abinit/tests/v7/Refs/t26.abo

1105 lines
54 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h12 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v7_t26/t26.abi
- output file -> t26.abo
- root for input files -> t26i
- root for output files -> t26o
DATASET 1 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 24 mpssoang = 2 mqgrid = 3001
natom = 7 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 12 mffmem = 1 mkmem = 1
mpw = 675 nfft = 13824 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 8.260 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.126 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 2 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 24 mpssoang = 2 mqgrid = 3001
natom = 7 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 12 mffmem = 1 mkmem = 1
mpw = 675 nfft = 13824 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 8.260 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.126 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 3 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 24 mpssoang = 2 mqgrid = 3001
natom = 7 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 12 mffmem = 1 mkmem = 1
mpw = 675 nfft = 13824 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 8.260 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.126 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 6.94100000E+00 1.00794000E+00
cellcharge -1.00000000E+00
diemac 2.00000000E+00
ecut 1.00000000E+01 Hartree
enunit 1
- fftalg 512
ixc 7
jdtset 1 2 3
kpt 2.50000000E-01 2.50000000E-01 2.50000000E-01
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.52000000E+01
P mkmem 1
natom 7
nband 12
ndtset 3
ngfft 24 24 24
ngfftdg 30 30 30
nkpt 1
nsym 48
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
optforces 0
optstress 0
pawecutdg 1.50000000E+01 Hartree
prtden 0
prtvol 2
prtwf 0
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
toldfe 1.00000000E-07 Hartree
typat 2 1 2 1 2 1 2
usepotzero1 0
usepotzero2 1
usepotzero3 2
useylm 1
xangst 2.0108733926E+00 2.0108733926E+00 2.0108733926E+00
0.0000000000E+00 2.0108733926E+00 2.0108733926E+00
2.0108733926E+00 0.0000000000E+00 0.0000000000E+00
2.0108733926E+00 0.0000000000E+00 2.0108733926E+00
0.0000000000E+00 2.0108733926E+00 0.0000000000E+00
2.0108733926E+00 2.0108733926E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.0108733926E+00
xcart 3.8000000000E+00 3.8000000000E+00 3.8000000000E+00
0.0000000000E+00 3.8000000000E+00 3.8000000000E+00
3.8000000000E+00 0.0000000000E+00 0.0000000000E+00
3.8000000000E+00 0.0000000000E+00 3.8000000000E+00
0.0000000000E+00 3.8000000000E+00 0.0000000000E+00
3.8000000000E+00 3.8000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.8000000000E+00
xred 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 3.00000 1.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 7, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 675, }
cutoff_energies: {ecut: 10.0, pawecutdg: 15.0, }
electrons: {nelect: 1.40000000E+01, charge: -1.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.6000000 0.0000000 0.0000000 G(1)= 0.1315789 0.0000000 0.0000000
R(2)= 0.0000000 7.6000000 0.0000000 G(2)= 0.0000000 0.1315789 0.0000000
R(3)= 0.0000000 0.0000000 7.6000000 G(3)= 0.0000000 0.0000000 0.1315789
Unit cell volume ucvol= 4.3897600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.21836
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 12.302831 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 15.000 => boxcut(ratio)= 2.26411
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.223173 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Li.LDA-PW-paw.abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Li.LDA-PW-paw.abinit
- Paw atomic data for element Li - Generated by atompaw v3.0.1.9 & AtomPAW2Abinit v3.3.1
- 3.00000 3.00000 20130717 znucl, zion, pspdat
7 7 1 0 1277 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.61126257
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1277 , AA= 0.17851E-02 BB= 0.53552E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1272 , AA= 0.17851E-02 BB= 0.53552E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1612 , AA= 0.17851E-02 BB= 0.53552E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1754 , AA= 0.17851E-02 BB= 0.53552E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 3
Radial grid used for pseudo valence density is grid 4
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/H.LDA-PW-paw.abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/H.LDA-PW-paw.abinit
- Paw atomic data for element H - Generated by atompaw v3.0.1.9 & AtomPAW2Abinit v3.3.1
- 1.00000 1.00000 20130717 znucl, zion, pspdat
7 7 0 0 366 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 1 (lmn_size= 1), orbitals= 0
Spheres core radius: rc_sph= 0.90000000
5 radial meshes are used:
- mesh 1: r(i)=step*(i-1), size= 366 , step= 0.25000E-02
- mesh 2: r(i)=step*(i-1), size= 361 , step= 0.25000E-02
- mesh 3: r(i)=step*(i-1), size= 386 , step= 0.25000E-02
- mesh 4: r(i)=step*(i-1), size=4001 , step= 0.25000E-02
- mesh 5: r(i)=step*(i-1), size=5572 , step= 0.25000E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
1.25946436E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 12 bands with npw= 675 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 675.000 675.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 30, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-07, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -24.427266489898 -2.443E+01 1.168E-01 2.203E+00
ETOT 2 -24.555164592540 -1.279E-01 6.660E-03 5.728E-02
ETOT 3 -24.554004676947 1.160E-03 1.354E-03 2.380E-03
ETOT 4 -24.554071267672 -6.659E-05 2.011E-04 1.031E-03
ETOT 5 -24.554065342587 5.925E-06 3.268E-04 2.350E-04
ETOT 6 -24.554065756753 -4.142E-07 2.230E-05 2.675E-05
ETOT 7 -24.554065452886 3.039E-07 9.300E-05 7.719E-07
ETOT 8 -24.554065464421 -1.154E-08 7.166E-06 1.015E-07
ETOT 9 -24.554065463183 1.238E-09 2.686E-05 6.848E-09
At SCF step 9, etot is converged :
for the second time, diff in etot= 1.238E-09 < toldfe= 1.000E-07
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.6000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.6000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.6000000, ]
lattice_lengths: [ 7.60000, 7.60000, 7.60000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.3897600E+02
convergence: {deltae: 1.238E-09, res2: 6.848E-09, residm: 2.686E-05, diffor: 0.000E+00, }
etotal : -2.45540655E+01
entropy : 0.00000000E+00
fermie : -7.24674225E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, H]
- [ 0.0000E+00, 5.0000E-01, 5.0000E-01, Li]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, H]
- [ 5.0000E-01, 0.0000E+00, 5.0000E-01, Li]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, H]
- [ 5.0000E-01, 5.0000E-01, 0.0000E+00, Li]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, H]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 0.90000 0.34175288
2 1.61126 2.09827861
3 0.90000 0.33249740
4 1.61126 2.09827861
5 0.90000 0.33249740
6 1.61126 2.09827861
7 0.90000 0.33249740
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 3.835610522578178
Compensation charge over fine fft grid = 3.835669406436409
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (eV):
Atom # 1
-0.99289
Atom # 7
-0.98665
Augmentation waves occupancies Rhoij:
Atom # 1
1.34653
Atom # 7
1.31358
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 22.400E-07; max= 26.863E-06
0.2500 0.2500 0.2500 1 2.68632E-05 kpt; spin; max resid(k); each band:
5.88E-13 2.67E-14 3.13E-14 2.22E-10 2.07E-10 5.71E-12 8.22E-12 6.69E-12
6.66E-12 7.41E-11 1.59E-08 2.69E-05
reduced coordinates (array xred) for 7 atoms
0.500000000000 0.500000000000 0.500000000000
0.000000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.500000000000 0.000000000000 0.500000000000
0.000000000000 0.500000000000 0.000000000000
0.500000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
6 0.000000000000 0.000000000000 0.000000000000
7 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 2.01087339264200 2.01087339264200 2.01087339264200
2 0.00000000000000 2.01087339264200 2.01087339264200
3 2.01087339264200 0.00000000000000 0.00000000000000
4 2.01087339264200 0.00000000000000 2.01087339264200
5 0.00000000000000 2.01087339264200 0.00000000000000
6 2.01087339264200 2.01087339264200 0.00000000000000
7 0.00000000000000 0.00000000000000 2.01087339264200
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS1_EIG
Fermi (or HOMO) energy (eV) = -1.97194 Average Vxc (eV)= -8.32456
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-44.81945 -44.79578 -44.79578 -5.31732 -3.04994 -1.97194 -1.97194 4.15684
4.15684 5.27698 7.22774 8.30412
Total charge density [el/Bohr^3]
) Maximum= 7.9999E-01 at reduced coord. 0.0000 0.5000 0.5000
)Next maximum= 7.9999E-01 at reduced coord. 0.5000 0.0000 0.5000
) Minimum= 2.6558E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= 2.7348E-03 at reduced coord. 0.0333 0.0000 0.0000
Integrated= 1.4000E+01
Calculation was performed for a charged system with PBC
You may consider including the monopole correction to the total energy
The correction is to be divided by the dielectric constant
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 5.67300568315260E+00
hartree : 3.36794112968568E+00
xc : -3.07480543887914E+00
Ewald energy : -9.60643650480815E+00
psp_core : 2.86909616680841E-01
local_psp : -1.25247663393218E+01
spherical_terms : -8.67589167057010E+00
total_energy : -2.45540435240601E+01
total_energy_eV : -6.68149503648346E+02
monopole_correction : 1.86664307860572E-01
monopole_correction_eV: 5.07939413415525E+00
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.07838798796999E+01
Ewald energy : -9.60643650480815E+00
psp_core : 2.86909616680841E-01
xc_dc : -2.43023480036382E+00
spherical_terms : -2.02042389499165E+00
total_energy_dc : -2.45540654631827E+01
total_energy_dc_eV : -6.68150100642232E+02
...
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 7, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 675, }
cutoff_energies: {ecut: 10.0, pawecutdg: 15.0, }
electrons: {nelect: 1.40000000E+01, charge: -1.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.6000000 0.0000000 0.0000000 G(1)= 0.1315789 0.0000000 0.0000000
R(2)= 0.0000000 7.6000000 0.0000000 G(2)= 0.0000000 0.1315789 0.0000000
R(3)= 0.0000000 0.0000000 7.6000000 G(3)= 0.0000000 0.0000000 0.1315789
Unit cell volume ucvol= 4.3897600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.21836
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 12.302831 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 15.000 => boxcut(ratio)= 2.26411
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.223173 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
P newkpt: treating 12 bands with npw= 675 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 675.000 675.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 30, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-07, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -24.414611367991 -2.441E+01 1.169E-01 2.203E+00
ETOT 2 -24.542276730652 -1.277E-01 6.808E-03 5.708E-02
ETOT 3 -24.541111412215 1.165E-03 1.357E-03 2.368E-03
ETOT 4 -24.541177552726 -6.614E-05 2.029E-04 1.029E-03
ETOT 5 -24.541171670572 5.882E-06 3.288E-04 2.388E-04
ETOT 6 -24.541172046157 -3.756E-07 2.258E-05 2.652E-05
ETOT 7 -24.541171748626 2.975E-07 9.390E-05 8.616E-07
ETOT 8 -24.541171759016 -1.039E-08 7.254E-06 9.723E-08
ETOT 9 -24.541171757910 1.105E-09 2.718E-05 6.192E-09
At SCF step 9, etot is converged :
for the second time, diff in etot= 1.105E-09 < toldfe= 1.000E-07
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.6000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.6000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.6000000, ]
lattice_lengths: [ 7.60000, 7.60000, 7.60000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.3897600E+02
convergence: {deltae: 1.105E-09, res2: 6.192E-09, residm: 2.718E-05, diffor: 0.000E+00, }
etotal : -2.45411718E+01
entropy : 0.00000000E+00
fermie : -5.95884930E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, H]
- [ 0.0000E+00, 5.0000E-01, 5.0000E-01, Li]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, H]
- [ 5.0000E-01, 0.0000E+00, 5.0000E-01, Li]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, H]
- [ 5.0000E-01, 5.0000E-01, 0.0000E+00, Li]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, H]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 0.90000 0.34175214
2 1.61126 2.09833429
3 0.90000 0.33249655
4 1.61126 2.09833429
5 0.90000 0.33249655
6 1.61126 2.09833429
7 0.90000 0.33249655
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 3.837363878136516
Compensation charge over fine fft grid = 3.837422846791212
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (eV):
Atom # 1
-0.99120
Atom # 7
-0.98497
Augmentation waves occupancies Rhoij:
Atom # 1
1.34653
Atom # 7
1.31358
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 22.662E-07; max= 27.178E-06
0.2500 0.2500 0.2500 1 2.71781E-05 kpt; spin; max resid(k); each band:
5.59E-13 2.50E-14 3.00E-14 2.13E-10 1.97E-10 5.64E-12 8.14E-12 6.62E-12
6.58E-12 6.95E-11 1.57E-08 2.72E-05
reduced coordinates (array xred) for 7 atoms
0.500000000000 0.500000000000 0.500000000000
0.000000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.500000000000 0.000000000000 0.500000000000
0.000000000000 0.500000000000 0.000000000000
0.500000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
6 0.000000000000 0.000000000000 0.000000000000
7 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 2.01087339264200 2.01087339264200 2.01087339264200
2 0.00000000000000 2.01087339264200 2.01087339264200
3 2.01087339264200 0.00000000000000 0.00000000000000
4 2.01087339264200 0.00000000000000 2.01087339264200
5 0.00000000000000 2.01087339264200 0.00000000000000
6 2.01087339264200 2.01087339264200 0.00000000000000
7 0.00000000000000 0.00000000000000 2.01087339264200
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS2_EIG
Fermi (or HOMO) energy (eV) = -1.62149 Average Vxc (eV)= -8.32423
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-44.49628 -44.47270 -44.47270 -4.96745 -2.69916 -1.62149 -1.62149 4.50718
4.50718 5.62736 7.57860 8.65475
Total charge density [el/Bohr^3]
) Maximum= 8.0016E-01 at reduced coord. 0.0000 0.5000 0.5000
)Next maximum= 8.0016E-01 at reduced coord. 0.5000 0.0000 0.5000
) Minimum= 2.6557E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= 2.7347E-03 at reduced coord. 0.0333 0.0000 0.0000
Integrated= 1.4000E+01
Calculation was performed for a charged system with PBC
You may consider including the monopole correction to the total energy
The correction is to be divided by the dielectric constant
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 5.67173320876535E+00
hartree : 3.36845527270157E+00
xc : -3.07403544007813E+00
Ewald energy : -9.60643650480815E+00
psp_core : 2.86909616680841E-01
local_psp : -1.25257457375456E+01
spherical_terms : -8.66203229016345E+00
total_energy : -2.45411518744476E+01
total_energy_eV : -6.67798704022153E+02
monopole_correction : 1.86664307860572E-01
monopole_correction_eV: 5.07939413415525E+00
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.06096225281202E+01
Ewald energy : -9.60643650480815E+00
psp_core : 2.86909616680841E-01
xc_dc : -2.43098612955060E+00
spherical_terms : -2.18103621211233E+00
total_energy_dc : -2.45411717579104E+01
total_energy_dc_eV : -6.67799245078691E+02
...
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 7, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 675, }
cutoff_energies: {ecut: 10.0, pawecutdg: 15.0, }
electrons: {nelect: 1.40000000E+01, charge: -1.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.6000000 0.0000000 0.0000000 G(1)= 0.1315789 0.0000000 0.0000000
R(2)= 0.0000000 7.6000000 0.0000000 G(2)= 0.0000000 0.1315789 0.0000000
R(3)= 0.0000000 0.0000000 7.6000000 G(3)= 0.0000000 0.0000000 0.1315789
Unit cell volume ucvol= 4.3897600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.21836
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 12.302831 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 15.000 => boxcut(ratio)= 2.26411
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 19.223173 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
P newkpt: treating 12 bands with npw= 675 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 675.000 675.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 17, nstep: 30, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-07, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -24.714176106579 -2.471E+01 1.168E-01 2.203E+00
ETOT 2 -24.533093231276 1.811E-01 6.660E-03 5.728E-02
ETOT 3 -24.531933316917 1.160E-03 1.354E-03 2.380E-03
ETOT 4 -24.531999907776 -6.659E-05 2.011E-04 1.031E-03
ETOT 5 -24.531993982690 5.925E-06 3.268E-04 2.350E-04
ETOT 6 -24.531994396865 -4.142E-07 2.230E-05 2.675E-05
ETOT 7 -24.531994092996 3.039E-07 9.300E-05 7.719E-07
ETOT 8 -24.531994104531 -1.154E-08 7.166E-06 1.015E-07
ETOT 9 -24.531994103293 1.238E-09 2.686E-05 6.848E-09
At SCF step 9, etot is converged :
for the second time, diff in etot= 1.238E-09 < toldfe= 1.000E-07
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.6000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.6000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.6000000, ]
lattice_lengths: [ 7.60000, 7.60000, 7.60000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.3897600E+02
convergence: {deltae: 1.238E-09, res2: 6.848E-09, residm: 2.686E-05, diffor: 0.000E+00, }
etotal : -2.45319941E+01
entropy : 0.00000000E+00
fermie : -5.03974618E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, H]
- [ 0.0000E+00, 5.0000E-01, 5.0000E-01, Li]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, H]
- [ 5.0000E-01, 0.0000E+00, 5.0000E-01, Li]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, H]
- [ 5.0000E-01, 5.0000E-01, 0.0000E+00, Li]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, H]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 0.90000 0.34175292
2 1.61126 2.09827860
3 0.90000 0.33249744
4 1.61126 2.09827860
5 0.90000 0.33249744
6 1.61126 2.09827860
7 0.90000 0.33249744
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 3.835610267259276
Compensation charge over fine fft grid = 3.835669151284118
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (eV):
Atom # 1
-0.98984
Atom # 7
-0.98361
Augmentation waves occupancies Rhoij:
Atom # 1
1.34653
Atom # 7
1.31358
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 22.400E-07; max= 26.863E-06
0.2500 0.2500 0.2500 1 2.68634E-05 kpt; spin; max resid(k); each band:
5.88E-13 2.67E-14 3.13E-14 2.22E-10 2.08E-10 5.71E-12 8.22E-12 6.69E-12
6.66E-12 7.41E-11 1.59E-08 2.69E-05
reduced coordinates (array xred) for 7 atoms
0.500000000000 0.500000000000 0.500000000000
0.000000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.500000000000 0.000000000000 0.500000000000
0.000000000000 0.500000000000 0.000000000000
0.500000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
6 0.000000000000 0.000000000000 0.000000000000
7 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 2.01087339264200 2.01087339264200 2.01087339264200
2 0.00000000000000 2.01087339264200 2.01087339264200
3 2.01087339264200 0.00000000000000 0.00000000000000
4 2.01087339264200 0.00000000000000 2.01087339264200
5 0.00000000000000 2.01087339264200 0.00000000000000
6 2.01087339264200 2.01087339264200 0.00000000000000
7 0.00000000000000 0.00000000000000 2.01087339264200
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS3_EIG
Fermi (or HOMO) energy (eV) = -1.37138 Average Vxc (eV)= -8.32456
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-44.21889 -44.19522 -44.19522 -4.71677 -2.44938 -1.37138 -1.37138 4.75739
4.75739 5.87754 7.82830 8.90467
Total charge density [el/Bohr^3]
) Maximum= 7.9999E-01 at reduced coord. 0.0000 0.5000 0.5000
)Next maximum= 7.9999E-01 at reduced coord. 0.5000 0.0000 0.5000
) Minimum= 2.6558E-03 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= 2.7348E-03 at reduced coord. 0.0333 0.0000 0.0000
Integrated= 1.4000E+01
Calculation was performed for a charged system with PBC
You may consider including the monopole correction to the total energy
The correction is to be divided by the dielectric constant
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 5.67300605857094E+00
hartree : 3.36794108995444E+00
xc : -3.07480560102094E+00
Ewald energy : -9.60643650480815E+00
psp_core : 0.00000000000000E+00
local_psp : -1.22157853778030E+01
spherical_terms : -8.67589182838294E+00
total_energy : -2.45319721634897E+01
total_energy_eV : -6.67548911383552E+02
monopole_correction : 1.86664307860572E-01
monopole_correction_eV: 5.07939413415525E+00
...
--- !EnergyTermsDC
iteration_state : {dtset: 3, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.04748993213973E+01
Ewald energy : -9.60643650480815E+00
psp_core : 0.00000000000000E+00
xc_dc : -2.43023471026043E+00
spherical_terms : -2.02042356682755E+00
total_energy_dc : -2.45319941032935E+01
total_energy_dc_eV : -6.67549508395976E+02
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 6.94100000E+00 1.00794000E+00
cellcharge -1.00000000E+00
diemac 2.00000000E+00
ecut 1.00000000E+01 Hartree
enunit 1
etotal1 -2.4554065463E+01
etotal2 -2.4541171758E+01
etotal3 -2.4531994103E+01
fcart1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
fcart2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
fcart3 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
- fftalg 512
ixc 7
jdtset 1 2 3
kpt 2.50000000E-01 2.50000000E-01 2.50000000E-01
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.52000000E+01
P mkmem 1
natom 7
nband 12
ndtset 3
ngfft 24 24 24
ngfftdg 30 30 30
nkpt 1
nsym 48
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 0.000000 0.000000 0.000000 0.000000 0.000000
optforces 0
optstress 0
pawecutdg 1.50000000E+01 Hartree
prtden 0
prtvol 2
prtwf 0
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
strten1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
strten2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
strten3 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
toldfe 1.00000000E-07 Hartree
typat 2 1 2 1 2 1 2
usepotzero1 0
usepotzero2 1
usepotzero3 2
useylm 1
xangst 2.0108733926E+00 2.0108733926E+00 2.0108733926E+00
0.0000000000E+00 2.0108733926E+00 2.0108733926E+00
2.0108733926E+00 0.0000000000E+00 0.0000000000E+00
2.0108733926E+00 0.0000000000E+00 2.0108733926E+00
0.0000000000E+00 2.0108733926E+00 0.0000000000E+00
2.0108733926E+00 2.0108733926E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.0108733926E+00
xcart 3.8000000000E+00 3.8000000000E+00 3.8000000000E+00
0.0000000000E+00 3.8000000000E+00 3.8000000000E+00
3.8000000000E+00 0.0000000000E+00 0.0000000000E+00
3.8000000000E+00 0.0000000000E+00 3.8000000000E+00
0.0000000000E+00 3.8000000000E+00 0.0000000000E+00
3.8000000000E+00 3.8000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.8000000000E+00
xred 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 3.00000 1.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 2.1 wall= 2.9
================================================================================
Calculation completed.
.Delivered 0 WARNINGs and 13 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.1 wall= 2.9