abinit/tests/v67mbpt/Refs/t14.abo

1928 lines
109 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h12 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v67mbpt_t14/t14.abi
- output file -> t14.abo
- root for input files -> t14i
- root for output files -> t14o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 10 mffmem = 1 mkmem = 3
mpw = 332 nfft = 8000 nkpt = 3
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 9.464 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.154 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 8
lnmax = 4 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 50 mffmem = 1 mkmem = 3
mpw = 332 nfft = 8000 nkpt = 3
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 8.291 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.762 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 3 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 50 mffmem = 1 mkmem = 3
mpw = 332 nfft = 8000 nkpt = 3
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 10.098 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.762 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 4 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 7 mffmem = 1 mkmem = 3
mpw = 332 nfft = 8000 nkpt = 3
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 9.416 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.108 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.7034756000E+00 7.7034756000E+00 7.7034756000E+00 Bohr
amu 6.94100000E+00 1.89984032E+01
bs_freq_mesh1 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh2 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh3 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh4 0.00000000E+00 8.81983810E-01 3.67493254E-03 Hartree
bs_haydock_niter1 100
bs_haydock_niter2 100
bs_haydock_niter3 100
bs_haydock_niter4 160
bs_hayd_term1 1
bs_hayd_term2 1
bs_hayd_term3 1
bs_hayd_term4 0
bs_loband1 0
bs_loband2 0
bs_loband3 0
bs_loband4 2
ecut 1.50000000E+01 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 0.00000000E+00 Hartree
ecuteps3 3.00000000E+00 Hartree
ecuteps4 3.00000000E+00 Hartree
ecutwfn1 0.00000000E+00 Hartree
ecutwfn2 0.00000000E+00 Hartree
ecutwfn3 1.50000000E+01 Hartree
ecutwfn4 1.50000000E+01 Hartree
- fftalg 512
getden1 0
getden2 1
getden3 0
getden4 0
getscr1 0
getscr2 0
getscr3 0
getscr4 3
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 2
gw_icutcoul 3
iscf1 17
iscf2 -2
iscf3 17
iscf4 17
istwfk 1 1 1
ixc 11
jdtset 1 2 3 4
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.08943597E+01
mbpt_sciss1 0.00000000E+00 Hartree
mbpt_sciss2 0.00000000E+00 Hartree
mbpt_sciss3 0.00000000E+00 Hartree
mbpt_sciss4 1.91096492E-01 Hartree
P mkmem 3
natom 2
nband1 10
nband2 50
nband3 50
nband4 7
nbdbuf1 0
nbdbuf2 4
nbdbuf3 0
nbdbuf4 0
ndtset 4
nfreqim1 -1
nfreqim2 -1
nfreqim3 0
nfreqim4 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 1
nfreqre4 -1
ngfft 20 20 20
ngfftdg 30 30 30
nkpt 3
npweps1 0
npweps2 0
npweps3 27
npweps4 27
npwwfn1 0
npwwfn2 0
npwwfn3 331
npwwfn4 331
nstep 50
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000
0.000000
optdriver1 0
optdriver2 0
optdriver3 3
optdriver4 99
pawecutdg 3.00000000E+01 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
timopt -1
tolvrs1 1.00000000E-12
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-12
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
typat 1 2
useylm 1
wtk 0.12500 0.50000 0.37500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-2.0382518572E+00 -4.3552371229E-18 4.3552371229E-18
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-3.8517378000E+00 -8.2302054061E-18 8.2302054061E-18
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 -5.0000000000E-01 -5.0000000000E-01
zcut1 3.67493260E-03 Hartree
zcut2 3.67493260E-03 Hartree
zcut3 3.67493260E-03 Hartree
zcut4 5.51239881E-03 Hartree
znucl 3.00000 9.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 3, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 332, }
cutoff_energies: {ecut: 15.0, pawecutdg: 30.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8517378 3.8517378 G(1)= -0.1298115 0.1298115 0.1298115
R(2)= 3.8517378 0.0000000 3.8517378 G(2)= 0.1298115 -0.1298115 0.1298115
R(3)= 3.8517378 3.8517378 0.0000000 G(3)= 0.1298115 0.1298115 -0.1298115
Unit cell volume ucvol= 1.1428787E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 15.000 => boxcut(ratio)= 2.10595
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 30.000 => boxcut(ratio)= 2.23618
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 37.503592 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/li.PBE.atompaw.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/li.PBE.atompaw.paw
- Paw atomic data for element Li - Generated by AtomPAW + AtomPAW2Abinit v3.2.0
- 3.00000 3.00000 20090329 znucl, zion, pspdat
7 11 1 0 434 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw4
basis_size (lnmax)= 3 (lmn_size= 5), orbitals= 0 0 1
Spheres core radius: rc_sph= 1.81921554
3 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 434 , AA= 0.46508E-02 BB= 0.13952E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 429 , AA= 0.46508E-02 BB= 0.13952E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 551 , AA= 0.46508E-02 BB= 0.13952E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 3
Radial grid used for pseudo valence density is grid 3
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/F.noRSO.rc1.4.pawps
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/F.noRSO.rc1.4.pawps
- Paw atomic data for element F - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.1.1
- 9.00000 7.00000 20070403 znucl, zion, pspdat
7 7 1 0 443 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw3
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41926478
3 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 443 , AA= 0.17094E-02 BB= 0.15384E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 438 , AA= 0.17094E-02 BB= 0.15384E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 564 , AA= 0.17094E-02 BB= 0.15384E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 3
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
1.11704948E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 329.625 329.613
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 50, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -32.184518772364 -3.218E+01 4.990E+00 3.110E+02
ETOT 2 -32.247753304364 -6.323E-02 3.641E-02 8.295E+01
ETOT 3 -32.021899227947 2.259E-01 2.346E-02 2.839E+00
ETOT 4 -32.024400044835 -2.501E-03 1.447E-03 3.909E-01
ETOT 5 -32.024063702225 3.363E-04 3.238E-04 1.301E-02
ETOT 6 -32.024030873869 3.283E-05 5.255E-05 1.559E-03
ETOT 7 -32.024023707211 7.167E-06 6.054E-05 1.705E-04
ETOT 8 -32.024024161070 -4.539E-07 1.711E-05 1.456E-06
ETOT 9 -32.024026667868 -2.507E-06 2.817E-05 8.130E-08
ETOT 10 -32.024026649274 1.859E-08 1.218E-05 4.729E-07
ETOT 11 -32.024026623167 2.611E-08 1.950E-05 2.535E-07
ETOT 12 -32.024026342429 2.807E-07 9.175E-06 7.993E-08
ETOT 13 -32.024026422320 -7.989E-08 1.476E-05 9.038E-09
ETOT 14 -32.024026429923 -7.602E-09 7.021E-06 3.243E-09
ETOT 15 -32.024026423954 5.968E-09 1.125E-05 9.736E-11
ETOT 16 -32.024026424482 -5.279E-10 5.428E-06 4.312E-12
ETOT 17 -32.024026424520 -3.768E-11 8.603E-06 5.390E-12
ETOT 18 -32.024026424372 1.478E-10 4.186E-06 2.127E-12
ETOT 19 -32.024026424149 2.232E-10 6.571E-06 1.699E-13
At SCF step 19 nres2 = 1.70E-13 < tolvrs= 1.00E-12 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.26123906E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.26123906E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.26123906E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8517378, 3.8517378, ]
- [ 3.8517378, 0.0000000, 3.8517378, ]
- [ 3.8517378, 3.8517378, 0.0000000, ]
lattice_lengths: [ 5.44718, 5.44718, 5.44718, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.1428787E+02
convergence: {deltae: 2.232E-10, res2: 1.699E-13, residm: 6.571E-06, diffor: null, }
etotal : -3.20240264E+01
entropy : 0.00000000E+00
fermie : -4.12961300E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 6.26123906E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 6.26123906E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 6.26123906E-05, ]
pressure_GPa: -1.8421E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Li]
- [ 5.0000E-01, -5.0000E-01, -5.0000E-01, F]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.81922 2.17198693
2 1.41926 5.83140729
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 2.616712917227626
Compensation charge over fine fft grid = 2.616692696156267
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.57197 -1.28377 0.00000 0.00000 0.00000
-1.28377 -1.78582 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00055 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00055 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00055
Atom # 2
0.76529 -1.69260 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.69260 3.81220 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000 0.00000
0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000
0.00000 0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389
0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000 0.00000
0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000
0.00000 0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014
Augmentation waves occupancies Rhoij:
Atom # 1
2.38604 -0.41165 0.00000 0.00000 0.00000
-0.41165 0.44015 0.00000 0.00000 0.00000
0.00000 0.00000 0.30801 0.00000 0.00000
0.00000 0.00000 0.00000 0.30801 0.00000
0.00000 0.00000 0.00000 0.00000 0.30801
Atom # 2
1.99656 0.02251 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02251 0.00027 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000 0.00000
0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000
0.00000 0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014
0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000 0.00000
0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000
0.00000 0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.902E-08; max= 65.705E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 -0.500000000000 -0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 -2.03825185722459 -0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.703475600000 7.703475600000 7.703475600000 bohr
= 4.076503714449 4.076503714449 4.076503714449 angstroms
prteigrs : about to open file t14o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.04130 Average Vxc (hartree)= -0.36674
Eigenvalues (hartree) for nkpt= 3 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.57092 -0.77312 -0.04130 -0.04130 -0.04130 0.28275 0.82225 0.82225
0.82225 0.83597
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.09104044884400E+01
hartree : 7.56133355374012E+00
xc : -5.92089146462694E+00
Ewald energy : -2.02305295457931E+01
psp_core : 9.77399848528708E-01
local_psp : -2.53544669858076E+01
spherical_terms : 3.27235622489948E-02
total_energy : -3.20240265432699E+01
total_energy_eV : -8.71418079011745E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.13545560335338E+00
Ewald energy : -2.02305295457931E+01
psp_core : 9.77399848528708E-01
xc_dc : -5.80368506589443E+00
spherical_terms : -1.83175605763651E+00
total_energy_dc : -3.20240264241488E+01
total_energy_dc_eV : -8.71418075770295E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.26123906E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.26123906E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.26123906E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.8421E+00 GPa]
- sigma(1 1)= 1.84211982E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.84211982E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.84211982E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 3, mband: 50, nsppol: 1, nspinor: 1, nspden: 1, mpw: 332, }
cutoff_energies: {ecut: 15.0, pawecutdg: 30.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8517378 3.8517378 G(1)= -0.1298115 0.1298115 0.1298115
R(2)= 3.8517378 0.0000000 3.8517378 G(2)= 0.1298115 -0.1298115 0.1298115
R(3)= 3.8517378 3.8517378 0.0000000 G(3)= 0.1298115 0.1298115 -0.1298115
Unit cell volume ucvol= 1.1428787E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 15.000 => boxcut(ratio)= 2.10595
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 30.000 => boxcut(ratio)= 2.23618
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 37.503592 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t14o_DS2_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
8.19E-13 4.82E-14 1.53E-13 4.81E-14 3.61E-14 6.57E-14 3.40E-14 2.05E-14
2.02E-14 1.53E-13 6.81E-13 6.40E-14 7.41E-14 7.77E-13 3.14E-14 6.62E-14
1.77E-14 3.73E-14 5.37E-13 2.98E-13 2.92E-13 4.20E-13 5.84E-13 4.89E-13
6.26E-13 7.43E-13 1.40E-13 1.96E-13 2.51E-13 2.90E-13 4.06E-13 3.71E-13
1.32E-13 6.06E-13 3.76E-13 9.10E-13 8.29E-13 3.53E-13 4.51E-13 7.46E-13
4.04E-13 6.11E-13 5.14E-13 9.63E-13 9.37E-13 5.89E-13 2.26E-09 1.99E-07
3.95E-05 5.79E-06
-1.5709E+00 -7.7312E-01 -4.1296E-02 -4.1296E-02 -4.1296E-02 2.8275E-01
8.2225E-01 8.2225E-01 8.2225E-01 8.3597E-01 8.3597E-01 8.3597E-01
9.3996E-01 1.0975E+00 1.0975E+00 1.5686E+00 1.5686E+00 1.5686E+00
1.7111E+00 2.2875E+00 2.2875E+00 2.2875E+00 2.3665E+00 2.4268E+00
2.4268E+00 2.4579E+00 2.4579E+00 2.4579E+00 2.5384E+00 2.5384E+00
2.5384E+00 2.9913E+00 2.9913E+00 3.2158E+00 3.2158E+00 3.2158E+00
3.3848E+00 3.3848E+00 3.3848E+00 3.4376E+00 3.4376E+00 3.4376E+00
3.4801E+00 3.4801E+00 3.4801E+00 3.4834E+00 3.5582E+00 3.5582E+00
3.5582E+00 3.5815E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8517378, 3.8517378, ]
- [ 3.8517378, 0.0000000, 3.8517378, ]
- [ 3.8517378, 3.8517378, 0.0000000, ]
lattice_lengths: [ 5.44718, 5.44718, 5.44718, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.1428787E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.721E-13, diffor: 0.000E+00, }
etotal : -3.20240264E+01
entropy : 0.00000000E+00
fermie : -4.12961300E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Li]
- [ 5.0000E-01, -5.0000E-01, -5.0000E-01, F]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.81922 2.17198693
2 1.41926 5.83140729
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = 2.616712971358288
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.57197 -1.28377 0.00000 0.00000 0.00000
-1.28377 -1.78582 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00055 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00055 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00055
Atom # 2
0.76529 -1.69260 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.69260 3.81220 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000 0.00000
0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000
0.00000 0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389
0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000 0.00000
0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000
0.00000 0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014
Augmentation waves occupancies Rhoij:
Atom # 1
2.38604 -0.41165 0.00000 0.00000 0.00000
-0.41165 0.44015 0.00000 0.00000 0.00000
0.00000 0.00000 0.30801 0.00000 0.00000
0.00000 0.00000 0.00000 0.30801 0.00000
0.00000 0.00000 0.00000 0.00000 0.30801
Atom # 2
1.99656 0.02251 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02251 0.00027 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000 0.00000
0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000
0.00000 0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014
0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000 0.00000
0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000
0.00000 0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.713E-14; max= 97.209E-14
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 -0.500000000000 -0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 -2.03825185722459 -0.00000000000000 0.00000000000000
length scales= 7.703475600000 7.703475600000 7.703475600000 bohr
= 4.076503714449 4.076503714449 4.076503714449 angstroms
prteigrs : about to open file t14o_DS2_EIG
Eigenvalues (hartree) for nkpt= 3 k points:
kpt# 1, nband= 50, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.57092 -0.77312 -0.04130 -0.04130 -0.04130 0.28275 0.82225 0.82225
0.82225 0.83597 0.83597 0.83597 0.93996 1.09755 1.09755 1.56858
1.56858 1.56858 1.71114 2.28752 2.28752 2.28752 2.36647 2.42676
2.42676 2.45789 2.45789 2.45789 2.53842 2.53842 2.53842 2.99132
2.99132 3.21577 3.21577 3.21577 3.38477 3.38477 3.38477 3.43764
3.43764 3.43764 3.48014 3.48014 3.48014 3.48340 3.55816 3.55817
3.55823 3.58153
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 3, mband: 50, nsppol: 1, nspinor: 1, nspden: 1, mpw: 332, }
cutoff_energies: {ecut: 15.0, pawecutdg: 30.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 3, gwcalctyp: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8517378 3.8517378 G(1)= -0.1298115 0.1298115 0.1298115
R(2)= 3.8517378 0.0000000 3.8517378 G(2)= 0.1298115 -0.1298115 0.1298115
R(3)= 3.8517378 3.8517378 0.0000000 G(3)= 0.1298115 0.1298115 -0.1298115
Unit cell volume ucvol= 1.1428787E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 3
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.12500
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.50000
3) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.37500
Together with 48 symmetry operations and time-reversal symmetry
yields 8 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 3
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.12500
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.50000
3) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.37500
Together with 48 symmetry operations and time-reversal symmetry
yields 8 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
The inverse dielectric matrix will be calculated on zero frequency only
please note that the calculated epsilon^-1 cannot be used
to calculate QP corrections using plasmonpole model 1
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 3
Number of (l,m,n) elements ..................... 5
Number of (i,j) elements (packed form) ......... 6
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 15
lmnmix_sz ...................................... 15
Size of radial mesh ............................ 434
Size of radial mesh for partial waves........... 434
Size of radial mesh for [pseudo] core density... 434
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 551
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 0
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -6.40710543E+00
1/q d(tNcore(q))/dq for q=0 ..................... 0.00000000E+00
d^2(tNcore(q))/dq^2 for q=0 ..................... 0.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -2.62970836E+02
XC energy for the core density .................. 0.00000000E+00
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.81921554E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81921554E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 443
Size of radial mesh for partial waves........... 443
Size of radial mesh for [pseudo] core density... 443
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.95103786E+00
1/q d(tNcore(q))/dq for q=0 ..................... -1.26795015E-04
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -5.26909075E+00
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.41926478E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.41926478E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 5
- Remaining bands to be divided among processors nbcw = 45
- Number of bands treated by each node ~45
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 2.616712971358288
Compensation charge over fine fft grid = 2.616692696156267
Total number of electrons per unit cell = 10.0000 (Spherical mesh), 10.0000 (FFT mesh)
average of density, n = 0.087498
r_s = 1.3973
omega_plasma = 28.5335 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.57197 -1.28377 0.00000 0.00000 0.00000
-1.28377 -1.78582 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00055 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00055 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00055
Atom # 2
0.76529 -1.69260 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.69260 3.81220 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000 0.00000
0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000
0.00000 0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389
0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000 0.00000
0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000
0.00000 0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014
Augmentation waves occupancies Rhoij:
Atom # 1
2.38604 -0.41165 0.00000 0.00000 0.00000
-0.41165 0.44015 0.00000 0.00000 0.00000
0.00000 0.00000 0.30801 0.00000 0.00000
0.00000 0.00000 0.00000 0.30801 0.00000
0.00000 0.00000 0.00000 0.00000 0.30801
Atom # 2
1.99656 0.02251 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02251 0.00027 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000 0.00000
0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000
0.00000 0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014
0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000 0.00000
0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000
0.00000 0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
-0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
2 -0.000 -4.964 -0.451 -1.083 -1.872 -1.083 -1.873 -1.082 -1.873
0.000 0.000 -0.000 0.001 -0.000 0.000 -0.001 -0.001 0.001
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 2.2765
dielectric constant without local fields = 2.3549
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 68.35 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.439 -0.014 0.014 0.041 -0.041 -0.041 0.041 0.014 -0.014
0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.439 -0.014 0.014 0.041 -0.041 -0.041 0.041 0.014 -0.014
0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000
--------------------------------------------------------------------------------
q-point number 2 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.898 1.022 -1.044 0.811 1.144 0.811 1.144 0.811 1.144
0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000
2 1.022 -4.635 -0.492 -1.403 -2.345 -1.401 -2.349 -1.403 -2.346
-0.000 0.000 -0.000 0.000 -0.000 0.002 -0.002 -0.002 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 76.53 [%]
--------------------------------------------------------------------------------
q-point number 3 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -3.393 1.364 0.695 0.695 1.364 0.695 1.364 1.364 0.695
0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.001 0.000
2 1.364 -4.927 -1.050 -1.317 -2.465 -1.318 -2.476 -1.701 -1.970
-0.000 0.000 -0.001 0.001 -0.002 -0.000 0.000 -0.002 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 75.69 [%]
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 3, mband: 7, nsppol: 1, nspinor: 1, nspden: 1, mpw: 332, }
cutoff_energies: {ecut: 15.0, pawecutdg: 30.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getscr/=0, take file _SCR from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8517378 3.8517378 G(1)= -0.1298115 0.1298115 0.1298115
R(2)= 3.8517378 0.0000000 3.8517378 G(2)= 0.1298115 -0.1298115 0.1298115
R(3)= 3.8517378 3.8517378 0.0000000 G(3)= 0.1298115 0.1298115 -0.1298115
Unit cell volume ucvol= 1.1428787E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 3
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.12500
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.50000
3) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.37500
Together with 48 symmetry operations and time-reversal symmetry
yields 8 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 3
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.12500
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.50000
3) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.37500
Together with 48 symmetry operations and time-reversal symmetry
yields 8 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Haydock technique.
Dimension of the v, W matrices, npweps = 27
Cutoff for the wavefunctions, npwwfn = 331
Number of k-points in the IBZ, nkibz = 3
Highest empty band included, nband = 7
=== Spin UP ===
Number of resonant transitions 64
Lowest occupied state 2
Highest occupied state 5
Lowest unoccupied state 6
Highest unoccupied state 7
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 24.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.15
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 5.20
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is read from an external SCR file
Resonant-only calculation (Hermitian case)
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.707858 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.707858 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.707858) [r.l.u.]
q = ( 0.000000 0.613023 0.613023) [r.l.u.]
q = ( 0.613023 0.000000 0.613023) [r.l.u.]
q = ( 0.613023 0.613023 0.000000) [r.l.u.]
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 3
Number of (l,m,n) elements ..................... 5
Number of (i,j) elements (packed form) ......... 6
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 15
lmnmix_sz ...................................... 15
Size of radial mesh ............................ 434
Size of radial mesh for partial waves........... 434
Size of radial mesh for [pseudo] core density... 434
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 551
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 0
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -6.40710543E+00
1/q d(tNcore(q))/dq for q=0 ..................... 0.00000000E+00
d^2(tNcore(q))/dq^2 for q=0 ..................... 0.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -2.62970836E+02
XC energy for the core density .................. 0.00000000E+00
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.81921554E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81921554E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 443
Size of radial mesh for partial waves........... 443
Size of radial mesh for [pseudo] core density... 443
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 0
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... -1
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 1
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 0
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 0
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.95103786E+00
1/q d(tNcore(q))/dq for q=0 ..................... -1.26795015E-04
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... 0.00000000E+00
XC energy for the core density .................. -5.26909075E+00
Lamb shielding due to core density .............. 0.00000000E+00
Radius of the PAW sphere ........................ 1.41926478E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.41926478E+00
Sigma parameter in gaussian shape function ...... 1.00000000E+99
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 2.616712971358288
Compensation charge over fine fft grid = 2.616692696156267
Total number of electrons per unit cell = 10.0000 (Spherical mesh), 10.0000 (FFT mesh)
average of density, n = 0.087498
r_s = 1.3973
omega_plasma = 28.5335 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.57197 -1.28377 0.00000 0.00000 0.00000
-1.28377 -1.78582 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00055 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00055 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00055
Atom # 2
0.76529 -1.69260 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.69260 3.81220 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000 0.00000
0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389 0.00000
0.00000 0.00000 0.00000 0.00000 -0.34036 0.00000 0.00000 1.66389
0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000 0.00000
0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014 0.00000
0.00000 0.00000 0.00000 0.00000 1.66389 0.00000 0.00000 -3.31014
Augmentation waves occupancies Rhoij:
Atom # 1
2.38604 -0.41165 0.00000 0.00000 0.00000
-0.41165 0.44015 0.00000 0.00000 0.00000
0.00000 0.00000 0.30801 0.00000 0.00000
0.00000 0.00000 0.00000 0.30801 0.00000
0.00000 0.00000 0.00000 0.00000 0.30801
Atom # 2
1.99656 0.02251 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02251 0.00027 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000 0.00000
0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014 0.00000
0.00000 0.00000 0.00000 0.00000 2.17871 0.00000 0.00000 0.03014
0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000 0.00000
0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047 0.00000
0.00000 0.00000 0.00000 0.00000 0.03014 0.00000 0.00000 0.00047
. Writing resonant excitonic Hamiltonian on file t14o_DS4_BSR; file size= 0.00 [Gb].
Writing KS-RPA macroscopic dielectric function without local fields to file: t14o_DS4_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t14o_DS4_GW_NLF_MDF
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
Writing EXC Macroscopic dielectric function to file: t14o_DS4_EXC_MDF
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 1.9171 0.0000 1.6222 0.0000 1.8318 0.0000
0.1000 1.9172 0.0002 1.6222 0.0001 1.8319 0.0002
0.2000 1.9174 0.0005 1.6223 0.0001 1.8321 0.0004
0.3000 1.9179 0.0007 1.6224 0.0002 1.8323 0.0005
0.4000 1.9184 0.0010 1.6226 0.0003 1.8328 0.0007
0.5000 1.9191 0.0012 1.6228 0.0004 1.8333 0.0009
0.6000 1.9200 0.0015 1.6231 0.0004 1.8340 0.0011
0.7000 1.9211 0.0017 1.6234 0.0005 1.8347 0.0013
0.8000 1.9223 0.0020 1.6237 0.0006 1.8356 0.0014
0.9000 1.9237 0.0022 1.6241 0.0006 1.8367 0.0016
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.7034756000E+00 7.7034756000E+00 7.7034756000E+00 Bohr
amu 6.94100000E+00 1.89984032E+01
bs_freq_mesh1 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh2 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh3 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh4 0.00000000E+00 8.81983810E-01 3.67493254E-03 Hartree
bs_haydock_niter1 100
bs_haydock_niter2 100
bs_haydock_niter3 100
bs_haydock_niter4 160
bs_hayd_term1 1
bs_hayd_term2 1
bs_hayd_term3 1
bs_hayd_term4 0
bs_loband1 0
bs_loband2 0
bs_loband3 0
bs_loband4 2
ecut 1.50000000E+01 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 0.00000000E+00 Hartree
ecuteps3 3.00000000E+00 Hartree
ecuteps4 3.00000000E+00 Hartree
ecutwfn1 0.00000000E+00 Hartree
ecutwfn2 0.00000000E+00 Hartree
ecutwfn3 1.50000000E+01 Hartree
ecutwfn4 1.50000000E+01 Hartree
etotal1 -3.2024026424E+01
etotal3 0.0000000000E+00
etotal4 0.0000000000E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 0
getden4 0
getscr1 0
getscr2 0
getscr3 0
getscr4 3
getwfk1 0
getwfk2 0
getwfk3 2
getwfk4 2
gw_icutcoul 3
iscf1 17
iscf2 -2
iscf3 17
iscf4 17
istwfk 1 1 1
ixc 11
jdtset 1 2 3 4
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.08943597E+01
mbpt_sciss1 0.00000000E+00 Hartree
mbpt_sciss2 0.00000000E+00 Hartree
mbpt_sciss3 0.00000000E+00 Hartree
mbpt_sciss4 1.91096492E-01 Hartree
P mkmem 3
natom 2
nband1 10
nband2 50
nband3 50
nband4 7
nbdbuf1 0
nbdbuf2 4
nbdbuf3 0
nbdbuf4 0
ndtset 4
nfreqim1 -1
nfreqim2 -1
nfreqim3 0
nfreqim4 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 1
nfreqre4 -1
ngfft 20 20 20
ngfftdg 30 30 30
nkpt 3
npweps1 0
npweps2 0
npweps3 27
npweps4 27
npwwfn1 0
npwwfn2 0
npwwfn3 331
npwwfn4 331
nstep 50
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000
0.000000
optdriver1 0
optdriver2 0
optdriver3 3
optdriver4 99
pawecutdg 3.00000000E+01 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 225
strten1 6.2612390613E-05 6.2612390613E-05 6.2612390613E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
timopt -1
tolvrs1 1.00000000E-12
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-12
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
typat 1 2
useylm 1
wtk 0.12500 0.50000 0.37500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-2.0382518572E+00 -4.3552371229E-18 4.3552371229E-18
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-3.8517378000E+00 -8.2302054061E-18 8.2302054061E-18
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 -5.0000000000E-01 -5.0000000000E-01
zcut1 3.67493260E-03 Hartree
zcut2 3.67493260E-03 Hartree
zcut3 3.67493260E-03 Hartree
zcut4 5.51239881E-03 Hartree
znucl 3.00000 9.00000
================================================================================
Test the timer :
a combined call timab(*,1,tsec) + timab(*,2,tsec) is
- CPU time = 1.3527E-06 sec, Wall time = 1.3528E-06 sec
- Total cpu time (s,m,h): 4.5 0.07 0.001
- Total wall clock time (s,m,h): 6.0 0.10 0.002
-
- For major independent code sections, cpu and wall times (sec),
- as well as % of the time and number of calls for node 0
-
-<BEGIN_TIMER mpi_nprocs = 1, omp_nthreads = 1, mpi_rank = 0>
- cpu_time = 4.5, wall_time = 6.0
-
- routine cpu % wall % number of calls Gflops Speedup Efficacity
- (-1=no count)
- bse(Init1) 1.341 29.8 1.341 22.5 1 -1.00 1.00 1.00
- fourwf%(pot) 0.768 17.1 0.770 12.9 8676 -1.00 1.00 1.00
- pspini 0.258 5.7 0.262 4.4 4 -1.00 0.98 0.98
- vtowfk(ssdiag) 0.205 4.6 0.205 3.4 -1 -1.00 1.00 1.00
- nonlop(apply) 0.182 4.0 0.183 3.1 8676 -1.00 0.99 0.99
- get_dtsets_pspheads 0.158 3.5 0.158 2.7 1 -1.00 1.00 1.00
- projbd 0.122 2.7 0.123 2.1 5846 -1.00 0.99 0.99
- timing timab 0.117 2.6 0.117 2.0 12 -1.00 1.00 1.00
- xc:pot/=fourdp 0.100 2.2 0.100 1.7 23 -1.00 1.00 1.00
- bse(mkexcham) 0.084 1.9 0.103 1.7 1 -1.00 0.81 0.81
- fourdp 0.068 1.5 0.099 1.7 371 -1.00 0.69 0.69
- abinit(outvars) 0.052 1.2 0.142 2.4 1 -1.00 0.37 0.37
- bse(mkexceps) 0.050 1.1 0.486 8.1 1 -1.00 0.10 0.10
- bse(exc_haydock_driver) 0.050 1.1 0.486 8.1 1 -1.00 0.10 0.10
- abinit(after driver) 0.050 1.1 0.103 1.7 1 -1.00 0.48 0.48
- getghc(/=fourXX,nonlop,fock_XX) 0.049 1.1 0.045 0.8 -1 -1.00 1.08 1.08
- bse(mkrho) 0.047 1.0 0.047 0.8 1 -1.00 1.00 1.00
- ewald 0.037 0.8 0.037 0.6 4 -1.00 1.00 1.00
- abinit(chkinp,chkvars) 0.024 0.5 0.024 0.4 1 -1.00 1.00 1.00
- pawmkrho 0.019 0.4 0.019 0.3 19 -1.00 1.00 1.00
- nhatgrid 0.019 0.4 0.019 0.3 4 -1.00 1.00 1.00
- pawdenpot 0.016 0.3 0.016 0.3 22 -1.00 1.00 1.00
- fourwf%(den) 0.015 0.3 0.015 0.2 285 -1.00 1.00 1.00
- pawdij/symdij 0.014 0.3 0.014 0.2 22 -1.00 1.00 1.00
- newkpt(excl. rwwf ) 0.010 0.2 0.010 0.2 -1 -1.00 1.00 1.00
- vtowfk(contrib) 0.010 0.2 0.010 0.2 60 -1.00 1.00 1.00
- stress 0.008 0.2 0.008 0.1 1 -1.00 1.00 1.00
- abinit(init,iofn1,herald) 0.008 0.2 0.031 0.5 1 -1.00 0.25 0.25
- pawmkrho:symrhoij 0.007 0.2 0.007 0.1 19 -1.00 1.00 1.00
- ewald2 (+vdw_dftd) 0.007 0.2 0.007 0.1 1 -1.00 1.00 1.00
- pawinit 0.004 0.1 0.004 0.1 2 -1.00 1.00 1.00
- symrhg(no FFT) 0.004 0.1 0.004 0.1 21 -1.00 1.00 1.00
- mkffnl 0.004 0.1 0.004 0.1 81 -1.00 1.00 1.00
- forces 0.004 0.1 0.004 0.1 1 -1.00 1.00 1.00
- wfd_read_wfk 0.003 0.1 0.005 0.1 2 -1.00 0.66 0.66
- setsym 0.002 0.0 0.002 0.0 2 -1.00 1.00 1.00
- screening(paw) 0.002 0.0 0.002 0.0 1 -1.00 1.00 1.00
- getcprj%opernla 0.001 0.0 0.001 0.0 336 -1.00 1.00 1.00
- vtowfk (1) 0.001 0.0 0.001 0.0 60 -1.00 1.00 1.00
- bse(rdkss) 0.001 0.0 0.001 0.0 1 -1.00 1.00 1.00
- bse(rdmkeps^-1) 0.001 0.0 0.001 0.0 1 -1.00 1.00 1.00
- nonlop(forstr) 0.001 0.0 0.001 0.0 15 -1.00 1.00 1.00
- scfcv-scprqt 0.000 0.0 0.000 0.0 19 -1.00 0.99 0.99
- kpgsph 0.000 0.0 0.000 0.0 49 -1.00 1.05 1.05
- vtorho:pawmkrhoij 0.000 0.0 0.000 0.0 19 -1.00 0.98 0.98
- inwffil(excl. calls) 0.000 0.0 0.000 0.0 2 -1.00 0.98 0.98
- others (114) 0.000 0.0 0.000 0.0 -1 -1.00 0.89 0.89
-<END_TIMER>
-
- subtotal 3.921 87.2 5.015 84.1 0.78 0.78
- For major independent code sections, cpu and wall times (sec),
- as well as % of the total time and number of calls
-<BEGIN_TIMER mpi_nprocs = 1, omp_nthreads = 1, mpi_rank = world>
- cpu_time = 4.5, wall_time = 6.0
-
- routine cpu % wall % number of calls Gflops Speedup Efficacity
- (-1=no count)
- bse(Init1) 1.341 29.8 1.341 22.5 1 -1.00 1.00 1.00
- fourwf%(pot) 0.768 17.1 0.770 12.9 8676 -1.00 1.00 1.00
- pspini 0.258 5.7 0.262 4.4 4 -1.00 0.98 0.98
- vtowfk(ssdiag) 0.205 4.6 0.205 3.4 -1 -1.00 1.00 1.00
- nonlop(apply) 0.182 4.0 0.183 3.1 8676 -1.00 0.99 0.99
- get_dtsets_pspheads 0.158 3.5 0.158 2.7 1 -1.00 1.00 1.00
- projbd 0.122 2.7 0.123 2.1 5846 -1.00 0.99 0.99
- timing timab 0.117 2.6 0.117 2.0 12 -1.00 1.00 1.00
- xc:pot/=fourdp 0.100 2.2 0.100 1.7 23 -1.00 1.00 1.00
- bse(mkexcham) 0.084 1.9 0.103 1.7 1 -1.00 0.81 0.81
- fourdp 0.068 1.5 0.099 1.7 371 -1.00 0.69 0.69
- abinit(outvars) 0.052 1.2 0.142 2.4 1 -1.00 0.37 0.37
- bse(mkexceps) 0.050 1.1 0.486 8.1 1 -1.00 0.10 0.10
- bse(exc_haydock_driver) 0.050 1.1 0.486 8.1 1 -1.00 0.10 0.10
- abinit(after driver) 0.050 1.1 0.103 1.7 1 -1.00 0.48 0.48
- getghc(/=fourXX,nonlop,fock_XX) 0.049 1.1 0.045 0.8 -1 -1.00 1.08 1.08
- bse(mkrho) 0.047 1.0 0.047 0.8 1 -1.00 1.00 1.00
- ewald 0.037 0.8 0.037 0.6 4 -1.00 1.00 1.00
- abinit(chkinp,chkvars) 0.024 0.5 0.024 0.4 1 -1.00 1.00 1.00
- pawmkrho 0.019 0.4 0.019 0.3 19 -1.00 1.00 1.00
- nhatgrid 0.019 0.4 0.019 0.3 4 -1.00 1.00 1.00
- pawdenpot 0.016 0.3 0.016 0.3 22 -1.00 1.00 1.00
- fourwf%(den) 0.015 0.3 0.015 0.2 285 -1.00 1.00 1.00
- pawdij/symdij 0.014 0.3 0.014 0.2 22 -1.00 1.00 1.00
- newkpt(excl. rwwf ) 0.010 0.2 0.010 0.2 -1 -1.00 1.00 1.00
- vtowfk(contrib) 0.010 0.2 0.010 0.2 60 -1.00 1.00 1.00
- stress 0.008 0.2 0.008 0.1 1 -1.00 1.00 1.00
- abinit(init,iofn1,herald) 0.008 0.2 0.031 0.5 1 -1.00 0.25 0.25
- pawmkrho:symrhoij 0.007 0.2 0.007 0.1 19 -1.00 1.00 1.00
- ewald2 (+vdw_dftd) 0.007 0.2 0.007 0.1 1 -1.00 1.00 1.00
- pawinit 0.004 0.1 0.004 0.1 2 -1.00 1.00 1.00
- symrhg(no FFT) 0.004 0.1 0.004 0.1 21 -1.00 1.00 1.00
- mkffnl 0.004 0.1 0.004 0.1 81 -1.00 1.00 1.00
- forces 0.004 0.1 0.004 0.1 1 -1.00 1.00 1.00
- wfd_read_wfk 0.003 0.1 0.005 0.1 2 -1.00 0.66 0.66
- setsym 0.002 0.0 0.002 0.0 2 -1.00 1.00 1.00
- screening(paw) 0.002 0.0 0.002 0.0 1 -1.00 1.00 1.00
- getcprj%opernla 0.001 0.0 0.001 0.0 336 -1.00 1.00 1.00
- vtowfk (1) 0.001 0.0 0.001 0.0 60 -1.00 1.00 1.00
- bse(rdkss) 0.001 0.0 0.001 0.0 1 -1.00 1.00 1.00
- bse(rdmkeps^-1) 0.001 0.0 0.001 0.0 1 -1.00 1.00 1.00
- nonlop(forstr) 0.001 0.0 0.001 0.0 15 -1.00 1.00 1.00
- scfcv-scprqt 0.000 0.0 0.000 0.0 19 -1.00 0.99 0.99
- kpgsph 0.000 0.0 0.000 0.0 49 -1.00 1.05 1.05
- vtorho:pawmkrhoij 0.000 0.0 0.000 0.0 19 -1.00 0.98 0.98
- inwffil(excl. calls) 0.000 0.0 0.000 0.0 2 -1.00 0.98 0.98
- others (114) 0.000 0.0 0.000 0.0 -1 -1.00 0.89 0.89
-<END_TIMER>
- subtotal 3.921 87.2 5.015 84.1 0.78 0.78
Partitioning of abinit
- abinit 4.497 100.0 5.965 100.0 1 0.75 0.75
- abinit(init,iofn1,herald) 0.008 0.2 0.031 0.5 1 0.25 0.25
- get_dtsets_pspheads 0.158 3.5 0.158 2.7 1 1.00 1.00
- abinit(outvars) 0.052 1.2 0.142 2.4 1 0.37 0.37
- abinit(chkinp,chkvars) 0.024 0.5 0.024 0.4 1 1.00 1.00
- driver 4.081 90.8 5.384 90.3 1 0.76 0.76
- abinit(after driver) 0.050 1.1 0.103 1.7 1 0.48 0.48
- timing timab 0.117 2.6 0.117 2.0 12 1.00 1.00
- (other) 0.007 0.2 0.007 0.1 -1 1.00 1.00
- subtotal 4.497 100.0 5.965 100.0 0.75 0.75
Partitioning of driver
- driver 4.081 90.8 5.384 90.3 1 0.76 0.76
- driver(bef. select case) 0.001 0.0 0.001 0.0 4 1.00 1.00
- screening 0.391 8.7 0.421 7.1 1 0.93 0.93
- bse 1.541 34.3 1.996 33.5 1 0.77 0.77
- driver(aft. select case) 0.000 0.0 0.014 0.2 4 0.03 0.03
- (other) 2.148 47.8 2.952 49.5 -1 0.73 0.73
- subtotal 4.081 90.8 5.384 90.3 0.76 0.76
Partitioning of gstateimg+gstate
- gstateimg 2.148 47.8 2.951 49.5 2 0.73 0.73
- gstate(1) 0.013 0.3 0.013 0.2 4 1.00 1.00
- gstate(pspini) 0.258 5.7 0.262 4.4 2 0.98 0.98
- gstate(2) 0.002 0.0 0.002 0.0 2 1.00 1.00
- gstate(init rhor rhog) 0.014 0.3 0.045 0.8 2 0.32 0.32
- gstate(...scfcv) 1.849 41.1 2.580 43.2 2 0.72 0.72
- gstate(prtwf) 0.004 0.1 0.041 0.7 2 0.10 0.10
- gstate(clnup1) 0.006 0.1 0.007 0.1 2 0.82 0.82
- subtotal 2.148 47.8 2.951 49.5 0.73 0.73
Partitioning of scfcv_core
- scfcv_core 1.849 41.1 2.579 43.2 2 0.72 0.72
- scfcv_core(ini moved atm inside) 0.009 0.2 0.009 0.2 20 1.00 1.00
- scfcv_core(setvtr) 0.036 0.8 0.036 0.6 20 1.00 1.00
- scfcv_core(loop, PAW) 0.026 0.6 0.026 0.4 20 1.00 1.00
- scfcv_core(vtorho(f)) 1.515 33.7 1.546 25.9 20 0.98 0.98
- scfcv_core(mix den - newrho) 0.016 0.3 0.016 0.3 18 1.00 1.00
- scfcv_core(rhotov) 0.128 2.8 0.132 2.2 18 0.97 0.97
- scfcv_core(afterscfloop) 0.016 0.4 0.016 0.3 2 1.00 1.00
- scfcv_core(outscfcv) 0.101 2.2 0.796 13.3 2 0.13 0.13
- subtotal 1.849 41.1 2.579 43.2 0.72 0.72
Partitioning of rhotov
- rhotov 0.116 2.6 0.120 2.0 18 0.97 0.97
- rhotov(rhotoxc) 0.107 2.4 0.107 1.8 18 1.00 1.00
- rhotov(other) 0.002 0.0 0.002 0.0 18 1.00 1.00
- (other) 0.007 0.2 0.011 0.2 -1 0.63 0.63
- subtotal 0.116 2.6 0.120 2.0 0.97 0.97
Partitioning of vtorho
- vtorho 1.515 33.7 1.546 25.9 20 0.98 0.98
- vtorho(bef. kpt loop) 0.006 0.1 0.006 0.1 20 1.00 1.00
- vtorho(bef. vtowfk) 0.004 0.1 0.004 0.1 60 1.00 1.00
- vtowfk 1.473 32.7 1.473 24.7 60 1.00 1.00
- vtorho(mkrho 2) 0.030 0.7 0.060 1.0 39 0.50 0.50
- subtotal 1.515 33.7 1.546 25.9 0.98 0.98
Partitioning of vtowfk
- vtowfk 1.473 32.7 1.473 24.7 60 1.00 1.00
- cgwf 1.243 27.6 1.243 20.8 107 1.00 1.00
- vtowfk(subdiago) 0.040 0.9 0.040 0.7 107 0.99 0.99
- vtowfk(pw_orthon) 0.160 3.6 0.160 2.7 107 1.00 1.00
- vtowfk(2) 0.004 0.1 0.004 0.1 -1 1.06 1.06
- fourwf%vtowfk 0.015 0.3 0.015 0.2 285 1.00 1.00
- vtowfk(3) 0.010 0.2 0.010 0.2 -1 1.00 1.00
- subtotal 1.473 32.7 1.473 24.7 1.00 1.00
Partitioning of cgwf
- cgwf 1.243 27.6 1.243 20.8 107 1.00 1.00
- getghc%cgwf 0.999 22.2 0.998 16.7 8676 1.00 1.00
- cgwf-O(npw) 0.122 2.7 0.122 2.0 -1 1.00 1.00
- projbd%cgwf 0.122 2.7 0.123 2.1 5846 0.99 0.99
- subtotal 1.243 27.6 1.243 20.8 1.00 1.00
Partitioning of getghc
- getghc 0.999 22.2 0.998 16.7 8676 1.00 1.00
- fourwf%getghc 0.768 17.1 0.770 12.9 8676 1.00 1.00
- nonlop%getghc 0.182 4.0 0.183 3.1 8676 0.99 0.99
- getghc(/=fourXX,nonlop,fock_XX) 0.049 1.1 0.045 0.8 -1 1.08 1.08
- subtotal 0.999 22.2 0.998 16.7 1.00 1.00
Partitioning of fourwf (upwards partitioning)
- fourwf 0.782 17.4 0.785 13.2 8961 1.00 1.00
- fourwf%getghc 0.768 17.1 0.770 12.9 8676 1.00 1.00
- fourwf%vtowfk 0.015 0.3 0.015 0.2 285 1.00 1.00
- subtotal 0.782 17.4 0.785 13.2 1.00 1.00
Partitioning of screening
- screening 0.391 8.7 0.421 7.1 1 0.93 0.93
- screening(init1) 0.005 0.1 0.005 0.1 1 1.00 1.00
- screening(pawin) 0.189 4.2 0.189 3.2 1 1.00 1.00
- screening(wfs) 0.007 0.2 0.008 0.1 1 0.82 0.82
- screening(1) 0.004 0.1 0.004 0.1 1 1.00 1.00
- screening(density) 0.042 0.9 0.042 0.7 1 1.00 1.00
- screening(paw) 0.002 0.0 0.002 0.0 1 1.00 1.00
- screening(2) 0.020 0.5 0.020 0.3 1 1.00 1.00
- screening(cchi0q0) 0.042 0.9 0.054 0.9 1 0.77 0.77
- screening(cchi0) 0.078 1.7 0.078 1.3 2 1.00 1.00
- screening(q-loop,end) 0.001 0.0 0.002 0.0 3 0.40 0.40
- subtotal 0.389 8.6 0.404 6.8 0.96 0.96
Partitioning of bethe_salpeter
- bse 1.541 34.3 1.996 33.5 1 0.77 0.77
- bse(Init1) 1.341 29.8 1.341 22.5 1 1.00 1.00
- bse(mkrho) 0.047 1.0 0.047 0.8 1 1.00 1.00
- bse(mkexcham) 0.084 1.9 0.103 1.7 1 0.81 0.81
- bse(exc_haydock_driver) 0.050 1.1 0.486 8.1 1 0.10 0.10
- subtotal 1.523 33.9 1.978 33.2 0.77 0.77
Partitioning of inwffil
- inwffil 0.010 0.2 0.010 0.2 2 1.00 1.00
- inwffil(call newkpt) 0.010 0.2 0.010 0.2 2 1.00 1.00
- subtotal 0.010 0.2 0.010 0.2 1.00 1.00
Partitioning of newkpt
- newkpt 0.010 0.2 0.010 0.2 2 1.00 1.00
- newkpt(call wfconv) 0.010 0.2 0.010 0.2 6 1.00 1.00
- subtotal 0.010 0.2 0.010 0.2 1.00 1.00
Partitioning of newrho
- newrho 0.016 0.3 0.016 0.3 18 1.00 1.00
- subtotal 0.000 0.0 0.000 0.0 0.00 0.00
Partitioning of fourdp (upwards partitioning)
- fourdp 0.068 1.5 0.099 1.7 371 0.69 0.69
- fourdp%(other) 0.063 1.4 0.094 1.6 334 0.67 0.67
- fourdp%newrho 0.005 0.1 0.005 0.1 36 1.00 1.00
- subtotal 0.068 1.5 0.099 1.7 0.69 0.69
Partitioning of afterscfloop
- afterscfloop 0.016 0.4 0.016 0.3 2 1.00 1.00
- afterscfloop(forstr) 0.016 0.4 0.016 0.3 2 1.00 1.00
- subtotal 0.016 0.4 0.016 0.3 1.00 1.00
Partitioning of forstr
- forstr 0.016 0.4 0.016 0.3 1 1.00 1.00
- forstr(pawgrnl) 0.003 0.1 0.003 0.0 1 1.00 1.00
- forstr(forces) 0.004 0.1 0.004 0.1 1 1.00 1.00
- forstr(stress) 0.008 0.2 0.008 0.1 1 1.00 1.00
- subtotal 0.016 0.4 0.016 0.3 1.00 1.00
Partitioning of forstrnps
- forstrnps 0.001 0.0 0.001 0.0 1 1.00 1.00
- subtotal 0.001 0.0 0.001 0.0 1.00 1.00
Partitioning of exc_build_ham
- exc_build_ham 0.084 1.9 0.103 1.7 1 0.81 0.81
- exc_build_ham(q=0) 0.009 0.2 0.009 0.2 1 1.00 1.00
- exc_build_ham(block-res) 0.074 1.7 0.094 1.6 1 0.79 0.79
- subtotal 0.084 1.9 0.103 1.7 0.81 0.81
Partitioning of exc_build_block
- exc_build_block 0.074 1.6 0.094 1.6 1 0.79 0.79
- exc_build_block(init,read) 0.000 0.0 0.014 0.2 1 0.02 0.02
- exc_build_block(Coulomb) 0.074 1.6 0.079 1.3 1 0.93 0.93
- subtotal 0.074 1.6 0.094 1.6 0.79 0.79
Partitioning of exc_haydock_driver
- exc_haydock_driver 0.050 1.1 0.486 8.1 1 0.10 0.10
- exc_haydock_driver(prep) 0.001 0.0 0.001 0.0 1 1.00 1.00
- exc_haydock_driver(apply) 0.049 1.1 0.485 8.1 1 0.10 0.10
- subtotal 0.050 1.1 0.486 8.2 0.10 0.10
Partitioning of outscfcv
- outscfcv 0.101 2.2 0.796 13.3 2 0.13 0.13
- outscfcv([PAW]prtden) 0.001 0.0 0.001 0.0 2 1.00 1.00
- outscfcv(output GSR) 0.098 2.2 0.767 12.9 2 0.13 0.13
- outscfcv(prt_ebands) 0.001 0.0 0.027 0.5 2 0.02 0.02
- subtotal 0.101 2.2 0.796 13.3 0.13 0.13
-
-Synchronisation (=leave_test) and MPI calls
- communic.MPI 0.046 1.0 0.045 0.7 65318 1.03 1.03
-
- forstrnps:synchr 0.000 0.0 0.000 0.0 2 1.18 1.18
- subtotal 0.000 0.0 0.000 0.0 1.18 1.18
Additional information
- timana(1) 0.000 0.0 0.000 0.0 1 1.01 1.01
- total timab 0.255 5.7 0.255 4.3 188437 1.00 1.00
- fourwf 0.782 17.4 0.785 13.2 8961 1.00 1.00
- nonlop(forstr) 0.001 0.0 0.001 0.0 15 1.00 1.00
- nonlop(total) 0.188 4.2 0.189 3.2 9411 0.99 0.99
- xc:fourdp 0.030 0.7 0.030 0.5 176 1.00 1.00
- cchi0 0.077 1.7 0.077 1.3 2 1.00 1.00
- read_rho 0.001 0.0 0.001 0.0 1 1.00 1.00
Additional information about PAW segments
- forces:pawatm2ff 0.001 0.0 0.001 0.0 1 1.00 1.00
- stress:pawatm2ff 0.001 0.0 0.001 0.0 1 1.00 1.00
- setvtr:pawatm2ff 0.007 0.2 0.007 0.1 4 1.00 1.00
- pawinit 0.004 0.1 0.004 0.1 2 1.00 1.00
- vtowfk:rhoij 0.007 0.2 0.007 0.1 720 1.00 1.00
- vtorho:pawmkrhoij 0.000 0.0 0.000 0.0 19 0.98 0.98
- pawmkrho 0.019 0.4 0.019 0.3 19 1.00 1.00
- scfcv_core:mknhat 0.013 0.3 0.013 0.2 19 1.00 1.00
- nhatgrid 0.019 0.4 0.019 0.3 4 1.00 1.00
- pawdenpot 0.016 0.3 0.016 0.3 22 1.00 1.00
- pawdij/symdij 0.014 0.3 0.014 0.2 22 1.00 1.00
timana : in multi dataset mode, the more detailed analysis is not done.
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 4.5 wall= 6.0
================================================================================
Calculation completed.
.Delivered 4 WARNINGs and 14 COMMENTs to log file.
+Overall time at end (sec) : cpu= 4.5 wall= 6.0