abinit/tests/v7/Refs/t32.abo

946 lines
50 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h12 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t32/t32.abi
- output file -> t32.abo
- root for input files -> t32i
- root for output files -> t32o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 256
mpw = 168 nfft = 4096 nkpt = 256
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 10.100 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.627 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 4 mffmem = 1 mkmem = 256
mpw = 168 nfft = 4096 nkpt = 256
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 10.100 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 2.627 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0699000000E+01 1.0699000000E+01 1.0699000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
ecut 5.00000000E+00 Hartree
ecutsm 5.00000000E-01 Hartree
- fftalg 512
ixc 11
jdtset 1 2
kpt -1.25000000E-01 0.00000000E+00 0.00000000E+00
-1.25000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 1.25000000E-01
-1.25000000E-01 1.25000000E-01 1.25000000E-01
-3.75000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 1.25000000E-01 0.00000000E+00
-1.25000000E-01 2.50000000E-01 0.00000000E+00
-1.25000000E-01 0.00000000E+00 5.00000000E-01
-2.50000000E-01 0.00000000E+00 3.75000000E-01
-1.25000000E-01 1.25000000E-01 3.75000000E-01
-3.75000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 1.25000000E-01 2.50000000E-01
-1.25000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 0.00000000E+00 1.25000000E-01
-3.75000000E-01 1.25000000E-01 1.25000000E-01
-2.50000000E-01 2.50000000E-01 1.25000000E-01
-1.25000000E-01 3.75000000E-01 1.25000000E-01
3.75000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 1.25000000E-01 0.00000000E+00
-3.75000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 3.75000000E-01 0.00000000E+00
-1.25000000E-01 5.00000000E-01 0.00000000E+00
-1.25000000E-01 0.00000000E+00 -2.50000000E-01
-2.50000000E-01 0.00000000E+00 -3.75000000E-01
-1.25000000E-01 1.25000000E-01 -3.75000000E-01
-3.75000000E-01 0.00000000E+00 5.00000000E-01
-2.50000000E-01 1.25000000E-01 5.00000000E-01
-1.25000000E-01 2.50000000E-01 5.00000000E-01
5.00000000E-01 0.00000000E+00 3.75000000E-01
-3.75000000E-01 1.25000000E-01 3.75000000E-01
-2.50000000E-01 2.50000000E-01 3.75000000E-01
-1.25000000E-01 3.75000000E-01 3.75000000E-01
3.75000000E-01 0.00000000E+00 2.50000000E-01
5.00000000E-01 1.25000000E-01 2.50000000E-01
-3.75000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 3.75000000E-01 2.50000000E-01
-1.25000000E-01 5.00000000E-01 2.50000000E-01
2.50000000E-01 0.00000000E+00 1.25000000E-01
3.75000000E-01 1.25000000E-01 1.25000000E-01
5.00000000E-01 2.50000000E-01 1.25000000E-01
-3.75000000E-01 3.75000000E-01 1.25000000E-01
-2.50000000E-01 5.00000000E-01 1.25000000E-01
-1.25000000E-01 -3.75000000E-01 1.25000000E-01
1.25000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 1.25000000E-01 0.00000000E+00
3.75000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 3.75000000E-01 0.00000000E+00
-3.75000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -3.75000000E-01 0.00000000E+00
-1.25000000E-01 -2.50000000E-01 0.00000000E+00
outvar_i_n : Printing only first 50 k-points.
kptopt 3
kptrlatt 4 4 -4 -4 4 -4 -4 4 4
kptrlen 4.27960000E+01
P mkmem 256
natom 2
nband 4
ndtset 2
ngfft 16 16 16
ngfftdg 24 24 24
nkpt 256
nstep 20
nsym 1
ntypat 2
nucdipmom1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
nucdipmom2 0.0000000000E+00 0.0000000000E+00 1.0000000000E+01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
occ 2.000000 2.000000 2.000000 2.000000
optforces 0
optstress 0
pawcpxocc 2
pawecutdg 1.00000000E+01 Hartree
pawprtvol -1
prtden 0
prteig 0
prtwf 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
symmorphi 0
tolvrs 1.00000000E-12
typat 1 2
usexcnhat 0
useylm 1
wtk 0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391
outvars : Printing only first 50 k-points.
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4154167387E+00 1.4154167387E+00 1.4154167387E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6747500000E+00 2.6747500000E+00 2.6747500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 256, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 168, }
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3495000 5.3495000 G(1)= -0.0934667 0.0934667 0.0934667
R(2)= 5.3495000 0.0000000 5.3495000 G(2)= 0.0934667 -0.0934667 0.0934667
R(3)= 5.3495000 5.3495000 0.0000000 G(3)= 0.0934667 0.0934667 -0.0934667
Unit cell volume ucvol= 3.0617489E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10108
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.22853
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 12.415833 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.GGA-PBE-rpaw-2.00.abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Al.GGA-PBE-rpaw-2.00.abinit
- Paw atomic data for element Al - Generated with atompaw v4.0.0.10
- 13.00000 3.00000 20141221 znucl, zion, pspdat
7 11 1 0 473 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.01466516
5 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 473 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 468 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 521 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 569 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size= 615 , AA= 0.12205E-02 BB= 0.15866E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.71890209
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/As.GGA-PBE-rpaw-2.10.abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/As.GGA-PBE-rpaw-2.10.abinit
- Paw atomic data for element As - Generated with atompaw v3.1.0.3
- 33.00000 5.00000 20150317 znucl, zion, pspdat
7 11 1 0 1074 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.10391912
5 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1074 , AA= 0.25579E-03 BB= 0.84411E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1069 , AA= 0.25579E-03 BB= 0.84411E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1189 , AA= 0.25579E-03 BB= 0.84411E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1253 , AA= 0.25579E-03 BB= 0.84411E-02
- mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size=1313 , AA= 0.25579E-03 BB= 0.84411E-02
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
3.09629890E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 163.313 163.296
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -8.5656447878961 -8.566E+00 2.841E-02 4.535E-01
ETOT 2 -8.5638229580790 1.822E-03 4.740E-07 6.913E-02
ETOT 3 -8.5635545875269 2.684E-04 3.922E-06 2.914E-03
ETOT 4 -8.5636600410055 -1.055E-04 1.702E-08 3.130E-04
ETOT 5 -8.5636939804760 -3.394E-05 5.780E-09 8.942E-06
ETOT 6 -8.5636946423877 -6.619E-07 1.447E-09 6.168E-07
ETOT 7 -8.5636946827018 -4.031E-08 3.992E-11 2.560E-08
ETOT 8 -8.5636946853534 -2.652E-09 1.848E-12 2.463E-09
ETOT 9 -8.5636946856204 -2.670E-10 1.163E-13 1.114E-10
ETOT 10 -8.5636946856285 -8.098E-12 1.646E-14 8.308E-12
ETOT 11 -8.5636946856293 -8.189E-13 6.979E-15 3.942E-13
At SCF step 11 nres2 = 3.94E-13 < tolvrs= 1.00E-12 =>converged.
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3495000, 5.3495000, ]
- [ 5.3495000, 0.0000000, 5.3495000, ]
- [ 5.3495000, 5.3495000, 0.0000000, ]
lattice_lengths: [ 7.56534, 7.56534, 7.56534, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0617489E+02
convergence: {deltae: -8.189E-13, res2: 3.942E-13, residm: 6.979E-15, diffor: 0.000E+00, }
etotal : -8.56369469E+00
entropy : 0.00000000E+00
fermie : 4.81303048E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 0.88569425
2 2.10392 2.77354881
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.435432520234694
Compensation charge over fine fft grid = -0.435433414276319
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.31921 0.00593 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
0.00593 0.70504 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000
0.00000 0.00000 0.07210 0.00000 -0.00000 0.00702 0.00000 0.00000
0.00000 0.00000 0.00000 0.07210 0.00000 0.00000 0.00702 0.00000
-0.00000 0.00000 -0.00000 0.00000 0.07210 0.00000 0.00000 0.00702
-0.00000 -0.00000 0.00702 0.00000 0.00000 0.15637 0.00000 -0.00000
-0.00000 -0.00000 0.00000 0.00702 0.00000 0.00000 0.15637 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00702 -0.00000 -0.00000 0.15637
max. value= 7.05E-01, min. value= 0.00E+00
Atom # 2
-0.02098 -0.02938 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
-0.02938 -1.09461 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 -0.07992 0.00000 0.00000 -0.25812 0.00000 0.00000
0.00000 0.00000 0.00000 -0.07992 0.00000 0.00000 -0.25812 0.00000
-0.00000 -0.00000 0.00000 0.00000 -0.07992 0.00000 0.00000 -0.25812
0.00000 0.00000 -0.25812 0.00000 0.00000 -0.91465 0.00000 -0.00000
0.00000 0.00000 0.00000 -0.25812 0.00000 0.00000 -0.91465 -0.00000
-0.00000 -0.00000 0.00000 0.00000 -0.25812 -0.00000 -0.00000 -0.91465
max. value= 1.09E+00, min. value= 0.00E+00
Augmentation waves occupancies Rhoij:
Atom # 1
=== REAL PART:
1.25214 -0.01079 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
-0.01079 0.00016 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 0.82551 0.00000 -0.00000 0.00834 0.00000 -0.00000
0.00000 -0.00000 0.00000 0.82551 -0.00000 0.00000 0.00834 -0.00000
-0.00000 0.00000 -0.00000 -0.00000 0.82551 -0.00000 -0.00000 0.00834
0.00000 0.00000 0.00834 0.00000 -0.00000 0.00010 0.00000 0.00000
0.00000 0.00000 0.00000 0.00834 -0.00000 0.00000 0.00010 0.00000
-0.00000 0.00000 -0.00000 -0.00000 0.00834 0.00000 0.00000 0.00010
max. value= 1.25E+00, min. value= -1.08E-02
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
max. value= 8.65E-12, min. value= -1.20E-11
Atom # 2
=== REAL PART:
1.64570 0.00530 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
0.00530 0.00028 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 1.54577 -0.00000 0.00000 -0.03737 -0.00000 0.00000
0.00000 -0.00000 -0.00000 1.54577 0.00000 -0.00000 -0.03737 0.00000
-0.00000 0.00000 0.00000 0.00000 1.54577 0.00000 0.00000 -0.03737
-0.00000 0.00000 -0.03737 -0.00000 0.00000 0.00142 0.00000 0.00000
-0.00000 0.00000 -0.00000 -0.03737 0.00000 0.00000 0.00142 0.00000
0.00000 -0.00000 0.00000 0.00000 -0.03737 0.00000 0.00000 0.00142
max. value= 1.65E+00, min. value= -3.74E-02
=== IMAGINARY PART:
0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000
-0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
max. value= 5.21E-12, min. value= -2.16E-12
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.862E-16; max= 69.792E-16
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.41541673867610 1.41541673867610 1.41541673867610
length scales= 10.699000000000 10.699000000000 10.699000000000 bohr
= 5.661666954704 5.661666954704 5.661666954704 angstroms
Fermi (or HOMO) energy (hartree) = 0.04813 Average Vxc (hartree)= -0.33041
Eigenvalues (hartree) for nkpt= 256 k points:
kpt# 1, nband= 4, wtk= 0.00391, kpt= -0.1250 0.0000 0.0000 (reduced coord)
-0.37547 0.00203 0.04813 0.04813
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.10125324813558E+00
hartree : 8.11079900201652E-01
xc : -7.29502812731881E+00
Ewald energy : -8.40935552952192E+00
psp_core : 1.01128439909809E+00
local_psp : -2.06161470574179E+00
spherical_terms : 4.27868634400595E+00
total_energy : -8.56369447114126E+00
total_energy_eV : -2.33029977513984E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -9.36299627379517E-01
Ewald energy : -8.40935552952192E+00
psp_core : 1.01128439909809E+00
xc_dc : -4.32659079581500E+00
spherical_terms : 4.09726686798903E+00
total_energy_dc : -8.56369468562931E+00
total_energy_dc_eV : -2.33029983350501E+02
...
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 256, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 168, }
cutoff_energies: {ecut: 5.0, pawecutdg: 10.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3495000 5.3495000 G(1)= -0.0934667 0.0934667 0.0934667
R(2)= 5.3495000 0.0000000 5.3495000 G(2)= 0.0934667 -0.0934667 0.0934667
R(3)= 5.3495000 5.3495000 0.0000000 G(3)= 0.0934667 0.0934667 -0.0934667
Unit cell volume ucvol= 3.0617489E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.10108
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.22853
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 12.415833 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 163.313 163.296
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -8.5656500993461 -8.566E+00 2.840E-02 4.534E-01
ETOT 2 -8.5638307968703 1.819E-03 4.707E-07 6.913E-02
ETOT 3 -8.5635622774780 2.685E-04 3.930E-06 2.913E-03
ETOT 4 -8.5636677306287 -1.055E-04 1.703E-08 3.130E-04
ETOT 5 -8.5637016677930 -3.394E-05 5.782E-09 8.941E-06
ETOT 6 -8.5637023301292 -6.623E-07 1.445E-09 6.166E-07
ETOT 7 -8.5637023704401 -4.031E-08 3.980E-11 2.559E-08
ETOT 8 -8.5637023730907 -2.651E-09 1.849E-12 2.465E-09
ETOT 9 -8.5637023733581 -2.673E-10 1.164E-13 1.115E-10
ETOT 10 -8.5637023733662 -8.189E-12 1.648E-14 8.328E-12
ETOT 11 -8.5637023733670 -7.372E-13 6.952E-15 3.961E-13
At SCF step 11 nres2 = 3.96E-13 < tolvrs= 1.00E-12 =>converged.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3495000, 5.3495000, ]
- [ 5.3495000, 0.0000000, 5.3495000, ]
- [ 5.3495000, 5.3495000, 0.0000000, ]
lattice_lengths: [ 7.56534, 7.56534, 7.56534, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0617489E+02
convergence: {deltae: -7.372E-13, res2: 3.961E-13, residm: 6.952E-15, diffor: 0.000E+00, }
etotal : -8.56370237E+00
entropy : 0.00000000E+00
fermie : 4.82537202E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 0.88570894
2 2.10392 2.77354303
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.435433436452925
Compensation charge over fine fft grid = -0.435434330878866
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
=== REAL PART:
0.31921 0.00593 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
0.00593 0.70504 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000
0.00000 0.00000 0.07210 0.00000 -0.00000 0.00702 0.00000 0.00000
0.00000 0.00000 0.00000 0.07210 0.00000 0.00000 0.00702 0.00000
-0.00000 0.00000 -0.00000 0.00000 0.07210 0.00000 0.00000 0.00702
-0.00000 -0.00000 0.00702 0.00000 0.00000 0.15637 0.00000 -0.00000
-0.00000 -0.00000 0.00000 0.00702 0.00000 0.00000 0.15637 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00702 -0.00000 -0.00000 0.15637
max. value= 7.05E-01, min. value= -7.36E-10
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00066 -0.00000 -0.00000 -0.00074
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00066 0.00000 -0.00000 0.00074 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00074 -0.00000 -0.00000 -0.00066
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00074 0.00000 0.00000 0.00066 0.00000 -0.00000
max. value= 7.38E-04, min. value= -7.38E-04
Atom # 2
=== REAL PART:
-0.02098 -0.02938 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
-0.02938 -1.09458 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 -0.07992 0.00000 0.00000 -0.25812 0.00000 0.00000
0.00000 0.00000 0.00000 -0.07992 0.00000 0.00000 -0.25812 0.00000
-0.00000 -0.00000 0.00000 0.00000 -0.07992 0.00000 0.00000 -0.25812
0.00000 0.00000 -0.25812 0.00000 0.00000 -0.91465 0.00000 -0.00000
0.00000 0.00000 0.00000 -0.25812 0.00000 0.00000 -0.91465 -0.00000
-0.00000 -0.00000 0.00000 0.00000 -0.25812 -0.00000 -0.00000 -0.91465
max. value= 9.65E-08, min. value= -1.09E+00
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
max. value= 0.00E+00, min. value= 0.00E+00
Augmentation waves occupancies Rhoij:
Atom # 1
=== REAL PART:
1.25213 -0.01079 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
-0.01079 0.00016 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 0.82561 0.00000 -0.00000 0.00833 0.00000 -0.00000
0.00000 -0.00000 0.00000 0.82550 -0.00000 0.00000 0.00834 -0.00000
-0.00000 0.00000 -0.00000 -0.00000 0.82561 -0.00000 -0.00000 0.00833
0.00000 0.00000 0.00833 0.00000 -0.00000 0.00010 0.00000 -0.00000
0.00000 0.00000 0.00000 0.00834 -0.00000 0.00000 0.00010 0.00000
-0.00000 0.00000 -0.00000 -0.00000 0.00833 -0.00000 0.00000 0.00010
max. value= 1.25E+00, min. value= -1.08E-02
=== IMAGINARY PART:
0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 0.00000 -0.00000 -0.01157 -0.00000 0.00000 0.00028
0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000
-0.00000 -0.00000 0.01157 -0.00000 -0.00000 -0.00028 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00028 0.00000 -0.00000 0.00001
0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00028 0.00000 -0.00000 -0.00001 0.00000 0.00000
max. value= 1.16E-02, min. value= -2.78E-04
Atom # 2
=== REAL PART:
1.64569 0.00530 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
0.00530 0.00028 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 1.54577 -0.00000 0.00000 -0.03737 -0.00000 0.00000
0.00000 -0.00000 -0.00000 1.54576 0.00000 -0.00000 -0.03737 0.00000
-0.00000 0.00000 0.00000 0.00000 1.54577 0.00000 0.00000 -0.03737
-0.00000 0.00000 -0.03737 -0.00000 0.00000 0.00142 0.00000 -0.00000
-0.00000 0.00000 -0.00000 -0.03737 0.00000 0.00000 0.00142 0.00000
0.00000 -0.00000 0.00000 0.00000 -0.03737 -0.00000 0.00000 0.00142
max. value= 1.65E+00, min. value= -3.74E-02
=== IMAGINARY PART:
0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 -0.00000 0.00000 -0.00041 0.00000 0.00000 -0.00002
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 0.00041 0.00000 -0.00000 0.00002 0.00000 0.00000
-0.00000 -0.00000 -0.00000 0.00000 -0.00002 0.00000 -0.00000 0.00000
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000
-0.00000 -0.00000 0.00002 0.00000 -0.00000 -0.00000 0.00000 -0.00000
max. value= 4.14E-04, min. value= -2.13E-05
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.800E-16; max= 69.521E-16
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.41541673867610 1.41541673867610 1.41541673867610
length scales= 10.699000000000 10.699000000000 10.699000000000 bohr
= 5.661666954704 5.661666954704 5.661666954704 angstroms
Fermi (or HOMO) energy (hartree) = 0.04825 Average Vxc (hartree)= -0.33040
Eigenvalues (hartree) for nkpt= 256 k points:
kpt# 1, nband= 4, wtk= 0.00391, kpt= -0.1250 0.0000 0.0000 (reduced coord)
-0.37547 0.00203 0.04800 0.04825
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 3.10126466169555E+00
hartree : 8.11077720543865E-01
xc : -7.29502840625032E+00
Ewald energy : -8.40935552952192E+00
psp_core : 1.01128439909809E+00
local_psp : -2.06162446020580E+00
spherical_terms : 4.27868040620939E+00
nucl. magn. dipoles : -9.49565582065762E-07
total_energy : -8.56370215799674E+00
total_energy_eV : -2.33030186683960E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -9.36308590114048E-01
Ewald energy : -8.40935552952192E+00
psp_core : 1.01128439909809E+00
xc_dc : -4.32658891142287E+00
spherical_terms : 4.09726625859377E+00
total_energy_dc : -8.56370237336698E+00
total_energy_dc_eV : -2.33030192544482E+02
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0699000000E+01 1.0699000000E+01 1.0699000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
ecut 5.00000000E+00 Hartree
ecutsm 5.00000000E-01 Hartree
etotal1 -8.5636946856E+00
etotal2 -8.5637023734E+00
fcart1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
fcart2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
- fftalg 512
ixc 11
jdtset 1 2
kpt -1.25000000E-01 0.00000000E+00 0.00000000E+00
-1.25000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 1.25000000E-01
-1.25000000E-01 1.25000000E-01 1.25000000E-01
-3.75000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 1.25000000E-01 0.00000000E+00
-1.25000000E-01 2.50000000E-01 0.00000000E+00
-1.25000000E-01 0.00000000E+00 5.00000000E-01
-2.50000000E-01 0.00000000E+00 3.75000000E-01
-1.25000000E-01 1.25000000E-01 3.75000000E-01
-3.75000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 1.25000000E-01 2.50000000E-01
-1.25000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 0.00000000E+00 1.25000000E-01
-3.75000000E-01 1.25000000E-01 1.25000000E-01
-2.50000000E-01 2.50000000E-01 1.25000000E-01
-1.25000000E-01 3.75000000E-01 1.25000000E-01
3.75000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 1.25000000E-01 0.00000000E+00
-3.75000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 3.75000000E-01 0.00000000E+00
-1.25000000E-01 5.00000000E-01 0.00000000E+00
-1.25000000E-01 0.00000000E+00 -2.50000000E-01
-2.50000000E-01 0.00000000E+00 -3.75000000E-01
-1.25000000E-01 1.25000000E-01 -3.75000000E-01
-3.75000000E-01 0.00000000E+00 5.00000000E-01
-2.50000000E-01 1.25000000E-01 5.00000000E-01
-1.25000000E-01 2.50000000E-01 5.00000000E-01
5.00000000E-01 0.00000000E+00 3.75000000E-01
-3.75000000E-01 1.25000000E-01 3.75000000E-01
-2.50000000E-01 2.50000000E-01 3.75000000E-01
-1.25000000E-01 3.75000000E-01 3.75000000E-01
3.75000000E-01 0.00000000E+00 2.50000000E-01
5.00000000E-01 1.25000000E-01 2.50000000E-01
-3.75000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 3.75000000E-01 2.50000000E-01
-1.25000000E-01 5.00000000E-01 2.50000000E-01
2.50000000E-01 0.00000000E+00 1.25000000E-01
3.75000000E-01 1.25000000E-01 1.25000000E-01
5.00000000E-01 2.50000000E-01 1.25000000E-01
-3.75000000E-01 3.75000000E-01 1.25000000E-01
-2.50000000E-01 5.00000000E-01 1.25000000E-01
-1.25000000E-01 -3.75000000E-01 1.25000000E-01
1.25000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 1.25000000E-01 0.00000000E+00
3.75000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 3.75000000E-01 0.00000000E+00
-3.75000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -3.75000000E-01 0.00000000E+00
-1.25000000E-01 -2.50000000E-01 0.00000000E+00
outvar_i_n : Printing only first 50 k-points.
kptopt 3
kptrlatt 4 4 -4 -4 4 -4 -4 4 4
kptrlen 4.27960000E+01
P mkmem 256
natom 2
nband 4
ndtset 2
ngfft 16 16 16
ngfftdg 24 24 24
nkpt 256
nstep 20
nsym 1
ntypat 2
nucdipmom1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
nucdipmom2 0.0000000000E+00 0.0000000000E+00 1.0000000000E+01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
occ 2.000000 2.000000 2.000000 2.000000
optforces 0
optstress 0
pawcpxocc 2
pawecutdg 1.00000000E+01 Hartree
pawprtvol -1
prtden 0
prteig 0
prtwf 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
strten1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
strten2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
symmorphi 0
tolvrs 1.00000000E-12
typat 1 2
usexcnhat 0
useylm 1
wtk 0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391 0.00391 0.00391 0.00391 0.00391
0.00391 0.00391
outvars : Printing only first 50 k-points.
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4154167387E+00 1.4154167387E+00 1.4154167387E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6747500000E+00 2.6747500000E+00 2.6747500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 19.6 wall= 19.7
================================================================================
Calculation completed.
.Delivered 22 WARNINGs and 12 COMMENTs to log file.
+Overall time at end (sec) : cpu= 19.6 wall= 19.7