abinit/tests/v67mbpt/Refs/t29.abo

1335 lines
72 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h12 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v67mbpt_t29/t29.abi
- output file -> t29.abo
- root for input files -> t29i
- root for output files -> t29o
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 2
- mband = 6 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 32 nfftf = 32768
================================================================================
P This job should need less than 14.827 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.071 Mbytes ; DEN or POT disk file : 0.502 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 2
- mband = 12 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 32 nfftf = 32768
================================================================================
P This job should need less than 11.884 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.140 Mbytes ; DEN or POT disk file : 0.502 Mbytes.
================================================================================
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 2
- mband = 8 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 32 nfftf = 32768
================================================================================
P This job should need less than 14.852 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.094 Mbytes ; DEN or POT disk file : 0.502 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0217000000E+01 1.0217000000E+01 1.0217000000E+01 Bohr
amu 2.80855000E+01
bs_algorithm1 2
bs_algorithm2 2
bs_algorithm3 1
bs_coulomb_term1 11
bs_coulomb_term2 11
bs_coulomb_term3 21
bs_freq_mesh1 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh2 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh3 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_loband1 0 0
bs_loband2 0 0
bs_loband3 2 2
ecut 6.00000000E+00 Hartree
ecuteps 2.10000000E+00 Hartree
ecutwfn 6.00000000E+00 Hartree
- fftalg 512
getden1 0
getden2 -1
getden3 0
getwfk1 0
getwfk2 0
getwfk3 2
iscf1 17
iscf2 -2
iscf3 17
ixc 11
jdtset 1 2 3
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.04340000E+01
mbpt_sciss1 0.00000000E+00 Hartree
mbpt_sciss2 0.00000000E+00 Hartree
mbpt_sciss3 2.93994603E-02 Hartree
mdf_epsinf1 0.00000000E+00
mdf_epsinf2 0.00000000E+00
mdf_epsinf3 1.20000000E+01
P mkmem 2
natom 2
nband1 6
nband2 12
nband3 8
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
ndtset 3
ngfft 16 16 16
ngfftdg 32 32 32
nkpt 2
npweps1 0
npweps2 0
npweps3 51
npwwfn1 0
npwwfn2 0
npwwfn3 169
nspden 2
nsppol 2
nsym 48
ntypat 1
occ1 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
occ3 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 99
pawecutdg 2.40000000E+01 Hartree
pawoptosc1 0
pawoptosc2 0
pawoptosc3 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
spinmagntarget 0.00000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs1 1.00000000E-08
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-12
tolwfr3 0.00000000E+00
typat 1 1
useylm 1
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3516508850E+00 1.3516508850E+00 1.3516508850E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5542500000E+00 2.5542500000E+00 2.5542500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 2.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 3.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 6, nsppol: 2, nspinor: 1, nspden: 2, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 6.000 => boxcut(ratio)= 2.00850
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 24.000 => boxcut(ratio)= 2.00850
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/si_ps.736.pbe
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/si_ps.736.pbe
- silicon - PAW data extracted from US-psp (D.Vanderbilt) - generated by USpp2Abinit v2.2.1
- 14.00000 4.00000 20071017 znucl, zion, pspdat
7 11 1 0 620 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.81165366
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 620 , AA= 0.65134E-04 BB= 0.16667E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 616 , AA= 0.65134E-04 BB= 0.16667E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 663 , AA= 0.65134E-04 BB= 0.16667E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 717 , AA= 0.65134E-04 BB= 0.16667E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
5.56877689E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 187.750 187.749
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 30, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -7.9774618002542 -7.977E+00 3.488E-02 5.820E+00
ETOT 2 -7.9673820839632 1.008E-02 5.397E-05 1.058E+00
ETOT 3 -7.9625979159131 4.784E-03 2.384E-05 1.640E-02
ETOT 4 -7.9627562074626 -1.583E-04 9.942E-07 5.276E-03
ETOT 5 -7.9628607591210 -1.046E-04 1.048E-06 2.558E-05
ETOT 6 -7.9628616560740 -8.970E-07 2.288E-08 5.964E-06
ETOT 7 -7.9628617972030 -1.411E-07 7.683E-09 4.325E-08
ETOT 8 -7.9628617983025 -1.100E-09 1.869E-10 2.315E-09
At SCF step 8 nres2 = 2.32E-09 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -9.23831932E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -9.23831932E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -9.23831932E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: -1.100E-09, res2: 2.315E-09, residm: 1.869E-10, diffor: null, }
etotal : -7.96286180E+00
entropy : 0.00000000E+00
fermie : 1.81711589E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -9.23831932E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -9.23831932E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -9.23831932E-05, ]
pressure_GPa: 2.7180E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ 6.58863958E-30, -1.97659187E-29, 9.88295937E-29, ]
- [ -6.58863958E-30, 1.97659187E-29, -9.88295937E-29, ]
force_length_stats: {min: 1.01001932E-28, max: 1.01001932E-28, mean: 1.01001932E-28, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 1.81165 0.656880 0.656880 1.313761 -0.000000
2 1.81165 0.656880 0.656880 1.313761 -0.000000
---------------------------------------------------------------------
Sum: 1.313761 1.313761 2.627522 -0.000000
Total magnetization (from the atomic spheres): -0.000000
Total magnetization (exact up - dn): -0.000000
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.149510510099606
Compensation charge over fine fft grid = -0.149503355707834
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1 - Spin component 1
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 1 - Spin component 2
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 2 - Spin component 1
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 2 - Spin component 2
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Augmentation waves occupancies Rhoij:
Atom # 1 - Spin component 1
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 1 - Spin component 2
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 2 - Spin component 1
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 2 - Spin component 2
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 17.656E-12; max= 18.689E-11
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 5.3572E-28; max dE/dt= 6.7316E-28; dE/dt below (all hartree)
1 -0.000000000000 -0.000000000000 -0.000000000000
2 0.000000000000 0.000000000000 -0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 0.00000000000000
2 -0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 5.8313493E-29 9.8829594E-29 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 0.00000000000000
2 -0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 2.9986001E-27 5.0820216E-27 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t29o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.18171 Average Vxc (hartree)= -0.35167
Eigenvalues (hartree) for nkpt= 2 k points, SPIN UP:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.13186 -0.02602 0.07802 0.12744 0.26592 0.37527
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 2 k points, SPIN DOWN:
kpt# 1, nband= 6, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.13186 -0.02602 0.07802 0.12744 0.26592 0.37527
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.03278742326283E+00
hartree : 5.49739236218715E-01
xc : -7.05120173628227E+00
Ewald energy : -8.43581958561899E+00
psp_core : 2.08857285765676E-01
local_psp : -2.40410837928403E+00
spherical_terms : 6.13687669113656E+00
total_energy : -7.96286906480152E+00
total_energy_eV : -2.16680686749233E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.83724955749723E-01
Ewald energy : -8.43581958561899E+00
psp_core : 2.08857285765676E-01
xc_dc : -4.31273743957089E+00
spherical_terms : 4.39311298537195E+00
total_energy_dc : -7.96286179830254E+00
total_energy_dc_eV : -2.16680489017740E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -9.23831932E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -9.23831932E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -9.23831932E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 2.7180E+00 GPa]
- sigma(1 1)= -2.71800692E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -2.71800692E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -2.71800692E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 2, mband: 12, nsppol: 2, nspinor: 1, nspden: 2, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 6.000 => boxcut(ratio)= 2.00850
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 32 32 32
ecut(hartree)= 24.000 => boxcut(ratio)= 2.00850
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t29o_DS2_EIG
SPIN UP channel
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
7.40E-13 3.34E-13 5.88E-13 2.04E-13 1.50E-13 5.51E-13 9.35E-13 9.79E-13
5.49E-13 1.47E-13 1.46E-07 1.64E-05
-1.3186E-01 -2.6017E-02 7.8020E-02 1.2744E-01 2.6592E-01 3.7527E-01
4.2478E-01 4.3055E-01 5.9078E-01 6.0486E-01 6.6602E-01 6.8529E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
SPIN DOWN channel
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
7.40E-13 3.34E-13 5.88E-13 2.04E-13 1.50E-13 5.51E-13 9.35E-13 9.79E-13
5.49E-13 1.47E-13 1.46E-07 1.64E-05
-1.3186E-01 -2.6017E-02 7.8020E-02 1.2744E-01 2.6592E-01 3.7527E-01
4.2478E-01 4.3055E-01 5.9078E-01 6.0486E-01 6.6602E-01 6.8529E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.795E-13, diffor: 0.000E+00, }
etotal : -7.96286180E+00
entropy : 0.00000000E+00
fermie : 1.81711589E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 1.81165 0.656880 0.656880 1.313761 -0.000000
2 1.81165 0.656880 0.656880 1.313761 -0.000000
---------------------------------------------------------------------
Sum: 1.313761 1.313761 2.627522 -0.000000
Total magnetization (from the atomic spheres): -0.000000
Total magnetization (exact up - dn): -0.000000
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = -0.149503734632517
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1 - Spin component 1
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 1 - Spin component 2
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 2 - Spin component 1
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 2 - Spin component 2
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Augmentation waves occupancies Rhoij:
Atom # 1 - Spin component 1
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 1 - Spin component 2
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 2 - Spin component 1
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 2 - Spin component 2
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.747E-14; max= 97.949E-14
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t29o_DS2_EIG
Eigenvalues (hartree) for nkpt= 2 k points, SPIN UP:
kpt# 1, nband= 12, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.13186 -0.02602 0.07802 0.12744 0.26592 0.37527 0.42478 0.43055
0.59078 0.60486 0.66602 0.68529
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 2 k points, SPIN DOWN:
kpt# 1, nband= 12, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.13186 -0.02602 0.07802 0.12744 0.26592 0.37527 0.42478 0.43055
0.59078 0.60486 0.66602 0.68529
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 2, nspinor: 1, nspden: 2, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 48 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
3) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
4) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
5) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
6) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
Together with 48 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 20x 20x 20
total number of points = 8000
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Direct diagonalization.
Dimension of the v, W matrices, npweps = 51
Cutoff for the wavefunctions, npwwfn = 169
Number of k-points in the IBZ, nkibz = 2
Highest empty band included, nband = 8
=== Spin UP ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
=== Spin DOWN ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 10.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.10
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 0.80
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is approximated with the model dielectric function
Resonant-only calculation (Hermitian case)
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.938821 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.938821 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.938821) [r.l.u.]
q = ( 0.000000 0.813043 0.813043) [r.l.u.]
q = ( 0.813043 0.000000 0.813043) [r.l.u.]
q = ( 0.813043 0.813043 0.000000) [r.l.u.]
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 620
Size of radial mesh for partial waves........... 620
Size of radial mesh for [pseudo] core density... 620
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -9.75038448E+00
1/q d(tNcore(q))/dq for q=0 ..................... -2.38322862E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -1.93760828E+01
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.81165366E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81165366E+00
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = -0.149503734632517
Compensation charge over fine fft grid = -0.149503355707834
Total number of electrons per unit cell = 8.0000 (Spherical mesh), 8.0000 (FFT mesh)
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1 - Spin component 1
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 1 - Spin component 2
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 2 - Spin component 1
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Atom # 2 - Spin component 2
0.40765 0.92904 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.92904 2.10275 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000 0.00000
0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687 0.00000
0.00000 0.00000 0.00000 0.00000 0.13062 0.00000 0.00000 0.27687
0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000 0.00000
0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421 0.00000
0.00000 0.00000 0.00000 0.00000 0.27687 0.00000 0.00000 0.58421
Augmentation waves occupancies Rhoij:
Atom # 1 - Spin component 1
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 1 - Spin component 2
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 2 - Spin component 1
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
Atom # 2 - Spin component 2
0.17629 0.08416 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.08416 0.05162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000 0.00000
0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528 0.00000
0.00000 0.00000 0.00000 0.00000 0.66868 0.00000 0.00000 -0.03528
0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03528 0.00000 0.00000 0.00428
. Writing resonant excitonic Hamiltonian on file t29o_DS3_BSR; file size= 0.00 [Gb].
Direct diagonalization of the resonant excitonic Hamiltonian, Matrix size= 768
. Using LAPACK sequential version.
Excitonic eigenvalues in eV up to n= 64
3.19148 3.19183 3.19231 3.26303 3.26341 3.26375 3.28270 3.28280
3.28290 3.30241 3.30242 3.34067 3.34069 3.34073 3.36954 3.36956
3.36959 3.37005 3.37006 3.37032 3.37035 3.37072 3.37074 3.37078
3.37407 3.37407 3.37410 3.37410 3.37411 3.37411 3.37503 3.37504
4.04437 4.04483 4.04661 4.06828 4.07024 4.07081 4.17177 4.17377
4.17438 4.19414 4.19456 4.19596 4.27386 4.27393 4.27552 4.27559
4.27938 4.27939 4.28156 4.28157 4.28342 4.28343 4.28973 4.28976
4.30425 4.30609 4.30675 4.31129 4.31133 4.31178 4.31207 4.31354
First excitonic eigenvalue= 3.19 [eV]
Last excitonic eigenvalue= 12.99 [eV]
GW direct gap 3.65 0.00 [eV]
EXC direct gap 3.19 0.00 [eV]
EXC binding energy 0.46 0.00 [eV]
Excitonic eigenvalues up to the GW energy gap [eV]
1 ( 3.19 0.00)
2 ( 3.19 0.00)
3 ( 3.19 0.00)
4 ( 3.26 0.00)
5 ( 3.26 0.00)
6 ( 3.26 0.00)
7 ( 3.28 0.00)
8 ( 3.28 0.00)
9 ( 3.28 0.00)
10 ( 3.30 0.00)
11 ( 3.30 0.00)
12 ( 3.34 0.00)
13 ( 3.34 0.00)
14 ( 3.34 0.00)
15 ( 3.37 0.00)
16 ( 3.37 0.00)
17 ( 3.37 0.00)
18 ( 3.37 0.00)
19 ( 3.37 0.00)
20 ( 3.37 0.00)
21 ( 3.37 0.00)
22 ( 3.37 0.00)
23 ( 3.37 0.00)
24 ( 3.37 0.00)
25 ( 3.37 0.00)
26 ( 3.37 0.00)
27 ( 3.37 0.00)
28 ( 3.37 0.00)
29 ( 3.37 0.00)
30 ( 3.37 0.00)
31 ( 3.38 0.00)
32 ( 3.38 0.00)
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 25.0464 0.0000 20.5194 0.0000 23.5587 -0.0000
0.1000 25.0676 0.0426 20.5304 0.0220 23.5758 0.0344
0.2000 25.1315 0.0858 20.5634 0.0442 23.6274 0.0692
0.3000 25.2388 0.1299 20.6186 0.0666 23.7139 0.1046
0.4000 25.3908 0.1757 20.6965 0.0896 23.8363 0.1411
0.5000 25.5895 0.2237 20.7976 0.1133 23.9957 0.1791
0.6000 25.8372 0.2746 20.9228 0.1378 24.1938 0.2189
0.7000 26.1374 0.3292 21.0729 0.1635 24.4327 0.2612
0.8000 26.4940 0.3884 21.2493 0.1904 24.7152 0.3064
0.9000 26.9122 0.4534 21.4533 0.2190 25.0444 0.3553
Writing KS-RPA macroscopic dielectric function without local fields to file: t29o_DS3_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t29o_DS3_GW_NLF_MDF
Writing EXC Macroscopic dielectric function to file: t29o_DS3_EXC_MDF
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0217000000E+01 1.0217000000E+01 1.0217000000E+01 Bohr
amu 2.80855000E+01
bs_algorithm1 2
bs_algorithm2 2
bs_algorithm3 1
bs_coulomb_term1 11
bs_coulomb_term2 11
bs_coulomb_term3 21
bs_freq_mesh1 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh2 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh3 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_loband1 0 0
bs_loband2 0 0
bs_loband3 2 2
ecut 6.00000000E+00 Hartree
ecuteps 2.10000000E+00 Hartree
ecutwfn 6.00000000E+00 Hartree
etotal1 -7.9628617983E+00
etotal3 0.0000000000E+00
fcart1 6.5886395790E-30 -1.9765918737E-29 9.8829593685E-29
-6.5886395790E-30 1.9765918737E-29 -9.8829593685E-29
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 -1
getden3 0
getwfk1 0
getwfk2 0
getwfk3 2
iscf1 17
iscf2 -2
iscf3 17
ixc 11
jdtset 1 2 3
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.04340000E+01
mbpt_sciss1 0.00000000E+00 Hartree
mbpt_sciss2 0.00000000E+00 Hartree
mbpt_sciss3 2.93994603E-02 Hartree
mdf_epsinf1 0.00000000E+00
mdf_epsinf2 0.00000000E+00
mdf_epsinf3 1.20000000E+01
P mkmem 2
natom 2
nband1 6
nband2 12
nband3 8
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
ndtset 3
ngfft 16 16 16
ngfftdg 32 32 32
nkpt 2
npweps1 0
npweps2 0
npweps3 51
npwwfn1 0
npwwfn2 0
npwwfn3 169
nspden 2
nsppol 2
nsym 48
ntypat 1
occ1 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
occ3 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 99
pawecutdg 2.40000000E+01 Hartree
pawoptosc1 0
pawoptosc2 0
pawoptosc3 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
spinmagntarget 0.00000000E+00
strten1 -9.2383193183E-05 -9.2383193183E-05 -9.2383193183E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs1 1.00000000E-08
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-12
tolwfr3 0.00000000E+00
typat 1 1
useylm 1
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3516508850E+00 1.3516508850E+00 1.3516508850E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5542500000E+00 2.5542500000E+00 2.5542500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 17.2 wall= 17.3
================================================================================
Calculation completed.
.Delivered 12 WARNINGs and 7 COMMENTs to log file.
+Overall time at end (sec) : cpu= 17.2 wall= 17.3