abinit/tests/v7/Refs/t62.abo

824 lines
44 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h13 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t62/t62.abi
- output file -> t62.abo
- root for input files -> t62i
- root for output files -> t62o
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 1 ionmov = 0 iscf = 17 lmnmax = 13
lnmax = 5 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 171 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 20 nfftf = 8000
================================================================================
P This job should need less than 4.633 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.023 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 1 ionmov = 0 iscf = 17 lmnmax = 13
lnmax = 5 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 171 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 20 nfftf = 8000
================================================================================
P This job should need less than 4.633 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.023 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 2.69815390E+01
ecut 1.00000000E+01 Hartree
enunit 2
- fftalg 512
intxc 1
ixc 7
jdtset 1 2
kpt 1.00000000E+00 1.00000000E+00 1.00000000E+00
1.00000000E+00 2.00000000E+00 2.00000000E+00
kptnrm 4.00000000E+00
kptopt 0
P mkmem 2
natom 1
nband 4
ndtset 2
ngfft 16 16 16
ngfftdg 20 20 20
nkpt 2
nline 3
nstep 10
nsym 24
ntypat 1
occ 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occopt 4
pawecutdg 1.50000000E+01 Hartree
pawmixdg 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 0 1 -1 1 0 0 -1 1 0 -1 0 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 -1 0 0 -1 1 1 -1 0
0 -1 1 1 -1 0 0 -1 0 0 1 -1 0 0 -1 1 0 -1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 1 -1 0 0 -1 0 0 -1 1
-1 0 0 -1 1 0 -1 0 1 0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0
-1 0 1 -1 1 0 -1 0 0 0 0 -1 0 1 -1 1 0 -1
1 0 -1 0 0 -1 0 1 -1 1 -1 0 0 -1 1 0 -1 0
0 -1 0 1 -1 0 0 -1 1 -1 1 0 -1 0 0 -1 0 1
tolwfr 1.00000000E-16
tsmear 5.00000000E-02 Hartree
typat 1
usexcnhat1 -1
usexcnhat2 1
useylm 1
wtk 0.25000 0.75000
znucl 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 1, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 171, }
cutoff_energies: {ecut: 10.0, pawecutdg: 15.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 5.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09149
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 15.000 => boxcut(ratio)= 2.13462
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
Pseudopotential format is: paw10
basis_size (lnmax)= 5 (lmn_size= 13), orbitals= 0 1 0 1 2
Spheres core radius: rc_sph= 2.05000000
1 radial meshes are used:
- mesh 1: r(i)=-AA*i/(NN-i)), n=size= 450 , AA= 0.40000 NN= 450.00
Shapefunction is EXP type: shapef(r)=exp(-(r/sigma)**lambda)
with sigma= 0.648 and lambda= 2
Radius for shape functions = 2.05000000
mmax= 450
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 442 to avoid numerical noise.
Local potential is in "Vbare" format...
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
3.91269288E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 168.750 168.704
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 10, nline: 3, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -2.1291379402575 -2.129E+00 2.421E-02 9.444E-02
ETOT 2 -2.1298588401685 -7.209E-04 3.689E-05 1.319E-02
ETOT 3 -2.1297976983747 6.114E-05 8.486E-06 4.537E-04
ETOT 4 -2.1297910805770 6.618E-06 1.554E-07 1.616E-05
ETOT 5 -2.1297910864309 -5.854E-09 5.336E-08 9.410E-08
ETOT 6 -2.1297910890530 -2.622E-09 9.956E-10 5.306E-10
ETOT 7 -2.1297910888995 1.535E-10 3.323E-10 2.741E-11
ETOT 8 -2.1297910888999 -3.988E-13 6.467E-12 2.065E-12
ETOT 9 -2.1297910888999 -1.465E-14 2.136E-12 2.312E-13
ETOT 10 -2.1297910889000 -3.864E-14 4.222E-14 1.801E-15
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.88407773E-06 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -5.88407773E-06 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -5.88407773E-06 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum residual= 4.222E-14 exceeds tolwfr= 1.000E-16
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: -3.864E-14, res2: 1.801E-15, residm: 4.222E-14, diffor: null, }
etotal : -2.12979109E+00
entropy : 0.00000000E+00
fermie : 1.57362828E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.88407773E-06, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -5.88407773E-06, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -5.88407773E-06, ]
pressure_GPa: 1.7312E-01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.05000 1.00728560
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.059995840527112
Compensation charge over fine fft grid = -0.060000480965127
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.17816 0.00000 0.00000 0.00000 -0.00754 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.03244 0.00000 0.00000 0.00000 -0.00521 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.03244 0.00000 0.00000 0.00000 -0.00521 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.03244 0.00000 0.00000 0.00000 -0.00521 0.00000 0.00000 0.00000 0.00000 ...
-0.00754 0.00000 0.00000 0.00000 -0.45345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 -0.00521 0.00000 0.00000 0.00000 -0.05519 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.00521 0.00000 0.00000 0.00000 -0.05519 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.00521 0.00000 0.00000 0.00000 -0.05519 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06799 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06799 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06800 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06799 ...
... only 12 components have been written...
Total pseudopotential strength Dij (eV):
4.84794 0.00000 0.00000 0.00000 -0.20517 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.88282 0.00000 0.00000 0.00000 -0.14185 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.88282 0.00000 0.00000 0.00000 -0.14185 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.88282 0.00000 0.00000 0.00000 -0.14185 0.00000 0.00000 0.00000 0.00000 ...
-0.20517 0.00000 0.00000 0.00000 -12.33910 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 -0.14185 0.00000 0.00000 0.00000 -1.50177 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.14185 0.00000 0.00000 0.00000 -1.50177 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.14185 0.00000 0.00000 0.00000 -1.50177 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.85002 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.85002 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.85025 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.85002 ...
... only 12 components have been written...
Augmentation waves occupancies Rhoij:
1.36444 0.00000 0.00000 0.00000 -0.02213 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.74970 0.00000 0.00000 0.00000 -0.02748 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.74970 0.00000 0.00000 0.00000 -0.02748 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.74970 0.00000 0.00000 0.00000 -0.02748 0.00000 0.00000 0.00000 0.00000 ...
-0.02213 0.00000 0.00000 0.00000 0.00101 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 -0.02748 0.00000 0.00000 0.00000 0.00121 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.02748 0.00000 0.00000 0.00000 0.00121 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.02748 0.00000 0.00000 0.00000 0.00121 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03426 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03426 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01393 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03426 ...
... only 12 components have been written...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 53.202E-16; max= 42.219E-15
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.15736 Average Vxc (hartree)= -0.36068
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.17812 0.29823 0.57302 0.57302
occupation numbers for kpt# 1
2.00000 0.00034 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 4.28206 Average Vxc (eV)= -9.81468
Eigenvalues ( eV ) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-4.84687 8.11536 15.59268 15.59268
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 8.40042438867798E-01
hartree : 4.47776025132030E-03
xc : -9.72213811616132E-01
Ewald energy : -2.71472096493581E+00
psp_core : 3.56529092849846E-01
local_psp : 1.91438671114747E-02
spherical_terms : 3.44951970293495E-01
internal : -2.12178964717801E+00
'-kT*entropy' : -8.00144377664445E-03
total_energy : -2.12979109095465E+00
total_energy_eV : -5.79545629175752E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.14227435986434E-02
Ewald energy : -2.71472096493581E+00
psp_core : 3.56529092849846E-01
xc_dc : 1.29851411203780E-01
spherical_terms : 7.51280721602042E-02
internal : -2.12178964512334E+00
'-kT*entropy' : -8.00144377664445E-03
total_energy_dc : -2.12979108889998E+00
total_energy_dc_eV : -5.79545628616648E+01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.88407773E-06 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -5.88407773E-06 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -5.88407773E-06 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 1.7312E-01 GPa]
- sigma(1 1)= -1.73115515E-01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -1.73115515E-01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -1.73115515E-01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 1, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 171, }
cutoff_energies: {ecut: 10.0, pawecutdg: 15.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 5.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09149
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 15.000 => boxcut(ratio)= 2.13462
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.LDA
Pseudopotential format is: paw10
basis_size (lnmax)= 5 (lmn_size= 13), orbitals= 0 1 0 1 2
Spheres core radius: rc_sph= 2.05000000
1 radial meshes are used:
- mesh 1: r(i)=-AA*i/(NN-i)), n=size= 450 , AA= 0.40000 NN= 450.00
Shapefunction is EXP type: shapef(r)=exp(-(r/sigma)**lambda)
with sigma= 0.648 and lambda= 2
Radius for shape functions = 2.05000000
mmax= 450
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 442 to avoid numerical noise.
Local potential is in "Vbare" format...
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
3.82644520E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 168.750 168.704
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 10, nline: 3, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -2.1297601235547 -2.130E+00 2.439E-02 9.745E-02
ETOT 2 -2.1299160928460 -1.560E-04 3.684E-05 1.309E-02
ETOT 3 -2.1297957246743 1.204E-04 8.024E-06 4.486E-04
ETOT 4 -2.1297895479029 6.177E-06 1.449E-07 1.640E-05
ETOT 5 -2.1297896443322 -9.643E-08 4.896E-08 6.932E-08
ETOT 6 -2.1297896404446 3.888E-09 9.015E-10 3.480E-10
ETOT 7 -2.1297896404254 1.920E-11 3.020E-10 1.287E-11
ETOT 8 -2.1297896404208 4.527E-12 5.765E-12 7.803E-13
ETOT 9 -2.1297896404208 3.419E-14 1.915E-12 1.836E-14
ETOT 10 -2.1297896404208 -6.217E-15 3.709E-14 7.267E-16
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.37845380E-06 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -5.37845380E-06 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -5.37845380E-06 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum residual= 3.709E-14 exceeds tolwfr= 1.000E-16
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: -6.217E-15, res2: 7.267E-16, residm: 3.709E-14, diffor: null, }
etotal : -2.12978964E+00
entropy : 0.00000000E+00
fermie : 1.59992160E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.37845380E-06, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -5.37845380E-06, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -5.37845380E-06, ]
pressure_GPa: 1.5824E-01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.05000 1.00717507
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.060602065122579
Compensation charge over fine fft grid = -0.060606749209637
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
0.17957 0.00000 0.00000 0.00000 -0.00570 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.03269 0.00000 0.00000 0.00000 -0.00499 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.03269 0.00000 0.00000 0.00000 -0.00499 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.03269 0.00000 0.00000 0.00000 -0.00499 0.00000 0.00000 0.00000 0.00000 ...
-0.00570 0.00000 0.00000 0.00000 -0.44950 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 -0.00499 0.00000 0.00000 0.00000 -0.05471 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.00499 0.00000 0.00000 0.00000 -0.05471 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.00499 0.00000 0.00000 0.00000 -0.05471 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06756 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06756 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06757 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.06756 ...
... only 12 components have been written...
Total pseudopotential strength Dij (eV):
4.88631 0.00000 0.00000 0.00000 -0.15520 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.88966 0.00000 0.00000 0.00000 -0.13582 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.88966 0.00000 0.00000 0.00000 -0.13582 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.88966 0.00000 0.00000 0.00000 -0.13582 0.00000 0.00000 0.00000 0.00000 ...
-0.15520 0.00000 0.00000 0.00000 -12.23146 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 -0.13582 0.00000 0.00000 0.00000 -1.48865 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.13582 0.00000 0.00000 0.00000 -1.48865 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.13582 0.00000 0.00000 0.00000 -1.48865 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.83838 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.83838 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.83874 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.83838 ...
... only 12 components have been written...
Augmentation waves occupancies Rhoij:
1.36829 0.00000 0.00000 0.00000 -0.02017 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.74989 0.00000 0.00000 0.00000 -0.02727 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 ...
0.00000 0.00000 0.74989 0.00000 0.00000 0.00000 -0.02727 0.00000 -0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.74989 0.00000 0.00000 0.00000 -0.02727 0.00000 -0.00000 0.00000 0.00000 ...
-0.02017 0.00000 0.00000 0.00000 0.00095 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 -0.02727 0.00000 0.00000 0.00000 0.00119 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.02727 0.00000 0.00000 0.00000 0.00119 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.02727 0.00000 0.00000 0.00000 0.00119 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03428 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03428 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01393 0.00000 ...
0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.03428 ...
... only 12 components have been written...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 46.725E-16; max= 37.086E-15
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t62o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.15999 Average Vxc (hartree)= -0.35924
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.17550 0.30086 0.57564 0.57564
occupation numbers for kpt# 1
2.00000 0.00034 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 4.35361 Average Vxc (eV)= -9.77535
Eigenvalues ( eV ) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-4.77555 8.18691 15.66393 15.66393
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 8.39963446309749E-01
hartree : 4.47715248794674E-03
xc : -9.47399269206170E-01
Ewald energy : -2.71472096493581E+00
psp_core : 3.48670105168546E-01
local_psp : 2.54744245967518E-02
spherical_terms : 3.21746903279720E-01
internal : -2.12178820229927E+00
'-kT*entropy' : -8.00144031070548E-03
total_energy : -2.12978964260997E+00
total_energy_eV : -5.79545235061122E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.93011593903130E-02
Ewald energy : -2.71472096493581E+00
psp_core : 3.48670105168546E-01
xc_dc : 1.27793068089071E-01
spherical_terms : 7.71684321777645E-02
internal : -2.12178820011012E+00
'-kT*entropy' : -8.00144031070548E-03
total_energy_dc : -2.12978964042082E+00
total_energy_dc_eV : -5.79545234465423E+01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.37845380E-06 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -5.37845380E-06 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -5.37845380E-06 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 1.5824E-01 GPa]
- sigma(1 1)= -1.58239547E-01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -1.58239547E-01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -1.58239547E-01 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 2.69815390E+01
ecut 1.00000000E+01 Hartree
enunit 2
etotal1 -2.1297910889E+00
etotal2 -2.1297896404E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
- fftalg 512
intxc 1
ixc 7
jdtset 1 2
kpt 1.00000000E+00 1.00000000E+00 1.00000000E+00
1.00000000E+00 2.00000000E+00 2.00000000E+00
kptnrm 4.00000000E+00
kptopt 0
P mkmem 2
natom 1
nband 4
ndtset 2
ngfft 16 16 16
ngfftdg 20 20 20
nkpt 2
nline 3
nstep 10
nsym 24
ntypat 1
occ1 2.000000 0.000344 0.000000 0.000000
2.000036 1.333018 0.000164 0.000000
occ2 2.000000 0.000344 0.000000 0.000000
2.000036 1.333018 0.000164 0.000000
occopt 4
pawecutdg 1.50000000E+01 Hartree
pawmixdg 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 216
strten1 -5.8840777318E-06 -5.8840777318E-06 -5.8840777318E-06
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 -5.3784537987E-06 -5.3784537987E-06 -5.3784537987E-06
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 0 1 -1 1 0 0 -1 1 0 -1 0 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 -1 0 0 -1 1 1 -1 0
0 -1 1 1 -1 0 0 -1 0 0 1 -1 0 0 -1 1 0 -1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 1 -1 0 0 -1 0 0 -1 1
-1 0 0 -1 1 0 -1 0 1 0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0
-1 0 1 -1 1 0 -1 0 0 0 0 -1 0 1 -1 1 0 -1
1 0 -1 0 0 -1 0 1 -1 1 -1 0 0 -1 1 0 -1 0
0 -1 0 1 -1 0 0 -1 1 -1 1 0 -1 0 0 -1 0 1
tolwfr 1.00000000E-16
tsmear 5.00000000E-02 Hartree
typat 1
usexcnhat1 -1
usexcnhat2 1
useylm 1
wtk 0.25000 0.75000
znucl 13.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 0.8 wall= 0.9
================================================================================
Calculation completed.
.Delivered 4 WARNINGs and 3 COMMENTs to log file.
+Overall time at end (sec) : cpu= 0.8 wall= 0.9