0.00000000000000 1.78875125933635
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.760500000000 6.760500000000 6.760500000000 bohr
= 3.577502518673 3.577502518673 3.577502518673 angstroms
prteigrs : about to open file t78o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.57565 Average Vxc (hartree)= -0.50844
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 25, wtk= 0.29630, kpt= 0.1667 0.1667 0.1667 (reduced coord)
-2.42121 -1.27215 -1.27215 -1.25236 -0.82025 -0.58174 -0.52752 -0.52752
-0.07385 -0.07385 -0.04745 0.16756 0.28417 0.28417 0.32375 0.32375
0.38778 0.43137 0.47466 0.47466 0.68805 0.68805 0.70696 0.76097
0.76097
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 0.00000 0.00000 0.00000 0.00000
0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 4.00142919939993E+01
hartree : 1.97494848200987E+01
xc : -2.12207038213610E+01
Ewald energy : -1.22667940452101E+02
psp_core : 8.09723334916530E+00
local_psp : -7.04463290240100E+01
spherical_terms : 3.36789315987996E+00
internal : -1.43106069974329E+02
'-kT*entropy' : -1.45221491521460E-03
total_energy : -1.43107522189244E+02
total_energy_eV : -3.89415371954499E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.17118228973288E+01
Ewald energy : -1.22667940452101E+02
psp_core : 8.09723334916530E+00
xc_dc : -1.32218687231272E+01
spherical_terms : -3.60165943489441E+00
internal : -1.43106058158286E+02
'-kT*entropy' : -1.45221491521460E-03
total_energy_dc : -1.43107510373202E+02
total_energy_dc_eV : -3.89415339801412E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.22496363E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.22496363E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.22496363E-02 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -9.4882E+02 GPa]
- sigma(1 1)= 9.48816897E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 9.48816897E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 9.48816897E+02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 5, nkpt: 4, mband: 25, nsppol: 1, nspinor: 1, nspden: 1, mpw: 136, }
cutoff_energies: {ecut: 4.0, pawecutdg: 4.1, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 6.7605000 0.0000000 0.0000000 G(1)= 0.1479181 0.0000000 0.0000000
R(2)= 0.0000000 6.7605000 0.0000000 G(2)= 0.0000000 0.1479181 0.0000000
R(3)= 0.0000000 0.0000000 6.7605000 G(3)= 0.0000000 0.0000000 0.1479181
Unit cell volume ucvol= 3.0898433E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.000 => boxcut(ratio)= 2.30014
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.290640 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.100 => boxcut(ratio)= 2.27192
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.290640 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t78o_DS2_WFK
P newkpt: treating 25 bands with npw= 111 for ikpt= 1 by node 0
P newkpt: treating 25 bands with npw= 118 for ikpt= 2 by node 0
P newkpt: treating 25 bands with npw= 124 for ikpt= 3 by node 0
P newkpt: treating 25 bands with npw= 136 for ikpt= 4 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 117.926 117.783
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 2.4224
Max value of the mesh in atomic data file = 1505
PAW radius is = 2.3500
PAW value of the mesh for integration is = 1500
Integral of atomic wavefunction until rpaw = 0.8685
For an atomic wfn truncated at rmax = 2.4224
The norm of the wfn is = 0.8798
The bare interaction (no renormalization) = 15.8151 eV
The bare interaction (for a renorm. wfn ) = 20.4327 eV
( WARNING: The radial mesh in the atomic data file is cut at 2.42
Use XML atomic data files to compute the bare Coulomb interaction
on a true normalized atomic wavefunction )
For an atomic wfn truncated at rmax = 2.3500
The norm of the wfn is = 0.8685
The bare interaction (no renormalization) = 15.7021 eV
The bare interaction (for a renorm. wfn ) = 20.8160 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 17, nstep: 15, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -143.10751037319 -1.431E+02 2.017E-11 7.330E-12
ETOT 2 -143.10751037319 1.450E-12 1.401E-11 5.993E-13
ETOT 3 -143.10751037319 2.842E-14 9.817E-12 4.198E-14
At SCF step 3 nres2 = 4.20E-14 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.22496984E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.22496984E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.22496984E-02 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 6.7605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 6.7605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 6.7605000, ]
lattice_lengths: [ 6.76050, 6.76050, 6.76050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0898433E+02
convergence: {deltae: 2.842E-14, res2: 4.198E-14, residm: 9.817E-12, diffor: null, }
etotal : -1.43107510E+02
entropy : 0.00000000E+00
fermie : 5.75649578E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.22496984E-02, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.22496984E-02, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.22496984E-02, ]
pressure_GPa: -9.4882E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.35000 13.74358045
2 1.92520 6.24939511
3 1.41000 3.46540631
4 1.41000 3.46540631
5 1.41000 3.46540631
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 4.079519033512431
Compensation charge over fft grid = 4.079147785708842
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.71467 0.39935 -2.31208 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.39935 0.15598 -1.43580 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-2.31208 -1.43580 15.31555 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 ...
0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 ...
0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 ...
... only 12 components have been written...
Atom # 5
0.10044 0.04346 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.04346 0.04397 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756 0.00000 0.00000
0.00000 0.00000 0.00000 -0.80618 0.00000 0.00000 0.07650 0.00000
0.00000 0.00000 0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756
0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060 0.00000 0.00000
0.00000 0.00000 0.00000 0.07650 0.00000 0.00000 -1.26198 0.00000
0.00000 0.00000 0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060
Augmentation waves occupancies Rhoij:
Atom # 1
1.99090 -0.08694 -0.00381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.08694 2.91152 0.01609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.00381 0.01609 0.00114 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 ...
0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 ...
0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 ...
... only 12 components have been written...
Atom # 5
1.68216 0.10840 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10840 0.00802 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.52484 0.00000 0.00000 0.13752 0.00000 0.00000
0.00000 0.00000 0.00000 0.52802 0.00000 0.00000 0.14221 0.00000
0.00000 0.00000 0.00000 0.00000 0.52484 0.00000 0.00000 0.13752
0.00000 0.00000 0.13752 0.00000 0.00000 0.03611 0.00000 0.00000
0.00000 0.00000 0.00000 0.14221 0.00000 0.00000 0.03882 0.00000
0.00000 0.00000 0.00000 0.00000 0.13752 0.00000 0.00000 0.03611
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000
0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000
0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000
0.00000 0.00000 0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000
0.00000 0.00000 0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828
0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000 0.00000
0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000
0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401 0.00000 0.00000
0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000
0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.09959 0.00000 0.00000 0.00000 0.00000
0.00000 0.09959 0.00000 0.00000 0.00000
0.00000 0.00000 0.17178 0.00000 0.00000
0.00000 0.00000 0.00000 0.09959 0.00000
0.00000 0.00000 0.00000 0.00000 0.17178
======================================================================================
== Start computation of Projected Local Orbitals Wannier functions == -1
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
(The band structure is shifted by fermie = 15.6640 eV )
Wannier band structure for atom 1
1 -1.646 -1.646 3.514 4.044 4.044
2 0.862 2.652 2.817 3.626 4.760
3 -1.943 -0.389 0.505 3.068 3.068
4 -4.108 -4.108 -1.964 -1.964 -1.964
Print the psichi coefficients in data.plowann
======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using conjugate gradient wavefunctions and energies (kssform=3)
number of Gamma centered plane waves 251
number of Gamma centered shells 15
number of bands 25
maximum angular momentum components 3
Conjugate gradient eigenvalues
k eigenvalues [Hartree]
1 -2.4212 -1.2722 -1.2722 -1.2524 -0.8202 -0.5817 -0.5275 -0.5275 -0.0738
-0.0738 -0.0475 0.1676 0.2842 0.2842 0.3237 0.3237 0.3878 0.4314
0.4747 0.4747 0.6881 0.6881 0.7070 0.7610 0.7610
2 -2.4251 -1.3233 -1.3059 -1.2872 -0.8218 -0.5751 -0.5674 -0.5360 -0.0869
-0.0765 -0.0690 0.1550 0.2336 0.2585 0.2916 0.3081 0.3747 0.3931
0.4131 0.4369 0.6337 0.6785 0.6871 0.7186 0.7765
3 -2.4272 -1.3490 -1.3490 -1.3056 -0.8221 -0.5754 -0.5754 -0.5614 -0.1059
-0.1059 -0.0746 0.1207 0.2116 0.2865 0.2865 0.3388 0.3668 0.3668
0.4303 0.4438 0.5237 0.5717 0.6599 0.7217 0.7217
4 -2.4325 -1.3849 -1.3849 -1.3849 -0.8270 -0.5863 -0.5863 -0.5863 -0.1235
-0.1235 -0.1235 0.0682 0.2231 0.2231 0.2231 0.3552 0.3552 0.4218
0.4218 0.4218 0.5420 0.5420 0.5780 0.5780 0.5780
Test on the normalization of the wavefunctions
min sum_G |a(n,k,G)| = 1.000000
max sum_G |a(n,k,G)| = 1.000000
Test on the orthogonalization of the wavefunctions
min sum_G a(n,k,G)a(n',k,G) = 0.000000
max sum_G a(n,k,G)a(n',k,G) = 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 98.174E-15; max= 98.171E-13
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.78875125933635 1.78875125933635 1.78875125933635
3 1.78875125933635 0.00000000000000 0.00000000000000
4 0.00000000000000 1.78875125933635 0.00000000000000
5 0.00000000000000 0.00000000000000 1.78875125933635
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.760500000000 6.760500000000 6.760500000000 bohr
= 3.577502518673 3.577502518673 3.577502518673 angstroms
prteigrs : about to open file t78o_DS3_EIG
Fermi (or HOMO) energy (hartree) = 0.57565 Average Vxc (hartree)= -0.50844
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 25, wtk= 0.29630, kpt= 0.1667 0.1667 0.1667 (reduced coord)
-2.42121 -1.27215 -1.27215 -1.25236 -0.82025 -0.58174 -0.52752 -0.52752
-0.07384 -0.07384 -0.04745 0.16756 0.28417 0.28417 0.32375 0.32375
0.38778 0.43137 0.47466 0.47466 0.68805 0.68805 0.70696 0.76096
0.76096
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 0.00000 0.00000 0.00000 0.00000
0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 4.00142951886032E+01
hartree : 1.97494694982087E+01
xc : -2.12207015490212E+01
Ewald energy : -1.22667940452101E+02
psp_core : 8.09723334916530E+00
local_psp : -7.04463114535226E+01
spherical_terms : 3.36789723908363E+00
internal : -1.43106058179584E+02
'-kT*entropy' : -1.45220554534363E-03
total_energy : -1.43107510385129E+02
total_energy_eV : -3.89415339833869E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 3, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.17118380442803E+01
Ewald energy : -1.22667940452101E+02
psp_core : 8.09723334916530E+00
xc_dc : -1.32218541366817E+01
spherical_terms : -3.60165888374865E+00
internal : -1.43106058167647E+02
'-kT*entropy' : -1.45220554534363E-03
total_energy_dc : -1.43107510373192E+02
total_energy_dc_eV : -3.89415339801386E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.22496984E-02 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.22496984E-02 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.22496984E-02 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -9.4882E+02 GPa]
- sigma(1 1)= 9.48818726E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 9.48818726E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 9.48818726E+02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 5, nkpt: 4, mband: 25, nsppol: 1, nspinor: 1, nspden: 1, mpw: 136, }
cutoff_energies: {ecut: 4.0, pawecutdg: 4.1, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 3, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 6.7605000 0.0000000 0.0000000 G(1)= 0.1479181 0.0000000 0.0000000
R(2)= 0.0000000 6.7605000 0.0000000 G(2)= 0.0000000 0.1479181 0.0000000
R(3)= 0.0000000 0.0000000 6.7605000 G(3)= 0.0000000 0.0000000 0.1479181
Unit cell volume ucvol= 3.0898433E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.66666667E-01 1.66666667E-01 1.66666667E-01 0.29630
2) 5.00000000E-01 1.66666667E-01 1.66666667E-01 0.44444
3) 5.00000000E-01 5.00000000E-01 1.66666667E-01 0.22222
4) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.03704
Together with 48 symmetry operations and time-reversal symmetry
yields 27 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03704
2) -3.33333333E-01 -3.33333333E-01 -3.33333333E-01 0.29630
3) -3.33333333E-01 0.00000000E+00 -3.33333333E-01 0.44444
4) 0.00000000E+00 -3.33333333E-01 0.00000000E+00 0.22222
Together with 48 symmetry operations and time-reversal symmetry
yields 27 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 12x 12x 12
total number of points = 1728
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 2.4224
Max value of the mesh in atomic data file = 1505
PAW radius is = 2.3500
PAW value of the mesh for integration is = 1500
Integral of atomic wavefunction until rpaw = 0.8685
For an atomic wfn truncated at rmax = 2.4224
The norm of the wfn is = 0.8798
The bare interaction (no renormalization) = 15.8151 eV
The bare interaction (for a renorm. wfn ) = 20.4327 eV
( WARNING: The radial mesh in the atomic data file is cut at 2.42
Use XML atomic data files to compute the bare Coulomb interaction
on a true normalized atomic wavefunction )
For an atomic wfn truncated at rmax = 2.3500
The norm of the wfn is = 0.8685
The bare interaction (no renormalization) = 15.7021 eV
The bare interaction (for a renorm. wfn ) = 20.8160 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 8
Number of (l,m,n) elements ..................... 22
Number of (i,j) elements (packed form) ......... 36
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 253
lmnmix_sz ...................................... 253
Size of radial mesh ............................ 1505
Size of radial mesh for partial waves........... 1505
Size of radial mesh for [pseudo] core density... 1505
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 0
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Option interaction for PAW+U (double-counting).. 3
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.88421672E+01
1/q d(tNcore(q))/dq for q=0 ..................... 0.00000000E+00
d^2(tNcore(q))/dq^2 for q=0 ..................... 0.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -3.29033209E+01
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 2.35000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.00701120E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1068
Size of radial mesh for partial waves........... 1068
Size of radial mesh for [pseudo] core density... 1068
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -1.87106531E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.42360757E+00
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -9.52267377E+01
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.92519986E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 350
Size of radial mesh for partial waves........... 350
Size of radial mesh for [pseudo] core density... 350
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -9.16767837E+00
1/q d(tNcore(q))/dq for q=0 ..................... -4.39028038E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -4.21978264E+00
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.41000013E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.41000013E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 25
- Remaining bands to be divided among processors nbcw = 0
- Number of bands treated by each node ~0
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 4.079518930151902
Compensation charge over fft grid = 4.079147785708842
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 40.9996 (FFT mesh)
average of density, n = 0.132693
r_s = 1.2162
omega_plasma = 35.1382 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.71467 0.39935 -2.31208 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.39935 0.15598 -1.43580 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-2.31208 -1.43580 15.31555 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 ...
0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 ...
0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 ...
... only 12 components have been written...
Atom # 5
0.10044 0.04346 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.04346 0.04397 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756 0.00000 0.00000
0.00000 0.00000 0.00000 -0.80618 0.00000 0.00000 0.07650 0.00000
0.00000 0.00000 0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756
0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060 0.00000 0.00000
0.00000 0.00000 0.00000 0.07650 0.00000 0.00000 -1.26198 0.00000
0.00000 0.00000 0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060
Augmentation waves occupancies Rhoij:
Atom # 1
1.99090 -0.08694 -0.00381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.08694 2.91152 0.01609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.00381 0.01609 0.00114 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 ...
0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 ...
0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 ...
... only 12 components have been written...
Atom # 5
1.68216 0.10840 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10840 0.00802 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.52484 0.00000 0.00000 0.13752 0.00000 0.00000
0.00000 0.00000 0.00000 0.52802 0.00000 0.00000 0.14221 0.00000
0.00000 0.00000 0.00000 0.00000 0.52484 0.00000 0.00000 0.13752
0.00000 0.00000 0.13752 0.00000 0.00000 0.03611 0.00000 0.00000
0.00000 0.00000 0.00000 0.14221 0.00000 0.00000 0.03882 0.00000
0.00000 0.00000 0.00000 0.00000 0.13752 0.00000 0.00000 0.03611
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000
0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000
0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000
0.00000 0.00000 0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000
0.00000 0.00000 0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828
0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000 0.00000
0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000
0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401 0.00000 0.00000
0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000
0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.09959 0.00000 0.00000 0.00000 0.00000
0.00000 0.09959 0.00000 0.00000 0.00000
0.00000 0.00000 0.17178 0.00000 0.00000
0.00000 0.00000 0.00000 0.09959 0.00000
0.00000 0.00000 0.00000 0.00000 0.17178
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
2 2.000000E+00 0.000000E+00
3 4.000000E+00 0.000000E+00
4 6.000000E+00 0.000000E+00
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -4.144 0.903 0.002 0.002 0.002 0.002 -1.486 0.135
-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 2.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -4.338 0.853 0.021 0.021 0.021 0.021 -1.575 0.100
0.000 -0.052 -0.011 0.006 0.006 0.006 0.006 -0.022 -0.008
chi0(G,G') at the 3 th omega 4.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -5.397 0.394 0.220 0.220 0.220 0.220 -2.059 -0.137
0.000 -0.323 -0.243 0.121 0.121 0.121 0.121 -0.144 -0.111
chi0(G,G') at the 4 th omega 6.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -5.923 0.175 -0.343 -0.343 -0.343 -0.343 -3.000 -1.040
0.000 -0.871 -0.194 -0.305 -0.305 -0.305 -0.305 -0.520 -0.327
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 3.5415
dielectric constant without local fields = 3.6728
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 6.98 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.282 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.013 -0.013
-0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.282 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.013 -0.013
-0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
Upper and lower wings at the 2 th omega 2.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.266 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.013 -0.013
-0.003 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.266 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.013 -0.013
-0.003 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
Upper and lower wings at the 3 th omega 4.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.203 0.003 -0.003 0.006 -0.006 0.009 -0.009 0.015 -0.015
-0.010 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
1 2 3 4 5 6 7 8 9
0.203 0.003 -0.003 0.006 -0.006 0.009 -0.009 0.015 -0.015
-0.010 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
Upper and lower wings at the 4 th omega 6.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.182 -0.002 0.002 -0.005 0.005 -0.007 0.007 0.014 -0.014
-0.046 0.000 -0.000 0.001 -0.001 0.001 -0.001 0.001 -0.001
1 2 3 4 5 6 7 8 9
0.182 -0.002 0.002 -0.005 0.005 -0.007 0.007 0.014 -0.014
-0.046 0.000 -0.000 0.001 -0.001 0.001 -0.001 0.001 -0.001
--------------------------------------------------------------------------------
q-point number 2 q = (-0.333333,-0.333333,-0.333333) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.779 -2.522 -1.626 -2.532 -1.641 -2.535 -1.647 -1.913 -0.581
0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
2 -2.522 -5.655 -0.646 -1.677 -0.744 -1.671 -0.740 -2.543 0.021
-0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
chi0(G,G') at the 2 th omega 2.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.653 -2.224 -1.424 -2.236 -1.443 -2.239 -1.451 -1.670 -0.466
-0.320 -0.242 -0.149 -0.243 -0.150 -0.243 -0.151 -0.209 -0.062
2 -2.224 -5.557 -0.460 -1.335 -0.501 -1.328 -0.497 -2.363 0.135
-0.242 -0.259 -0.132 -0.200 -0.118 -0.200 -0.118 -0.196 -0.053
chi0(G,G') at the 3 th omega 4.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.129 -5.549 -3.438 -5.559 -3.455 -5.563 -3.461 -4.617 -1.369
-1.618 -1.239 -0.754 -1.241 -0.757 -1.241 -0.757 -1.092 -0.366
2 -5.549 -8.452 -2.053 -3.982 -2.097 -3.970 -2.087 -4.718 -0.658
-1.239 -1.801 -1.070 -0.637 -0.381 -0.636 -0.381 -1.262 -0.590
chi0(G,G') at the 4 th omega 6.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.822 -2.043 -0.180 -2.058 -0.192 -2.071 -0.208 -0.818 1.770
-4.122 -1.821 -1.345 -1.825 -1.349 -1.826 -1.351 -0.704 -0.202
2 -2.043 -7.230 0.288 -1.578 0.256 -1.566 0.268 -2.782 1.355
-1.821 -2.169 -1.255 -1.107 -0.922 -1.105 -0.920 -1.413 -0.841
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 11.15 [%]
--------------------------------------------------------------------------------
q-point number 3 q = (-0.333333, 0.000000,-0.333333) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.455 -2.975 -1.959 -2.849 -2.849 -2.966 -1.955 -1.967 -1.068
-0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000
2 -2.975 -6.629 -0.971 -1.778 -1.778 -2.419 -1.086 -2.647 -0.709
0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000
chi0(G,G') at the 2 th omega 2.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -8.564 -4.647 -3.104 -4.189 -4.189 -4.631 -3.095 -3.036 -1.831
-0.666 -0.538 -0.381 -0.427 -0.427 -0.536 -0.380 -0.340 -0.252
2 -4.647 -8.249 -1.981 -2.875 -2.875 -3.794 -2.008 -3.620 -1.401
-0.538 -0.516 -0.337 -0.355 -0.355 -0.444 -0.304 -0.312 -0.231
chi0(G,G') at the 3 th omega 4.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -8.608 -3.639 -2.491 -3.680 -3.680 -3.633 -2.485 -2.542 -1.289
-2.695 -2.039 -1.205 -1.993 -1.993 -2.038 -1.204 -1.682 -0.912
2 -3.639 -7.448 -1.207 -1.936 -1.936 -2.854 -1.369 -2.845 -0.834
-2.039 -1.931 -1.074 -1.543 -1.543 -1.531 -0.848 -1.543 -0.793
chi0(G,G') at the 4 th omega 6.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.205 -1.422 0.061 -1.280 -1.280 -1.398 0.065 -0.788 0.658
-1.435 -0.838 -0.520 -0.723 -0.723 -0.837 -0.519 -0.427 -0.106
2 -1.422 -7.187 0.771 -0.550 -0.550 -1.416 0.527 -1.954 0.659
-0.838 -1.708 -0.658 -0.447 -0.447 -0.330 -0.160 -0.922 -0.341
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 14.02 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.000000,-0.333333, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.763 -2.655 -2.655 -2.705 -1.772 -2.631 -2.631 -2.033 -1.051
0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000
2 -2.655 -5.901 -0.923 -1.844 -1.018 -1.381 -1.381 -2.793 -0.258
0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000
chi0(G,G') at the 2 th omega 2.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -3.356 -1.298 -1.298 -0.531 0.232 -1.267 -1.267 -0.756 0.205
-0.515 -0.277 -0.277 -0.425 -0.351 -0.276 -0.276 -0.261 -0.213
2 -1.298 -5.282 -0.218 -0.672 0.085 -0.568 -0.568 -2.215 0.381
-0.277 -0.209 -0.159 -0.238 -0.190 -0.142 -0.142 -0.165 -0.113
chi0(G,G') at the 3 th omega 4.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -4.763 -2.149 -2.149 -1.373 -0.441 -2.274 -2.274 -1.559 -0.153
-6.213 -4.071 -4.071 -5.133 -2.930 -3.922 -3.922 -3.568 -2.005
2 -2.149 -6.149 -0.461 -1.367 -0.382 -1.577 -1.577 -2.768 0.432
-4.071 -3.071 -2.846 -3.383 -1.929 -2.338 -2.338 -2.634 -1.383
chi0(G,G') at the 4 th omega 6.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.844 0.067 0.067 2.216 1.413 0.055 0.055 1.392 1.062
-2.284 -1.523 -1.523 -0.994 -0.058 -1.517 -1.517 -0.836 0.189
2 0.067 -5.474 0.722 1.667 0.951 0.649 0.649 -1.042 0.642
-1.523 -1.878 -1.130 -0.845 0.094 -1.141 -1.141 -0.943 0.051
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 19.93 [%]
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 5, nkpt: 4, mband: 25, nsppol: 1, nspinor: 1, nspden: 1, mpw: 136, }
cutoff_energies: {ecut: 4.0, pawecutdg: 4.1, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 4, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
mkfilename : getscr/=0, take file _SCR from output of DATASET 4.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 6.7605000 0.0000000 0.0000000 G(1)= 0.1479181 0.0000000 0.0000000
R(2)= 0.0000000 6.7605000 0.0000000 G(2)= 0.0000000 0.1479181 0.0000000
R(3)= 0.0000000 0.0000000 6.7605000 G(3)= 0.0000000 0.0000000 0.1479181
Unit cell volume ucvol= 3.0898433E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/23v.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/23v.paw
- Paw atomic data for element V - Generated by AtomPAW + AtomPAW2Abinit v3.2.0
- 23.00000 13.00000 20070917 znucl, zion, pspdat
7 7 2 0 1505 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 8 (lmn_size= 22), orbitals= 0 0 0 1 1 1 2 2
Spheres core radius: rc_sph= 2.35000000
3 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1505 , AA= 0.26380E-03 BB= 0.60673E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.26380E-03 BB= 0.60673E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1738 , AA= 0.26380E-03 BB= 0.60673E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 2.00701120
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 3
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/38sr.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/38sr.paw
- Paw atomic data for element Sr - Generated by AtomPAW + AtomPAW2Abinit v3.2.0
- 38.00000 10.00000 20070917 znucl, zion, pspdat
7 7 2 0 1068 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 1.92519986
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1068 , AA= 0.22443E-03 BB= 0.85283E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1063 , AA= 0.22443E-03 BB= 0.85283E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1134 , AA= 0.22443E-03 BB= 0.85283E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1256 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/8o.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/8o.paw
- Paw atomic data for element O - Generated by AtomPAW (N. Holzwarth)
- 8.00000 6.00000 20040423 znucl, zion, pspdat
7 7 1 0 350 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw2
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41000000
2 radial meshes are used:
- mesh 1: r(i)=AA*exp(BB*(i-2)), size= 350 , AA= 0.72362E-05 BB= 0.35000E-01
- mesh 2: r(i)=step*(i-1), size= 566 , step= 0.25000E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.66666667E-01 1.66666667E-01 1.66666667E-01 0.29630
2) 5.00000000E-01 1.66666667E-01 1.66666667E-01 0.44444
3) 5.00000000E-01 5.00000000E-01 1.66666667E-01 0.22222
4) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.03704
Together with 48 symmetry operations and time-reversal symmetry
yields 27 points in the full Brillouin Zone.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03704
2) -3.33333333E-01 -3.33333333E-01 -3.33333333E-01 0.29630
3) -3.33333333E-01 0.00000000E+00 -3.33333333E-01 0.44444
4) 0.00000000E+00 -3.33333333E-01 0.00000000E+00 0.22222
Together with 48 symmetry operations and time-reversal symmetry
yields 27 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 12x 12x 12
total number of points = 1728
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 2.4224
Max value of the mesh in atomic data file = 1505
PAW radius is = 2.3500
PAW value of the mesh for integration is = 1500
Integral of atomic wavefunction until rpaw = 0.8685
For an atomic wfn truncated at rmax = 2.4224
The norm of the wfn is = 0.8798
The bare interaction (no renormalization) = 15.8151 eV
The bare interaction (for a renorm. wfn ) = 20.4327 eV
( WARNING: The radial mesh in the atomic data file is cut at 2.42
Use XML atomic data files to compute the bare Coulomb interaction
on a true normalized atomic wavefunction )
For an atomic wfn truncated at rmax = 2.3500
The norm of the wfn is = 0.8685
The bare interaction (no renormalization) = 15.7021 eV
The bare interaction (for a renorm. wfn ) = 20.8160 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 8
Number of (l,m,n) elements ..................... 22
Number of (i,j) elements (packed form) ......... 36
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 253
lmnmix_sz ...................................... 253
Size of radial mesh ............................ 1505
Size of radial mesh for partial waves........... 1505
Size of radial mesh for [pseudo] core density... 1505
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 0
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Option interaction for PAW+U (double-counting).. 3
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.88421672E+01
1/q d(tNcore(q))/dq for q=0 ..................... 0.00000000E+00
d^2(tNcore(q))/dq^2 for q=0 ..................... 0.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -3.29033209E+01
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 2.35000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.00701120E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1068
Size of radial mesh for partial waves........... 1068
Size of radial mesh for [pseudo] core density... 1068
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -1.87106531E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.42360757E+00
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -9.52267377E+01
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.92519986E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 350
Size of radial mesh for partial waves........... 350
Size of radial mesh for [pseudo] core density... 350
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -9.16767837E+00
1/q d(tNcore(q))/dq for q=0 ..................... -4.39028038E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -4.21978264E+00
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.41000013E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.41000013E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 4.079518930151902
Compensation charge over fft grid = 4.079147785708842
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 40.9996 (FFT mesh)
average of density, n = 0.132693
r_s = 1.2162
omega_plasma = 35.1382 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.71467 0.39935 -2.31208 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.39935 0.15598 -1.43580 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-2.31208 -1.43580 15.31555 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -1.34297 0.00000 0.00000 0.12899 0.00000 0.00000 -0.09436 ...
0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.12899 0.00000 0.00000 0.03076 0.00000 0.00000 -0.13793 ...
0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.09436 0.00000 0.00000 -0.13793 0.00000 0.00000 2.15441 ...
... only 12 components have been written...
Atom # 5
0.10044 0.04346 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.04346 0.04397 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756 0.00000 0.00000
0.00000 0.00000 0.00000 -0.80618 0.00000 0.00000 0.07650 0.00000
0.00000 0.00000 0.00000 0.00000 -0.80472 0.00000 0.00000 0.07756
0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060 0.00000 0.00000
0.00000 0.00000 0.00000 0.07650 0.00000 0.00000 -1.26198 0.00000
0.00000 0.00000 0.00000 0.00000 0.07756 0.00000 0.00000 -1.26060
Augmentation waves occupancies Rhoij:
Atom # 1
1.99090 -0.08694 -0.00381 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.08694 2.91152 0.01609 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.00381 0.01609 0.00114 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 1.98348 0.00000 0.00000 0.32768 0.00000 0.00000 -0.14126 ...
0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.32768 0.00000 0.00000 5.77655 0.00000 0.00000 -0.05009 ...
0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 -0.14126 0.00000 0.00000 -0.05009 0.00000 0.00000 0.01359 ...
... only 12 components have been written...
Atom # 5
1.68216 0.10840 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.10840 0.00802 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.52484 0.00000 0.00000 0.13752 0.00000 0.00000
0.00000 0.00000 0.00000 0.52802 0.00000 0.00000 0.14221 0.00000
0.00000 0.00000 0.00000 0.00000 0.52484 0.00000 0.00000 0.13752
0.00000 0.00000 0.13752 0.00000 0.00000 0.03611 0.00000 0.00000
0.00000 0.00000 0.00000 0.14221 0.00000 0.00000 0.03882 0.00000
0.00000 0.00000 0.00000 0.00000 0.13752 0.00000 0.00000 0.03611
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000
0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000
0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000
0.00000 0.00000 0.00000 0.30784 0.00000 0.00000 0.00000 0.00000 0.13584 0.00000
0.00000 0.00000 0.00000 0.00000 0.58533 0.00000 0.00000 0.00000 0.00000 0.41828
0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000 0.00000
0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000 0.00000 0.00000
0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401 0.00000 0.00000
0.00000 0.00000 0.00000 0.13584 0.00000 0.00000 0.00000 0.00000 0.12428 0.00000
0.00000 0.00000 0.00000 0.00000 0.41828 0.00000 0.00000 0.00000 0.00000 0.54401
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.09959 0.00000 0.00000 0.00000 0.00000
0.00000 0.09959 0.00000 0.00000 0.00000
0.00000 0.00000 0.17178 0.00000 0.00000
0.00000 0.00000 0.00000 0.09959 0.00000
0.00000 0.00000 0.00000 0.00000 0.17178
cRPA calculations using wannier weights from data.plowann
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 12 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : 7
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
==== Calculation of the screened interaction ====
Read K and Q mesh
Read l and bands from wanbz 12 25 5
==Calculation of the bare interaction V m==
==Definition of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
Diagonal bare interaction
1 10.500
2 10.499
3 9.514
4 11.011
5 9.576
U'=U(m1,m2,m1,m2) for the bare interaction
- 1 2 3 4 5
1 10.500 10.040 9.474 10.268 9.940
2 10.040 10.499 9.790 10.267 9.623
3 9.474 9.790 9.514 10.029 9.138
4 10.268 10.267 10.029 11.011 9.846
5 9.940 9.623 9.138 9.846 9.576
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.9172 0.0000
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.2201 -0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
- 1 2 3 4 5
1 10.500 0.264 0.274 0.250 0.043
2 0.264 10.499 0.101 0.250 0.216
3 0.274 0.101 9.514 0.103 0.207
4 0.250 0.250 0.103 11.011 0.224
5 0.043 0.216 0.207 0.224 9.576
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.2690 -0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
- 1 2 3 4 5
1 10.500 0.264 0.274 0.250 0.043
2 0.264 10.499 0.101 0.250 0.216
3 0.274 0.101 9.514 0.103 0.207
4 0.250 0.250 0.103 11.011 0.224
5 0.043 0.216 0.207 0.224 9.576
== Calculation of the screened interaction on the correlated orbital U m ==
= Start loop over frequency
--- For frequency w = 1 -------------
Diagonal cRPA interaction
1 3.419
2 3.418
3 3.026
4 3.531
5 3.056
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.419 3.008 2.761 3.046 3.153
2 3.008 3.418 3.037 3.046 2.876
3 2.761 3.037 3.026 3.091 2.684
4 3.046 3.046 3.091 3.531 2.917
5 3.153 2.876 2.684 2.917 3.056
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.0275 0.0000
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.2901 -0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.419 0.230 0.243 0.223 0.042
2 0.230 3.418 0.092 0.223 0.192
3 0.243 0.092 3.026 0.093 0.182
4 0.223 0.223 0.093 3.531 0.196
5 0.042 0.192 0.182 0.196 3.056
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.2373 0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.419 0.230 0.243 0.223 0.042
2 0.230 3.418 0.092 0.223 0.192
3 0.243 0.092 3.026 0.093 0.182
4 0.223 0.223 0.093 3.531 0.196
5 0.042 0.192 0.182 0.196 3.056
--- For frequency w = 2 -------------
Diagonal cRPA interaction
1 3.504
2 3.502
3 3.225
4 3.854
5 3.158
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.504 3.096 2.906 3.240 3.247
2 3.096 3.502 3.178 3.238 2.973
3 2.906 3.178 3.225 3.348 2.836
4 3.240 3.238 3.348 3.854 3.119
5 3.247 2.973 2.836 3.119 3.158
Hubbard cRPA interaction for w = 2, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.1842 -0.2312
(Hubbard cRPA interaction for w = 2, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.4488 -0.2337)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.504 0.230 0.242 0.222 0.042
2 0.230 3.502 0.092 0.222 0.192
3 0.242 0.092 3.225 0.094 0.183
4 0.222 0.222 0.094 3.854 0.197
5 0.042 0.192 0.183 0.197 3.158
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.2378 -0.0012
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.504 0.230 0.242 0.222 0.042
2 0.230 3.502 0.092 0.222 0.192
3 0.242 0.092 3.225 0.094 0.183
4 0.222 0.222 0.094 3.854 0.197
5 0.042 0.192 0.183 0.197 3.158
--- For frequency w = 3 -------------
Diagonal cRPA interaction
1 2.392
2 2.388
3 2.102
4 2.456
5 2.135
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.392 1.992 1.801 2.007 2.182
2 1.992 2.388 2.066 2.005 1.914
3 1.801 2.066 2.102 2.099 1.772
4 2.007 2.005 2.099 2.456 1.933
5 2.182 1.914 1.772 1.933 2.135
Hubbard cRPA interaction for w = 3, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.0406 -0.6276
(Hubbard cRPA interaction for w = 3, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.2947 -0.6382)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.392 0.226 0.241 0.220 0.042
2 0.226 2.388 0.091 0.220 0.191
3 0.241 0.091 2.102 0.093 0.177
4 0.220 0.220 0.093 2.456 0.196
5 0.042 0.191 0.177 0.196 2.135
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.2332 -0.0063
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.392 0.226 0.241 0.220 0.042
2 0.226 2.388 0.091 0.220 0.191
3 0.241 0.091 2.102 0.093 0.177
4 0.220 0.220 0.093 2.456 0.196
5 0.042 0.191 0.177 0.196 2.135
--- For frequency w = 4 -------------
Diagonal cRPA interaction
1 3.587
2 3.587
3 3.134
4 3.676
5 3.202
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.587 3.178 2.897 3.199 3.311
2 3.178 3.587 3.172 3.199 3.036
3 2.897 3.172 3.134 3.219 2.810
4 3.199 3.199 3.219 3.676 3.062
5 3.311 3.036 2.810 3.062 3.202
Hubbard cRPA interaction for w = 4, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.1741 -1.8793
(Hubbard cRPA interaction for w = 4, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.4371 -1.8880)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.587 0.226 0.241 0.221 0.042
2 0.226 3.587 0.091 0.221 0.192
3 0.241 0.091 3.134 0.092 0.184
4 0.221 0.221 0.092 3.676 0.193
5 0.042 0.192 0.184 0.193 3.202
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.2360 -0.0083
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.587 0.226 0.241 0.221 0.042
2 0.226 3.587 0.091 0.221 0.192
3 0.241 0.091 3.134 0.092 0.184
4 0.221 0.221 0.092 3.676 0.193
5 0.042 0.192 0.184 0.193 3.202
==Reminder of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
-------------------------------------------------------------
Average U and J as a function of frequency
-------------------------------------------------------------
omega U(omega) J(omega)
0.000 3.0275 0.0000 0.2373 0.0000
2.000 3.1842 -0.2312 0.2378 -0.0012
4.000 2.0406 -0.6276 0.2332 -0.0063
6.000 3.1741 -1.8793 0.2360 -0.0083
-------------------------------------------------------------
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 6.7605000000E+00 6.7605000000E+00 6.7605000000E+00 Bohr
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
dmatpuopt 1
ecut 4.00000000E+00 Hartree
ecuteps 3.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 0.00000000E+00 Hartree
ecutsigx4 0.00000000E+00 Hartree
ecutsigx5 3.00000000E+00 Hartree
ecutwfn1 0.00000000E+00 Hartree
ecutwfn2 0.00000000E+00 Hartree
ecutwfn3 0.00000000E+00 Hartree
ecutwfn4 4.00000000E+00 Hartree
ecutwfn5 4.00000000E+00 Hartree
etotal1 -1.4310751037E+02
etotal2 -1.4310751037E+02
etotal3 -1.4310751037E+02
etotal4 0.0000000000E+00
etotal5 0.0000000000E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
freqremax1 0.00000000E+00 Hartree
freqremax2 0.00000000E+00 Hartree
freqremax3 0.00000000E+00 Hartree
freqremax4 2.20495952E-01 Hartree
freqremax5 0.00000000E+00 Hartree
freqspmax1 0.00000000E+00 Hartree
freqspmax2 0.00000000E+00 Hartree
freqspmax3 0.00000000E+00 Hartree
freqspmax4 0.00000000E+00 Hartree
freqspmax5 2.20495952E-01 Hartree
getden1 0
getden2 -1
getden3 0
getden4 0
getden5 0
getscr1 0
getscr2 0
getscr3 0
getscr4 0
getscr5 4
getwfk1 0
getwfk2 0
getwfk3 -1
getwfk4 -1
getwfk5 3
gwcalctyp1 0
gwcalctyp2 0
gwcalctyp3 0
gwcalctyp4 2
gwcalctyp5 2
- gwpara1 2
- gwpara2 2
- gwpara3 2
- gwpara4 1
- gwpara5 2
iatsph2 1 2 3 4 5
istwfk 0 0 0 1
ixc 7
jdtset 1 2 3 4 5
kpt 1.66666667E-01 1.66666667E-01 1.66666667E-01
5.00000000E-01 1.66666667E-01 1.66666667E-01
5.00000000E-01 5.00000000E-01 1.66666667E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptrlatt 3 0 0 0 3 0 0 0 3
kptrlen 2.02815000E+01
kssform 3
lpawu 2 -1 -1
P mkmem 4
mqgrid1 0
mqgrid2 0
mqgrid3 0
mqgrid4 0
mqgrid5 300
mqgriddg1 0
mqgriddg2 0
mqgriddg3 0
mqgriddg4 0
mqgriddg5 300
natom 5
natsph2 5
nband 25
nbandkss1 0
nbandkss2 0
nbandkss3 -1
nbandkss4 0
nbandkss5 0
ndtset 5
nfreqim1 -1
nfreqim2 -1
nfreqim3 -1
nfreqim4 0
nfreqim5 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 -1
nfreqre4 4
nfreqre5 -1
nfreqsp1 0
nfreqsp2 0
nfreqsp3 0
nfreqsp4 0
nfreqsp5 4
ngfft 15 15 15
ngfftdg 15 15 15
nkpt 4
nline 5
nnsclo1 2
nnsclo2 5
nnsclo3 2
nnsclo4 2
nnsclo5 2
npweps1 0
npweps2 0
npweps3 0
npweps4 81
npweps5 81
npwsigx1 0
npwsigx2 0
npwsigx3 0
npwsigx4 0
npwsigx5 81
npwwfn1 0
npwwfn2 0
npwwfn3 0
npwwfn4 123
npwwfn5 123
nstep 15
nsym 48
ntypat 3
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.999999 1.490752 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.999788 1.999788 0.685306 0.685306
0.685306
occ2 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.999999 1.490745 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.999788 1.999788 0.685319 0.685319
0.685319
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.999999 1.490752 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.999788 1.999788 0.685305 0.685305
0.685305
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
occ5 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 3
optdriver5 4
pawecutdg 4.10000000E+00 Hartree
pawoptosc 2
pawprtdos1 0
pawprtdos2 2
pawprtdos3 0
pawprtdos4 0
pawprtdos5 0
pawprtvol 3
plowan_bandi 12
plowan_bandf 25
plowan_compute1 0
plowan_compute2 0
plowan_compute3 1
plowan_compute4 10
plowan_compute5 10
plowan_natom 1
plowan_nt 1
plowan_realspace 1
plowan_it1 0 0 0
plowan_it2 0 0 0
plowan_it3 0 0 0
plowan_it4 0 0 0
plowan_it5 0 0 0
plowan_iatom1 1
plowan_iatom2 1
plowan_iatom3 1
plowan_iatom4 1
plowan_iatom5 1
plowan_nbl1 1
plowan_nbl2 1
plowan_nbl3 1
plowan_nbl4 1
plowan_nbl5 1
plowan_lcalc1 2
plowan_lcalc2 2
plowan_lcalc3 2
plowan_lcalc4 2
plowan_lcalc5 2
plowan_projcalc1 7
plowan_projcalc2 7
plowan_projcalc3 7
plowan_projcalc4 7
plowan_projcalc5 7
ppmodel 2
prtdos1 0
prtdos2 3
prtdos3 0
prtdos4 0
prtdos5 0
prtvol 1
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
strten1 3.2249696128E-02 3.2249696128E-02 3.2249696128E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 3.2249636263E-02 3.2249636263E-02 3.2249636263E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 3.2249698450E-02 3.2249698450E-02 3.2249698450E-02
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symchi 0
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
symsigma 0
tolvrs1 1.00000000E-15
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-13
tolvrs4 1.00000000E-15
tolvrs5 1.00000000E-15
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-12
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tsmear 3.67493254E-03 Hartree
typat 1 2 3 3 3
ucrpa 2
ucrpa_bands1 -1 -1
ucrpa_bands2 -1 -1
ucrpa_bands3 -1 -1
ucrpa_bands4 12 25
ucrpa_bands5 -1 -1
usepawu 1
useylm 1
wtk 0.29630 0.44444 0.22222 0.03704
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.7887512593E+00 1.7887512593E+00 1.7887512593E+00
1.7887512593E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 1.7887512593E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.7887512593E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.3802500000E+00 3.3802500000E+00 3.3802500000E+00
3.3802500000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 3.3802500000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.3802500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 23.00000 38.00000 8.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Screened Coulomb interaction calculations: cRPA implementation and applications
- to dynamical screening and self-consistency in uranium dioxide and cerium
- B. Amadon, T. Applencourt and F. Bruneval Phys. Rev. B 89, 125110 (2014).
- Comment: Describes the cRPA implementation of the screened Coulomb interaction in PAW
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2014
-
- [2] Gamma and beta cerium: DFT+U calculations of ground-state parameters.
- B. Amadon, F. Jollet and M. Torrent, Phys. Rev. B 77, 155104 (2008).
- Comment: DFT+U calculations, usepawu/=0. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2008a
-
- [3] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [4] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 20.7 wall= 21.3
================================================================================
Calculation completed.
.Delivered 69 WARNINGs and 22 COMMENTs to log file.
+Overall time at end (sec) : cpu= 20.7 wall= 21.3