abinit/tests/v67mbpt/Refs/t52.abo

1530 lines
77 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h12 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v67mbpt_t52-t53/t52.abi
- output file -> t52.abo
- root for input files -> t52i
- root for output files -> t52o
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 10
mpw = 295 nfft = 8000 nkpt = 10
================================================================================
P This job should need less than 3.551 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.452 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 14 mffmem = 1 mkmem = 3
mpw = 151 nfft = 8000 nkpt = 3
================================================================================
P This job should need less than 2.166 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.099 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 20 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 14 mffmem = 1 mkmem = 8
mpw = 151 nfft = 8000 nkpt = 8
================================================================================
P This job should need less than 2.347 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.260 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = -3 lmnmax = 2 lnmax = 2
mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1
xclevel = 1
- mband = 14 mffmem = 1 mkmem = 8
- mkqmem = 8 mk1mem = 8 mpw = 302
nfft = 8000 nkpt = 8
================================================================================
P This job should need less than 3.833 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.518 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 5 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = -3 lmnmax = 2 lnmax = 2
mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1
xclevel = 1
- mband = 14 mffmem = 1 mkmem = 8
- mkqmem = 8 mk1mem = 8 mpw = 302
nfft = 8000 nkpt = 8
================================================================================
P This job should need less than 3.833 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.518 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 6 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6 (RF).
intxc = 0 iscf = -3 lmnmax = 2 lnmax = 2
mgfft = 20 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 1 occopt = 1
xclevel = 1
- mband = 14 mffmem = 1 mkmem = 8
- mkqmem = 8 mk1mem = 8 mpw = 302
nfft = 8000 nkpt = 8
================================================================================
P This job should need less than 3.833 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.518 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0217000000E+01 1.0217000000E+01 1.0217000000E+01 Bohr
amu 2.80855000E+01
diemac 1.20000000E+01
ecut 8.00000000E+00 Hartree
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 0
getden5 0
getden6 0
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 3
getwfk5 3
getwfk6 3
iscf1 7
iscf2 -2
iscf3 -2
iscf4 -3
iscf5 -3
iscf6 -3
istwfk2 2 3 7
istwfk3 2 3 6 7 4 5 8 9
istwfk4 1 1 1 1 1 1 1 1
istwfk5 1 1 1 1 1 1 1 1
istwfk6 1 1 1 1 1 1 1 1
ixc 7
jdtset 1 2 3 4 5 6
kpt1 -1.25000000E-01 -2.50000000E-01 0.00000000E+00
-1.25000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -3.75000000E-01 0.00000000E+00
-1.25000000E-01 -3.75000000E-01 1.25000000E-01
-1.25000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 3.75000000E-01 0.00000000E+00
-3.75000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 1.25000000E-01
-1.25000000E-01 0.00000000E+00 0.00000000E+00
-3.75000000E-01 0.00000000E+00 0.00000000E+00
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt1 1
kptopt2 1
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 3
kptrlatt1 4 -4 4 -4 4 4 -4 -4 4
kptrlatt2 2 0 0 0 2 0 0 0 2
kptrlatt3 2 0 0 0 2 0 0 0 2
kptrlatt4 2 0 0 0 2 0 0 0 2
kptrlatt5 2 0 0 0 2 0 0 0 2
kptrlatt6 2 0 0 0 2 0 0 0 2
kptrlen1 4.08680000E+01
kptrlen2 1.44490200E+01
kptrlen3 1.44490200E+01
kptrlen4 1.44490200E+01
kptrlen5 1.44490200E+01
kptrlen6 1.44490200E+01
P mkmem1 10
P mkmem2 3
P mkmem3 8
P mkmem4 8
P mkmem5 8
P mkmem6 8
P mkqmem1 10
P mkqmem2 3
P mkqmem3 8
P mkqmem4 8
P mkqmem5 8
P mkqmem6 8
P mk1mem1 10
P mk1mem2 3
P mk1mem3 8
P mk1mem4 8
P mk1mem5 8
P mk1mem6 8
natom 2
nband1 10
nband2 14
nband3 14
nband4 14
nband5 14
nband6 14
nbdbuf1 4
nbdbuf2 2
nbdbuf3 2
nbdbuf4 2
nbdbuf5 2
nbdbuf6 2
ndtset 6
ngfft 20 20 20
nkpt1 10
nkpt2 3
nkpt3 8
nkpt4 8
nkpt5 8
nkpt6 8
nline1 4
nline2 4
nline3 4
nline4 0
nline5 0
nline6 0
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 1
nqpt5 1
nqpt6 1
nstep1 500
nstep2 9
nstep3 6
nstep4 1
nstep5 1
nstep6 1
nsym 48
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
optdriver5 1
optdriver6 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
prtpot5 1
prtpot6 1
prtwf1 1
prtwf2 1
prtwf3 1
prtwf4 3
prtwf5 3
prtwf6 3
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 1 1
rfdir4 1 0 0
rfdir5 0 1 0
rfdir6 0 0 1
rfelfd1 0
rfelfd2 0
rfelfd3 0
rfelfd4 2
rfelfd5 2
rfelfd6 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk2 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk3 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk4 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk5 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk6 0.00000000E+00 0.00000000E+00 0.00000000E+00
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolwfr1 1.00000000E-28
tolwfr2 1.00000000E-28
tolwfr3 1.00000000E-27
tolwfr4 1.00000000E-28
tolwfr5 1.00000000E-28
tolwfr6 1.00000000E-28
typat 1 1
wtk1 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375
0.09375 0.18750 0.03125 0.03125
wtk2 0.12500 0.50000 0.37500
wtk3 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk4 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk5 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk6 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3516508850E+00 1.3516508850E+00 1.3516508850E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5542500000E+00 2.5542500000E+00 2.5542500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 10, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 295, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.17426
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/14si.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/14si.pspnc
- Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994
- 14.00000 4.00000 940714 znucl, zion, pspdat
1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 5.907 14.692 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 2.617 4.181 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1.80626423934776 0.22824404341771 1.17378968127746 rchrg,fchrg,qchrg
pspatm : epsatm= 1.43386982
--- l ekb(1:nproj) -->
0 3.287949
1 1.849886
pspatm: atomic psp has been read and splines computed
2.29419171E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 289.031 289.009
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 500, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-28, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -8.8692010622497 -8.869E+00 2.063E-03 5.715E+00
ETOT 2 -8.8755792189396 -6.378E-03 7.276E-08 1.576E-01
ETOT 3 -8.8756561419827 -7.692E-05 3.172E-06 2.990E-03
ETOT 4 -8.8756570364735 -8.945E-07 4.220E-08 1.086E-05
ETOT 5 -8.8756570414101 -4.937E-09 1.945E-10 2.424E-08
ETOT 6 -8.8756570414252 -1.503E-11 6.332E-13 1.671E-10
ETOT 7 -8.8756570414253 -1.421E-13 2.197E-15 6.961E-13
ETOT 8 -8.8756570414252 5.862E-14 1.502E-17 1.007E-15
ETOT 9 -8.8756570414254 -1.226E-13 1.287E-20 1.653E-18
ETOT 10 -8.8756570414253 6.217E-14 1.723E-23 1.721E-21
ETOT 11 -8.8756570414252 5.862E-14 3.658E-27 9.748E-25
ETOT 12 -8.8756570414253 -1.776E-14 9.998E-29 9.531E-28
At SCF step 12 max residual= 1.00E-28 < tolwfr= 1.00E-28 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.38568145E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.38568145E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.38568145E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: -1.776E-14, res2: 9.531E-28, residm: 9.998E-29, diffor: null, }
etotal : -8.87565704E+00
entropy : 0.00000000E+00
fermie : 2.05995379E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.38568145E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.38568145E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.38568145E-05, ]
pressure_GPa: -9.9610E-01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.71610915
2 2.00000 1.71610915
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 37.550E-30; max= 99.980E-30
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t52o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.20600 Average Vxc (hartree)= -0.35482
Eigenvalues (hartree) for nkpt= 10 k points:
kpt# 1, nband= 10, wtk= 0.09375, kpt= -0.1250 -0.2500 0.0000 (reduced coord)
-0.19947 0.09707 0.16730 0.17015 0.29358 0.35163 0.38109 0.39021
0.49086 0.52279
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.02587579972777E+00
hartree : 5.38306610810999E-01
xc : -3.54190168818834E+00
Ewald energy : -8.43581958561899E+00
psp_core : 8.60437873155177E-02
local_psp : -2.43141062814524E+00
non_local_psp : 1.88324866267303E+00
total_energy : -8.87565704142526E+00
total_energy_eV : -2.41518910763935E+02
band_energy : 2.28143225309845E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.38568145E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.38568145E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.38568145E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -9.9610E-01 GPa]
- sigma(1 1)= 9.96101706E-01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 9.96101706E-01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 9.96101706E-01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 3, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 151, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.17426
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t52o_DS2_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
8.00E-30 6.78E-29 6.09E-30 3.02E-29 7.89E-29 2.28E-29 4.30E-30 7.14E-29
1.30E-29 8.76E-29 5.46E-30 1.06E-27 1.58E-25 2.12E-29
-2.2715E-01 2.1698E-01 2.1698E-01 2.1698E-01 3.0999E-01 3.0999E-01
3.0999E-01 3.3664E-01 4.9922E-01 5.0740E-01 5.0740E-01 6.2852E-01
6.2852E-01 6.2852E-01
prteigrs : nnsclo,ikpt= 9 1 max resid (excl. the buffer)= 1.06181E-27
prteigrs : prtvol=0 or 1, do not print more k-points.
prteigrs : nnsclo,ikpt= 9 3 max resid (excl. the buffer)= 3.69294E-24
scprqt: WARNING -
nstep= 9 was not enough non-SCF iterations to converge;
maximum residual= 3.693E-24 exceeds tolwfr= 1.000E-28
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 3.693E-24, diffor: 0.000E+00, }
etotal : -8.87565704E+00
entropy : 0.00000000E+00
fermie : 2.05995379E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.71610915
2 2.00000 1.71610915
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.531E-26; max= 36.929E-25
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t52o_DS2_EIG
Eigenvalues (hartree) for nkpt= 3 k points:
kpt# 1, nband= 14, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.22715 0.21698 0.21698 0.21698 0.30999 0.30999 0.30999 0.33664
0.49922 0.50740 0.50740 0.62852 0.62852 0.62852
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 8, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 151, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.17426
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t52o_DS2_WFK
================================================================================
prteigrs : about to open file t52o_DS3_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
7.73E-30 6.78E-29 5.99E-30 3.07E-29 8.00E-29 2.29E-29 4.34E-30 7.16E-29
1.19E-29 8.71E-29 5.15E-30 2.25E-28 4.91E-28 2.11E-29
-2.2715E-01 2.1698E-01 2.1698E-01 2.1698E-01 3.0999E-01 3.0999E-01
3.0999E-01 3.3664E-01 4.9922E-01 5.0740E-01 5.0740E-01 6.2852E-01
6.2852E-01 6.2852E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.722E-28, diffor: 0.000E+00, }
etotal : -8.87565704E+00
entropy : 0.00000000E+00
fermie : 2.05995379E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.71610915
2 2.00000 1.71610915
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 24.109E-29; max= 97.222E-29
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t52o_DS3_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 14, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.22715 0.21698 0.21698 0.21698 0.30999 0.30999 0.30999 0.33664
0.49922 0.50740 0.50740 0.62852 0.62852 0.62852
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 8, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 302, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.17426
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: -3, nstep: 1, nline: 0, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-28, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -19.394346763046 -1.939E+01 0.000E+00 0.000E+00
At SCF step 1 max residual= 0.00E+00 < tolwfr= 1.00E-28 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
dfpt_looppert : ek2= 1.8153241585E+01
f-sum rule ratio= 2.3353077392E+00
prteigrs : about to open file t52t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 14, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 0.00000000E+00 eigvalue= 0.00000000E+00 local= 0.00000000E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -4.23934056E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.93943468E+01 enl0= 0.00000000E+00 enl1= 3.60471204E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93943468E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1939434676E+02 Ha. Also 2DEtotal= -0.527747014483E+03 eV
( non-var. 2DEtotal : -1.9394346763E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 0.0000000000 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 0.0000000000 0.0000000000
2 2 6.5495982273 0.0000000000
2 3 6.5495982273 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 6.5495982273 0.0000000000
3 3 6.5495982273 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 8, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 302, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.17426
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 2 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: -3, nstep: 1, nline: 0, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-28, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -19.394346762666 -1.939E+01 0.000E+00 0.000E+00
At SCF step 1 max residual= 0.00E+00 < tolwfr= 1.00E-28 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
dfpt_looppert : ek2= 1.8153241585E+01
f-sum rule ratio= 2.3353077392E+00
prteigrs : about to open file t52t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 14, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 0.00000000E+00 eigvalue= 0.00000000E+00 local= 0.00000000E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -4.23934056E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.93943468E+01 enl0= 0.00000000E+00 enl1= 3.60471204E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93943468E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1939434676E+02 Ha. Also 2DEtotal= -0.527747014473E+03 eV
( non-var. 2DEtotal : -1.9394346763E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 6.5495982271 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 6.5495982271 0.0000000000
2 1 0.0000000000 0.0000000000
2 2 0.0000000000 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 6.5495982271 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 6.5495982271 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 8, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 302, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.17426
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: -3, nstep: 1, nline: 0, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-28, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -19.394346762285 -1.939E+01 0.000E+00 0.000E+00
At SCF step 1 max residual= 0.00E+00 < tolwfr= 1.00E-28 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
dfpt_looppert : ek2= 1.8153241585E+01
f-sum rule ratio= 2.3353077391E+00
prteigrs : about to open file t52t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 14, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 0.00000000E+00 eigvalue= 0.00000000E+00 local= 0.00000000E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -4.23934056E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 1.93943468E+01 enl0= 0.00000000E+00 enl1= 3.60471204E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93943468E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1939434676E+02 Ha. Also 2DEtotal= -0.527747014462E+03 eV
( non-var. 2DEtotal : -1.9394346762E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 6.5495982270 0.0000000000
1 2 6.5495982270 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 6.5495982270 0.0000000000
2 2 6.5495982270 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 0.0000000000 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0217000000E+01 1.0217000000E+01 1.0217000000E+01 Bohr
amu 2.80855000E+01
diemac 1.20000000E+01
ecut 8.00000000E+00 Hartree
etotal1 -8.8756570414E+00
etotal4 -1.9394346763E+01
etotal5 -1.9394346763E+01
etotal6 -1.9394346762E+01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 0
getden5 0
getden6 0
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 3
getwfk5 3
getwfk6 3
iscf1 7
iscf2 -2
iscf3 -2
iscf4 -3
iscf5 -3
iscf6 -3
istwfk2 2 3 7
istwfk3 2 3 6 7 4 5 8 9
istwfk4 1 1 1 1 1 1 1 1
istwfk5 1 1 1 1 1 1 1 1
istwfk6 1 1 1 1 1 1 1 1
ixc 7
jdtset 1 2 3 4 5 6
kpt1 -1.25000000E-01 -2.50000000E-01 0.00000000E+00
-1.25000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 -3.75000000E-01 0.00000000E+00
-1.25000000E-01 -3.75000000E-01 1.25000000E-01
-1.25000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 3.75000000E-01 0.00000000E+00
-3.75000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 1.25000000E-01
-1.25000000E-01 0.00000000E+00 0.00000000E+00
-3.75000000E-01 0.00000000E+00 0.00000000E+00
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt1 1
kptopt2 1
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 3
kptrlatt1 4 -4 4 -4 4 4 -4 -4 4
kptrlatt2 2 0 0 0 2 0 0 0 2
kptrlatt3 2 0 0 0 2 0 0 0 2
kptrlatt4 2 0 0 0 2 0 0 0 2
kptrlatt5 2 0 0 0 2 0 0 0 2
kptrlatt6 2 0 0 0 2 0 0 0 2
kptrlen1 4.08680000E+01
kptrlen2 1.44490200E+01
kptrlen3 1.44490200E+01
kptrlen4 1.44490200E+01
kptrlen5 1.44490200E+01
kptrlen6 1.44490200E+01
P mkmem1 10
P mkmem2 3
P mkmem3 8
P mkmem4 8
P mkmem5 8
P mkmem6 8
P mkqmem1 10
P mkqmem2 3
P mkqmem3 8
P mkqmem4 8
P mkqmem5 8
P mkqmem6 8
P mk1mem1 10
P mk1mem2 3
P mk1mem3 8
P mk1mem4 8
P mk1mem5 8
P mk1mem6 8
natom 2
nband1 10
nband2 14
nband3 14
nband4 14
nband5 14
nband6 14
nbdbuf1 4
nbdbuf2 2
nbdbuf3 2
nbdbuf4 2
nbdbuf5 2
nbdbuf6 2
ndtset 6
ngfft 20 20 20
nkpt1 10
nkpt2 3
nkpt3 8
nkpt4 8
nkpt5 8
nkpt6 8
nline1 4
nline2 4
nline3 4
nline4 0
nline5 0
nline6 0
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 1
nqpt5 1
nqpt6 1
nstep1 500
nstep2 9
nstep3 6
nstep4 1
nstep5 1
nstep6 1
nsym 48
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
optdriver5 1
optdriver6 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
prtpot5 1
prtpot6 1
prtwf1 1
prtwf2 1
prtwf3 1
prtwf4 3
prtwf5 3
prtwf6 3
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 1 1
rfdir4 1 0 0
rfdir5 0 1 0
rfdir6 0 0 1
rfelfd1 0
rfelfd2 0
rfelfd3 0
rfelfd4 2
rfelfd5 2
rfelfd6 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 5.00000000E-01 5.00000000E-01 5.00000000E-01
shiftk2 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk3 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk4 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk5 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk6 0.00000000E+00 0.00000000E+00 0.00000000E+00
spgroup 227
strten1 3.3856814539E-05 3.3856814539E-05 3.3856814539E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolwfr1 1.00000000E-28
tolwfr2 1.00000000E-28
tolwfr3 1.00000000E-27
tolwfr4 1.00000000E-28
tolwfr5 1.00000000E-28
tolwfr6 1.00000000E-28
typat 1 1
wtk1 0.09375 0.09375 0.09375 0.18750 0.09375 0.09375
0.09375 0.18750 0.03125 0.03125
wtk2 0.12500 0.50000 0.37500
wtk3 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk4 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk5 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk6 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3516508850E+00 1.3516508850E+00 1.3516508850E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5542500000E+00 2.5542500000E+00 2.5542500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.0 wall= 2.0
================================================================================
Calculation completed.
.Delivered 13 WARNINGs and 13 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.0 wall= 2.0