abinit/tests/v7/Refs/t71.abo

992 lines
53 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h13 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t71/t71.abi
- output file -> t71.abo
- root for input files -> t71i
- root for output files -> t71o
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 8
lnmax = 4 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 4
mpw = 117 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 16 nfftf = 4096
================================================================================
P This job should need less than 2.416 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 8
lnmax = 4 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 0
- mband = 4 mffmem = 1 mkmem = 4
mpw = 117 nfft = 3375 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 16 nfftf = 4096
================================================================================
P This job should need less than 2.214 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 6.7406526010E+00 6.7406526010E+00 6.7406526010E+00 Bohr
amu 1.20110000E+01
diemac 1.00000000E+00
diemix 1.00000000E+00
ecut 1.00000000E+01 Hartree
- fftalg 512
fockoptmix 201
fockdownsampling1 1 1 1
fockdownsampling2 0 0 0
getwfk1 0
getwfk2 -1
iscf 7
istwfk1 2 0 0 0
istwfk2 1 0 0 0
ixc1 11
ixc2 40
jdtset 1 2
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
3.33333333E-01 0.00000000E+00 0.00000000E+00
3.33333333E-01 3.33333333E-01 0.00000000E+00
-3.33333333E-01 3.33333333E-01 0.00000000E+00
kptns_hf2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptrlatt 3 0 0 0 3 0 0 0 3
kptrlen 1.42990835E+01
P mkmem 4
natom 2
nband 4
nbandhf 4
ndtset 2
ngfft 15 15 15
ngfftdg 16 16 16
nkpt 4
nkpthf1 27
nkpthf2 1
nnsclohf1 0
nnsclohf2 4
nstep 61
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000
pawecutdg 1.20000000E+01 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
toldfe1 0.00000000E+00 Hartree
toldfe2 1.00000000E-12 Hartree
tolwfr1 1.00000000E-18
tolwfr2 0.00000000E+00
typat 1 1
usefock1 0
usefock2 1
useylm 1
wfmix 1.30000000E+00
wtk 0.03704 0.29630 0.22222 0.44444
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.9174993187E-01 8.9174993187E-01 8.9174993187E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6851631502E+00 1.6851631502E+00 1.6851631502E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 117, }
cutoff_energies: {ecut: 10.0, pawecutdg: 12.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703263 3.3703263 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703263 0.0000000 3.3703263 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703263 3.3703263 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567743E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.07387
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 12.000 => boxcut(ratio)= 2.15267
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.51316612
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 884 , AA= 0.20016E-02 BB= 0.12010E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.51316612
mmax= 884
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 767 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
7.14503006E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 115.519 115.508
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 61, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-18, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.445809698483 -1.145E+01 4.017E-02 1.081E+01
ETOT 2 -11.454864374350 -9.055E-03 7.230E-07 5.908E-01
ETOT 3 -11.455322361367 -4.580E-04 2.887E-06 1.567E-03
ETOT 4 -11.455325164149 -2.803E-06 8.694E-09 1.759E-05
ETOT 5 -11.455325176606 -1.246E-08 2.242E-11 2.972E-08
ETOT 6 -11.455325176650 -4.328E-11 4.077E-13 4.209E-11
ETOT 7 -11.455325176650 -6.573E-14 1.393E-15 4.427E-13
ETOT 8 -11.455325176650 3.730E-14 1.668E-17 2.595E-14
ETOT 9 -11.455325176650 5.684E-14 6.459E-19 2.593E-17
At SCF step 9 max residual= 6.46E-19 < tolwfr= 1.00E-18 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -9.64723218E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -9.64723218E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -9.64723218E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703263, 3.3703263, ]
- [ 3.3703263, 0.0000000, 3.3703263, ]
- [ 3.3703263, 3.3703263, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567743E+01
convergence: {deltae: 5.684E-14, res2: 2.593E-17, residm: 6.459E-19, diffor: null, }
etotal : -1.14553252E+01
entropy : 0.00000000E+00
fermie : 3.76980678E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -9.64723218E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -9.64723218E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -9.64723218E-05, ]
pressure_GPa: 2.8383E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ 2.92575865E-32, -2.92575865E-32, 2.92575865E-32, ]
- [ -2.92575865E-32, 2.92575865E-32, -2.92575865E-32, ]
force_length_stats: {min: 5.06756263E-32, max: 5.06756263E-32, mean: 5.06756263E-32, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.51317 2.68532739
2 1.51317 2.68532739
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.409585703177545
Compensation charge over fine fft grid = 0.409605034055247
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.44842 -3.46664 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-3.46664 24.52594 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.08151 0.00000 0.00000 -0.05349 0.00000 0.00000
0.00000 0.00000 0.00000 -0.08151 0.00000 0.00000 -0.05349 0.00000
0.00000 0.00000 0.00000 0.00000 -0.08151 0.00000 0.00000 -0.05349
0.00000 0.00000 -0.05349 0.00000 0.00000 5.81661 0.00000 0.00000
0.00000 0.00000 0.00000 -0.05349 0.00000 0.00000 5.81661 0.00000
0.00000 0.00000 0.00000 0.00000 -0.05349 0.00000 0.00000 5.81661
Atom # 2
0.44842 -3.46664 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-3.46664 24.52594 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.08151 0.00000 0.00000 -0.05349 0.00000 0.00000
0.00000 0.00000 0.00000 -0.08151 0.00000 0.00000 -0.05349 0.00000
0.00000 0.00000 0.00000 0.00000 -0.08151 0.00000 0.00000 -0.05349
0.00000 0.00000 -0.05349 0.00000 0.00000 5.81661 0.00000 0.00000
0.00000 0.00000 0.00000 -0.05349 0.00000 0.00000 5.81661 0.00000
0.00000 0.00000 0.00000 0.00000 -0.05349 0.00000 0.00000 5.81661
Augmentation waves occupancies Rhoij:
Atom # 1
1.68955 0.02293 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02293 0.00042 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.56513 0.00000 0.00000 0.04727 0.00000 0.00000
0.00000 0.00000 0.00000 1.56513 0.00000 0.00000 0.04727 0.00000
0.00000 0.00000 0.00000 0.00000 1.56513 0.00000 0.00000 0.04727
0.00000 0.00000 0.04727 0.00000 0.00000 0.00170 0.00000 0.00000
0.00000 0.00000 0.00000 0.04727 0.00000 0.00000 0.00170 0.00000
0.00000 0.00000 0.00000 0.00000 0.04727 0.00000 0.00000 0.00170
Atom # 2
1.68955 0.02293 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02293 0.00042 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.56513 0.00000 0.00000 0.04727 0.00000 0.00000
0.00000 0.00000 0.00000 1.56513 0.00000 0.00000 0.04727 0.00000
0.00000 0.00000 0.00000 0.00000 1.56513 0.00000 0.00000 0.04727
0.00000 0.00000 0.04727 0.00000 0.00000 0.00170 0.00000 0.00000
0.00000 0.00000 0.00000 0.04727 0.00000 0.00000 0.00170 0.00000
0.00000 0.00000 0.00000 0.00000 0.04727 0.00000 0.00000 0.00170
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.953E-20; max= 64.587E-20
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 9.5566E-31; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 -0.000000000000 0.000000000000
2 0.000000000000 -0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89174993186803 0.89174993186803 0.89174993186803
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 0.00000000000000
2 -0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 2.9257586E-32 2.9257586E-32 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 0.00000000000000
2 -0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 1.5044855E-30 1.5044855E-30 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740652601000 6.740652601000 6.740652601000 bohr
= 3.566999727472 3.566999727472 3.566999727472 angstroms
prteigrs : about to open file t71o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.37698 Average Vxc (hartree)= -0.48646
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.03704, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.41442 0.37698 0.37698 0.37698
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 6.49678111368666E+00
hartree : 1.00712343724643E+00
xc : -4.25709522949461E+00
Ewald energy : -1.27864130979666E+01
psp_core : 9.33164515583050E-01
local_psp : -4.77555453688289E+00
spherical_terms : 1.92666862117831E+00
total_energy : -1.14553251766497E+01
total_energy_eV : -3.11715250622937E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.91647522718654E-01
Ewald energy : -1.27864130979666E+01
psp_core : 9.33164515583050E-01
xc_dc : -8.81762654531647E-01
spherical_terms : 8.88038539403542E-01
total_energy_dc : -1.14553251747930E+01
total_energy_dc_eV : -3.11715250572415E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -9.64723218E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -9.64723218E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -9.64723218E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 2.8383E+00 GPa]
- sigma(1 1)= -2.83831322E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -2.83831322E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -2.83831322E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 117, }
cutoff_energies: {ecut: 10.0, pawecutdg: 12.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
Hartree-Fock with mixing coefficient alpha=1
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703263 3.3703263 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703263 0.0000000 3.3703263 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703263 3.3703263 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567743E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.07387
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 12.000 => boxcut(ratio)= 2.15267
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/C.GGA_X_PBE+GGA_C_PBE-paw.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.51316612
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 884 , AA= 0.20016E-02 BB= 0.12010E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.51316612
mmax= 884
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 767 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t71o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 115.519 115.508
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 61, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -10.768569779023 -1.077E+01 9.211E-07 4.268E+00
ETOT 2 -10.788280396354 -1.971E-02 7.082E-08 3.672E-01
ETOT 3 -10.780446601742 7.834E-03 1.738E-06 5.041E-04
ETOT 4 -10.784682285211 -4.236E-03 5.257E-09 3.117E-07
Outer loop step 2 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 4.236E-03 > toldfe= 1.000E-12
ETOT 5 -10.800906552664 -1.622E-02 2.040E-06 1.639E-01
ETOT 6 -10.800980670864 -7.412E-05 1.006E-06 1.102E-02
ETOT 7 -10.795557164862 5.424E-03 4.456E-08 4.717E-05
ETOT 8 -10.796414547213 -8.574E-04 8.272E-11 1.423E-08
Outer loop step 3 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 8.574E-04 > toldfe= 1.000E-12
ETOT 9 -10.792571221218 3.843E-03 3.504E-06 4.809E-03
ETOT 10 -10.793268313100 -6.971E-04 3.422E-08 4.957E-04
ETOT 11 -10.794052887602 -7.846E-04 1.519E-09 9.472E-08
ETOT 12 -10.793909866502 1.430E-04 2.072E-12 3.142E-10
Outer loop step 4 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 1.430E-04 > toldfe= 1.000E-12
ETOT 13 -10.793795997241 1.139E-04 1.893E-08 9.254E-05
ETOT 14 -10.793296564999 4.994E-04 3.693E-10 7.995E-06
ETOT 15 -10.793368473730 -7.191E-05 2.224E-11 1.835E-08
ETOT 16 -10.793350756755 1.772E-05 1.055E-13 2.050E-12
Outer loop step 5 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 1.772E-05 > toldfe= 1.000E-12
ETOT 17 -10.793123391064 2.274E-04 6.215E-10 7.393E-06
ETOT 18 -10.793135636083 -1.225E-05 4.021E-11 8.082E-07
ETOT 19 -10.793166993036 -3.136E-05 2.338E-12 1.039E-10
ETOT 20 -10.793161361430 5.632E-06 3.469E-15 1.678E-13
Outer loop step 6 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 5.632E-06 > toldfe= 1.000E-12
ETOT 21 -10.793163707596 -2.346E-06 6.589E-11 2.004E-07
ETOT 22 -10.793142369216 2.134E-05 8.425E-13 1.878E-08
ETOT 23 -10.793146215554 -3.846E-06 5.838E-14 2.436E-11
ETOT 24 -10.793145359144 8.564E-07 1.590E-16 9.011E-15
Outer loop step 7 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 8.564E-07 > toldfe= 1.000E-12
ETOT 25 -10.793133804026 1.156E-05 2.477E-12 9.935E-09
ETOT 26 -10.793134667859 -8.638E-07 4.801E-14 1.111E-09
ETOT 27 -10.793135799482 -1.132E-06 3.256E-15 2.103E-13
ETOT 28 -10.793135594335 2.051E-07 5.347E-18 9.508E-16
Outer loop step 8 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 2.051E-07 > toldfe= 1.000E-12
ETOT 29 -10.793136250203 -6.559E-07 2.762E-13 4.046E-10
ETOT 30 -10.793135218640 1.032E-06 1.766E-15 3.942E-11
ETOT 31 -10.793135404967 -1.863E-07 1.144E-16 3.283E-14
ETOT 32 -10.793135365885 3.908E-08 2.614E-19 1.600E-17
Outer loop step 9 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 3.908E-08 > toldfe= 1.000E-12
ETOT 33 -10.793134788749 5.771E-07 1.405E-14 1.209E-11
ETOT 34 -10.793134877386 -8.864E-08 5.872E-17 1.333E-12
ETOT 35 -10.793134915719 -3.833E-08 3.821E-18 3.543E-16
ETOT 36 -10.793134908595 7.124E-09 7.000E-21 6.011E-19
Outer loop step 10 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 7.124E-09 > toldfe= 1.000E-12
ETOT 37 -10.793134960363 -5.177E-08 1.364E-15 7.968E-13
ETOT 38 -10.793134904103 5.626E-08 3.803E-18 7.780E-14
ETOT 39 -10.793134912669 -8.566E-09 2.365E-19 5.188E-17
ETOT 40 -10.793134910918 1.751E-09 4.364E-22 5.344E-20
Outer loop step 11 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 1.751E-09 > toldfe= 1.000E-12
ETOT 41 -10.793134881184 2.973E-08 8.463E-17 1.438E-14
ETOT 42 -10.793134889097 -7.913E-09 9.394E-20 1.602E-15
ETOT 43 -10.793134890379 -1.282E-09 4.177E-21 7.656E-19
ETOT 44 -10.793134890133 2.453E-10 9.536E-24 1.184E-21
Outer loop step 12 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 2.453E-10 > toldfe= 1.000E-12
ETOT 45 -10.793134893915 -3.782E-09 7.451E-18 1.683E-15
ETOT 46 -10.793134890354 3.561E-09 7.981E-21 1.697E-16
ETOT 47 -10.793134890772 -4.185E-10 5.201E-22 5.820E-20
ETOT 48 -10.793134890691 8.149E-11 7.202E-25 3.014E-22
Outer loop step 13 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 8.149E-11 > toldfe= 1.000E-12
ETOT 49 -10.793134889062 1.629E-09 5.250E-19 1.319E-17
ETOT 50 -10.793134889762 -6.994E-10 1.892E-22 1.253E-18
ETOT 51 -10.793134889793 -3.123E-11 3.395E-24 2.907E-21
ETOT 52 -10.793134889786 6.944E-12 1.984E-26 9.192E-24
Outer loop step 14 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 6.944E-12 > toldfe= 1.000E-12
ETOT 53 -10.793134890052 -2.662E-10 4.978E-20 3.979E-18
ETOT 54 -10.793134889797 2.552E-10 1.274E-22 4.549E-19
ETOT 55 -10.793134889820 -2.274E-11 1.536E-24 1.065E-22
ETOT 56 -10.793134889815 4.135E-12 1.643E-27 3.740E-24
Outer loop step 15 - inner step 4 - frozen Fock etot NOT converged :
diff in etot= 4.135E-12 > toldfe= 1.000E-12
ETOT 57 -10.793134889719 9.610E-11 5.011E-21 1.211E-20
ETOT 58 -10.793134889780 -6.054E-11 1.141E-23 3.262E-22
ETOT 59 -10.793134889780 3.055E-13 2.587E-27 2.526E-24
ETOT 60 -10.793134889780 1.421E-14 2.824E-29 1.684E-25
Outer loop step 16 - inner step 4 - frozen Fock etot converged :
for the second time, diff in etot= 1.421E-14 < toldfe= 1.000E-12
ETOT 61 -10.793134889798 -1.877E-11 1.585E-21 1.025E-20
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.58776790E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.58776790E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.58776790E-03 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 61 was not enough SCF cycles to converge;
maximum energy difference= 1.877E-11 exceeds toldfe= 1.000E-12
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703263, 3.3703263, ]
- [ 3.3703263, 0.0000000, 3.3703263, ]
- [ 3.3703263, 3.3703263, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567743E+01
convergence: {deltae: -1.877E-11, res2: 1.025E-20, residm: 1.585E-21, diffor: null, }
etotal : -1.07931349E+01
entropy : 0.00000000E+00
fermie : 1.57204709E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.58776790E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.58776790E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.58776790E-03, ]
pressure_GPa: 4.6714E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ 1.28676226E-19, -4.36316305E-20, -4.36316305E-20, ]
- [ -1.28676226E-19, 4.36316305E-20, 4.36316305E-20, ]
force_length_stats: {min: 1.42706025E-19, max: 1.42706025E-19, mean: 1.42706025E-19, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.51317 2.76866211
2 1.51317 2.76866211
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.436424728381668
Compensation charge over fine fft grid = 0.436445325958646
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.37215 -2.66415 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-2.66415 16.64307 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.01006 0.00000 0.00000 -0.55517 0.00000 0.00000
0.00000 0.00000 0.00000 -0.01006 0.00000 0.00000 -0.55517 0.00000
0.00000 0.00000 0.00000 0.00000 -0.01006 0.00000 0.00000 -0.55517
0.00000 0.00000 -0.55517 0.00000 0.00000 8.71737 0.00000 0.00000
0.00000 0.00000 0.00000 -0.55517 0.00000 0.00000 8.71737 0.00000
0.00000 0.00000 0.00000 0.00000 -0.55517 0.00000 0.00000 8.71737
Atom # 2
0.37215 -2.66415 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-2.66415 16.64307 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.01006 0.00000 0.00000 -0.55517 0.00000 0.00000
0.00000 0.00000 0.00000 -0.01006 0.00000 0.00000 -0.55517 0.00000
0.00000 0.00000 0.00000 0.00000 -0.01006 0.00000 0.00000 -0.55517
0.00000 0.00000 -0.55517 0.00000 0.00000 8.71737 0.00000 0.00000
0.00000 0.00000 0.00000 -0.55517 0.00000 0.00000 8.71737 0.00000
0.00000 0.00000 0.00000 0.00000 -0.55517 0.00000 0.00000 8.71737
Augmentation waves occupancies Rhoij:
Atom # 1
1.74497 0.03419 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.03419 0.00072 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.65485 0.00000 0.00000 0.05501 0.00000 0.00000
0.00000 0.00000 0.00000 1.65485 0.00000 0.00000 0.05501 0.00000
0.00000 0.00000 0.00000 0.00000 1.65485 0.00000 0.00000 0.05501
0.00000 0.00000 0.05501 0.00000 0.00000 0.00200 0.00000 0.00000
0.00000 0.00000 0.00000 0.05501 0.00000 0.00000 0.00200 0.00000
0.00000 0.00000 0.00000 0.00000 0.05501 0.00000 0.00000 0.00200
Atom # 2
1.74497 0.03419 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.03419 0.00072 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.65485 0.00000 0.00000 0.05501 0.00000 0.00000
0.00000 0.00000 0.00000 1.65485 0.00000 0.00000 0.05501 0.00000
0.00000 0.00000 0.00000 0.00000 1.65485 0.00000 0.00000 0.05501
0.00000 0.00000 0.05501 0.00000 0.00000 0.00200 0.00000 0.00000
0.00000 0.00000 0.00000 0.05501 0.00000 0.00000 0.00200 0.00000
0.00000 0.00000 0.00000 0.00000 0.05501 0.00000 0.00000 0.00200
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 49.836E-23; max= 15.848E-22
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 4.4393E-19; max dE/dt= 2.9411E-19; dE/dt below (all hartree)
1 0.000000000000 -0.000000000000 -0.000000000000
2 -0.000000000000 -0.000000000000 -0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89174993186803 0.89174993186803 0.89174993186803
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 8.2391362E-20 1.2867623E-19 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 4.2367338E-18 6.6167970E-18 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740652601000 6.740652601000 6.740652601000 bohr
= 3.566999727472 3.566999727472 3.566999727472 angstroms
prteigrs : about to open file t71o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.15720 Average Vxc (hartree)= 0.00000
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.03704, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.70422 0.15720 0.15720 0.15720
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 6.81466278249171E+00
hartree : 1.17150562025742E+00
xc : -3.12608556991962E+00
Ewald energy : -1.27864130979666E+01
psp_core : 9.33164515583050E-01
local_psp : -5.00265310501190E+00
spherical_terms : 1.20268396476769E+00
total_energy : -1.07931348897983E+01
total_energy_eV : -2.93696136539060E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -9.18372648731467E-01
Ewald energy : -1.27864130979666E+01
psp_core : 9.33164515583050E-01
xc_dc : 1.95457994966221E+00
spherical_terms : 2.39063916993751E-02
total_energy_dc : -1.07931348897535E+01
total_energy_dc_eV : -2.93696136537840E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.58776790E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.58776790E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.58776790E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.6714E+01 GPa]
- sigma(1 1)= -4.67137365E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.67137365E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.67137365E+01 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 6.7406526010E+00 6.7406526010E+00 6.7406526010E+00 Bohr
amu 1.20110000E+01
diemac 1.00000000E+00
diemix 1.00000000E+00
ecut 1.00000000E+01 Hartree
etotal1 -1.1455325177E+01
etotal2 -1.0793134890E+01
fcart1 2.9257586465E-32 -2.9257586465E-32 2.9257586465E-32
-2.9257586465E-32 2.9257586465E-32 -2.9257586465E-32
fcart2 1.2867622608E-19 -4.3631630488E-20 -4.3631630488E-20
-1.2867622608E-19 4.3631630488E-20 4.3631630488E-20
- fftalg 512
fockoptmix 201
fockdownsampling1 1 1 1
fockdownsampling2 0 0 0
getwfk1 0
getwfk2 -1
iscf 7
istwfk1 2 0 0 0
istwfk2 1 0 0 0
ixc1 11
ixc2 40
jdtset 1 2
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
3.33333333E-01 0.00000000E+00 0.00000000E+00
3.33333333E-01 3.33333333E-01 0.00000000E+00
-3.33333333E-01 3.33333333E-01 0.00000000E+00
kptns_hf2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptrlatt 3 0 0 0 3 0 0 0 3
kptrlen 1.42990835E+01
P mkmem 4
natom 2
nband 4
nbandhf 4
ndtset 2
ngfft 15 15 15
ngfftdg 16 16 16
nkpt 4
nkpthf1 27
nkpthf2 1
nnsclohf1 0
nnsclohf2 4
nstep 61
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000
pawecutdg 1.20000000E+01 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 227
strten1 -9.6472321775E-05 -9.6472321775E-05 -9.6472321775E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 -1.5877679000E-03 -1.5877679000E-03 -1.5877679000E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
toldfe1 0.00000000E+00 Hartree
toldfe2 1.00000000E-12 Hartree
tolwfr1 1.00000000E-18
tolwfr2 0.00000000E+00
typat 1 1
usefock1 0
usefock2 1
useylm 1
wfmix 1.30000000E+00
wtk 0.03704 0.29630 0.22222 0.44444
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.9174993187E-01 8.9174993187E-01 8.9174993187E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6851631502E+00 1.6851631502E+00 1.6851631502E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 2.6 wall= 2.7
================================================================================
Calculation completed.
.Delivered 630 WARNINGs and 5 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.6 wall= 2.7