abinit/tests/v67mbpt/Refs/t11.abo

1992 lines
92 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h11 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v67mbpt_t11/t11.abi
- output file -> t11.abo
- root for input files -> t11i
- root for output files -> t11o
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 5 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.867 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 35 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.581 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.203 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 15 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.934 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.088 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.887 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 5 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.887 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 6 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.887 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 7 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 7.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.887 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 8 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 8.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 2
mpw = 188 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.887 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0217000000E+01 1.0217000000E+01 1.0217000000E+01 Bohr
amu 2.80855000E+01
bs_algorithm1 2
bs_algorithm2 2
bs_algorithm3 2
bs_algorithm4 1
bs_algorithm5 2
bs_algorithm6 2
bs_algorithm7 2
bs_algorithm8 1
bs_coulomb_term1 11
bs_coulomb_term2 11
bs_coulomb_term3 11
bs_coulomb_term4 11
bs_coulomb_term5 11
bs_coulomb_term6 21
bs_coulomb_term7 21
bs_coulomb_term8 11
bs_coupling1 0
bs_coupling2 0
bs_coupling3 0
bs_coupling4 0
bs_coupling5 0
bs_coupling6 0
bs_coupling7 0
bs_coupling8 1
bs_freq_mesh1 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh2 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh3 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh4 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh5 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh6 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh7 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh8 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_haydock_niter1 100
bs_haydock_niter2 100
bs_haydock_niter3 100
bs_haydock_niter4 100
bs_haydock_niter5 60
bs_haydock_niter6 60
bs_haydock_niter7 60
bs_haydock_niter8 100
bs_hayd_term1 1
bs_hayd_term2 1
bs_hayd_term3 1
bs_hayd_term4 1
bs_hayd_term5 0
bs_hayd_term6 0
bs_hayd_term7 0
bs_hayd_term8 1
bs_loband1 0
bs_loband2 0
bs_loband3 0
bs_loband4 2
bs_loband5 2
bs_loband6 2
bs_loband7 2
bs_loband8 2
diemac 1.20000000E+01
ecut 6.00000000E+00 Hartree
ecuteps 2.10000000E+00 Hartree
ecutwfn 6.00000000E+00 Hartree
- fftalg 512
fftgw1 21
fftgw2 21
fftgw3 11
fftgw4 21
fftgw5 21
fftgw6 21
fftgw7 21
fftgw8 21
getbsreso1 0
getbsreso2 0
getbsreso3 0
getbsreso4 0
getbsreso5 4
getbsreso6 0
getbsreso7 0
getbsreso8 4
getden1 0
getden2 -1
getden3 0
getden4 0
getden5 0
getden6 0
getden7 0
getden8 0
getscr1 0
getscr2 0
getscr3 0
getscr4 -1
getscr5 -2
getscr6 0
getscr7 0
getscr8 3
getwfk1 0
getwfk2 0
getwfk3 -1
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 2
gwmem1 11
gwmem2 11
gwmem3 11
gwmem4 11
gwmem5 11
gwmem6 11
gwmem7 1
gwmem8 11
gw_icutcoul 3
inclvkb1 2
inclvkb2 2
inclvkb3 0
inclvkb4 2
inclvkb5 2
inclvkb6 2
inclvkb7 2
inclvkb8 2
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
iscf5 7
iscf6 7
iscf7 7
iscf8 7
jdtset 1 2 3 4 5 6 7 8
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.04340000E+01
mbpt_sciss1 0.00000000E+00 Hartree
mbpt_sciss2 0.00000000E+00 Hartree
mbpt_sciss3 0.00000000E+00 Hartree
mbpt_sciss4 2.93994603E-02 Hartree
mbpt_sciss5 2.93994603E-02 Hartree
mbpt_sciss6 2.93994603E-02 Hartree
mbpt_sciss7 2.93994603E-02 Hartree
mbpt_sciss8 2.93994603E-02 Hartree
mdf_epsinf 1.20000000E+01
P mkmem 2
natom 2
nband1 5
nband2 35
nband3 15
nband4 8
nband5 8
nband6 8
nband7 8
nband8 8
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
nbdbuf7 0
nbdbuf8 0
ndtset 8
nfreqim1 -1
nfreqim2 -1
nfreqim3 0
nfreqim4 -1
nfreqim5 -1
nfreqim6 -1
nfreqim7 -1
nfreqim8 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 1
nfreqre4 -1
nfreqre5 -1
nfreqre6 -1
nfreqre7 -1
nfreqre8 -1
ngfft 16 16 16
nkpt 2
npweps1 0
npweps2 0
npweps3 51
npweps4 51
npweps5 51
npweps6 51
npweps7 51
npweps8 51
npwwfn1 0
npwwfn2 0
npwwfn3 169
npwwfn4 169
npwwfn5 169
npwwfn6 169
npwwfn7 169
npwwfn8 169
nstep 50
nsym 24
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ7 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ8 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 3
optdriver4 99
optdriver5 99
optdriver6 99
optdriver7 99
optdriver8 99
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
symmorphi 0
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
toldfe1 1.00000000E-06 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 0.00000000E+00 Hartree
toldfe5 0.00000000E+00 Hartree
toldfe6 0.00000000E+00 Hartree
toldfe7 0.00000000E+00 Hartree
toldfe8 0.00000000E+00 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-08
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
tolwfr7 0.00000000E+00
tolwfr8 0.00000000E+00
typat 1 1
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3516508850E+00 1.3516508850E+00 1.3516508850E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5542500000E+00 2.5542500000E+00 2.5542500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 6.000 => boxcut(ratio)= 2.00850
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/14si.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/14si.pspnc
- Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994
- 14.00000 4.00000 940714 znucl, zion, pspdat
1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 5.907 14.692 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 2.617 4.181 1 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 2.0872718 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1.80626423934776 0.22824404341771 1.17378968127746 rchrg,fchrg,qchrg
pspatm : epsatm= 1.43386982
--- l ekb(1:nproj) -->
0 3.287949
1 1.849886
pspatm: atomic psp has been read and splines computed
2.29419171E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 187.750 187.749
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -8.8544332450994 -8.854E+00 9.300E-04 3.098E+00
ETOT 2 -8.8592415863768 -4.808E-03 1.307E-07 8.375E-02
ETOT 3 -8.8593192586095 -7.767E-05 9.513E-07 1.899E-03
ETOT 4 -8.8593206054019 -1.347E-06 3.546E-08 8.903E-05
ETOT 5 -8.8593207731087 -1.677E-07 3.442E-09 9.804E-07
ETOT 6 -8.8593207746139 -1.505E-09 2.725E-11 7.713E-10
At SCF step 6, etot is converged :
for the second time, diff in etot= 1.505E-09 < toldfe= 1.000E-06
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.29072695E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.29072695E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.29072695E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: -1.505E-09, res2: 7.713E-10, residm: 2.725E-11, diffor: null, }
etotal : -8.85932077E+00
entropy : 0.00000000E+00
fermie : 1.90804115E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 6.29072695E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 6.29072695E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 6.29072695E-05, ]
pressure_GPa: -1.8508E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.84816412
2 2.00000 1.84816574
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.499E-12; max= 27.246E-12
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t11o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.19080 Average Vxc (hartree)= -0.35409
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 5, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.12309 -0.01763 0.08566 0.13597 0.27202
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.02772528891649E+00
hartree : 5.45146571847796E-01
xc : -3.54237623346145E+00
Ewald energy : -8.43581958561899E+00
psp_core : 8.60437873155177E-02
local_psp : -2.46091913373859E+00
non_local_psp : 1.92087853012529E+00
total_energy : -8.85932077461393E+00
total_energy_eV : -2.41074378336892E+02
band_energy : 2.51095269968235E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.29072695E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.29072695E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.29072695E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.8508E+00 GPa]
- sigma(1 1)= 1.85079546E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.85079546E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.85079546E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 2, mband: 35, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 6.000 => boxcut(ratio)= 2.00850
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t11o_DS2_EIG
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
1.38E-09 2.36E-10 9.91E-10 1.17E-09 2.67E-10 3.96E-10 5.94E-10 3.08E-10
2.93E-09 5.14E-09 1.06E-09 6.12E-10 3.11E-09 9.03E-10 5.42E-09 9.56E-09
2.22E-09 8.24E-10 1.41E-09 1.23E-09 2.59E-10 3.47E-09 7.36E-09 4.90E-09
6.67E-09 9.60E-09 4.14E-09 6.84E-10 2.29E-09 2.74E-09 3.60E-09 9.50E-09
3.82E-09 5.77E-08 9.73E-08
-1.2309E-01 -1.7632E-02 8.5660E-02 1.3597E-01 2.7202E-01 3.8197E-01
4.2943E-01 4.3886E-01 5.9325E-01 6.1410E-01 6.7538E-01 6.8579E-01
6.9258E-01 8.4071E-01 8.8426E-01 9.1072E-01 9.3940E-01 9.4696E-01
9.5987E-01 1.0626E+00 1.1145E+00 1.1567E+00 1.1682E+00 1.2435E+00
1.3016E+00 1.3106E+00 1.3192E+00 1.3595E+00 1.4182E+00 1.4924E+00
1.5169E+00 1.5717E+00 1.5883E+00 1.6291E+00 1.6505E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1085000, 5.1085000, ]
- [ 5.1085000, 0.0000000, 5.1085000, ]
- [ 5.1085000, 5.1085000, 0.0000000, ]
lattice_lengths: [ 7.22451, 7.22451, 7.22451, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6663072E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.598E-09, diffor: 0.000E+00, }
etotal : -8.85932077E+00
entropy : 0.00000000E+00
fermie : 1.90804115E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.84816412
2 2.00000 1.84816574
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.378E-10; max= 95.982E-10
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35165088504101 1.35165088504101 1.35165088504101
length scales= 10.217000000000 10.217000000000 10.217000000000 bohr
= 5.406603540164 5.406603540164 5.406603540164 angstroms
prteigrs : about to open file t11o_DS2_EIG
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 35, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.12309 -0.01763 0.08566 0.13597 0.27202 0.38197 0.42943 0.43886
0.59325 0.61410 0.67538 0.68579 0.69258 0.84071 0.88426 0.91072
0.93940 0.94696 0.95987 1.06258 1.11446 1.15670 1.16817 1.24353
1.30165 1.31064 1.31921 1.35948 1.41820 1.49242 1.51689 1.57172
1.58826 1.62909 1.65053
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 2, mband: 15, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 3, gwcalctyp: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
The inverse dielectric matrix will be calculated on zero frequency only
please note that the calculated epsilon^-1 cannot be used
to calculate QP corrections using plasmonpole model 1
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 4
- Remaining bands to be divided among processors nbcw = 11
- Number of bands treated by each node ~11
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000
0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -14.952 -0.146 -0.146 -0.146 -0.000 -0.000 -0.000 -0.000
-0.000 0.000 0.000 -0.000 0.000 -4.960 -0.309 -0.309 -0.309
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 26.0274
dielectric constant without local fields = 28.4561
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 31.28 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.038 0.004 -0.011 0.011 -0.004 -0.004 0.011 -0.011 0.004
0.000 0.004 -0.011 0.011 -0.004 0.004 -0.011 0.011 -0.004
1 2 3 4 5 6 7 8 9
0.038 0.004 -0.011 0.011 -0.004 -0.004 0.011 -0.011 0.004
0.000 -0.004 0.011 -0.011 0.004 -0.004 0.011 -0.011 0.004
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000, 0.000000, 0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.858 0.349 -2.404 -2.368 -2.368 -2.404 0.349 -2.368 -2.368
0.000 0.349 -2.404 -2.368 -2.368 2.404 -0.349 2.368 2.368
2 0.349 -17.598 -0.174 0.751 0.751 0.000 0.000 -0.000 -0.000
-0.349 0.000 0.000 -0.000 -0.000 -3.325 -1.661 -0.096 -0.096
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 61.69 [%]
--------------------------------------------------------------------------------
q-point number 3 q = ( 0.000000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -17.188 -1.504 -2.593 -1.504 -2.593 -2.593 -1.504 -2.593 -1.504
0.000 -1.504 -2.593 -1.504 -2.593 2.593 1.504 2.593 1.504
2 -1.504 -17.203 -0.178 2.841 -0.178 -0.000 -0.000 0.000 -0.000
1.504 0.000 0.000 -0.000 -0.000 -2.089 -0.000 -0.085 -0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 56.58 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.454 -2.000 -2.023 -2.023 -2.023 2.883 -2.471 -2.471 -2.471
0.000 -2.001 -2.023 -2.023 -2.023 -2.883 2.471 2.471 2.471
2 -2.000 -9.793 0.140 0.140 0.140 -0.000 -0.000 0.000 -0.000
2.001 0.000 0.000 -0.000 0.000 -3.724 0.257 0.257 0.257
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 60.31 [%]
--------------------------------------------------------------------------------
q-point number 5 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.985 -0.159 -0.159 -2.264 -2.264 -2.264 -2.264 -0.159 -0.159
0.000 -0.159 -0.159 -2.264 -2.264 2.264 2.264 0.159 0.159
2 -0.159 -16.744 2.104 -0.395 -0.395 -0.000 -0.000 -0.000 -0.000
0.159 0.000 0.000 0.000 0.000 -3.556 -0.295 -0.407 -0.407
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 69.81 [%]
--------------------------------------------------------------------------------
q-point number 6 q = (-0.250000, 0.500000, 0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -18.556 -1.438 -2.797 -2.461 -2.510 -2.510 -2.461 -2.797 -1.438
0.000 -1.438 -2.797 -2.461 -2.510 2.510 2.461 2.797 1.438
2 -1.438 -18.556 -0.140 1.643 -0.367 -0.000 -0.000 -0.000 0.000
1.438 0.000 0.000 -0.000 -0.000 -2.376 -0.000 0.092 -0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 56.25 [%]
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getscr/=0, take file _SCR from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Direct diagonalization.
Dimension of the v, W matrices, npweps = 51
Cutoff for the wavefunctions, npwwfn = 169
Number of k-points in the IBZ, nkibz = 2
Highest empty band included, nband = 8
=== Spin UP ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 10.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.10
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 0.80
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is read from an external SCR file
Resonant-only calculation (Hermitian case)
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.938821 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.938821 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.938821) [r.l.u.]
q = ( 0.000000 0.813043 0.813043) [r.l.u.]
q = ( 0.813043 0.000000 0.813043) [r.l.u.]
q = ( 0.813043 0.813043 0.000000) [r.l.u.]
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
. Writing resonant excitonic Hamiltonian on file t11o_DS4_BSR; file size= 0.00 [Gb].
Direct diagonalization of the resonant excitonic Hamiltonian, Matrix size= 384
. Using LAPACK sequential version.
Excitonic eigenvalues in eV up to n= 32
3.32636 3.32642 3.32644 3.38890 3.38894 3.38898 3.41814 3.41818
3.44109 3.44110 3.44110 3.44818 3.44819 3.44820 3.44988 3.44989
4.26483 4.26556 4.26802 4.29745 4.29959 4.30021 4.41596 4.41819
4.42262 4.42323 4.42357 4.43156 4.43848 4.43952 4.43989 4.44112
First excitonic eigenvalue= 3.33 [eV]
Last excitonic eigenvalue= 13.20 [eV]
GW direct gap 3.52 0.00 [eV]
EXC direct gap 3.33 0.00 [eV]
EXC binding energy 0.19 0.00 [eV]
Excitonic eigenvalues up to the GW energy gap [eV]
1 ( 3.33 0.00)
2 ( 3.33 0.00)
3 ( 3.33 0.00)
4 ( 3.39 0.00)
5 ( 3.39 0.00)
6 ( 3.39 0.00)
7 ( 3.42 0.00)
8 ( 3.42 0.00)
9 ( 3.44 0.00)
10 ( 3.44 0.00)
11 ( 3.44 0.00)
12 ( 3.45 0.00)
13 ( 3.45 0.00)
14 ( 3.45 0.00)
15 ( 3.45 0.00)
16 ( 3.45 0.00)
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 24.2067 0.0000 19.6703 0.0000 21.7046 -0.0000
0.1000 24.2293 0.0454 19.6816 0.0227 21.7200 0.0309
0.2000 24.2973 0.0914 19.7156 0.0456 21.7664 0.0622
0.3000 24.4117 0.1387 19.7726 0.0688 21.8441 0.0940
0.4000 24.5740 0.1878 19.8531 0.0926 21.9540 0.1268
0.5000 24.7864 0.2396 19.9577 0.1172 22.0972 0.1608
0.6000 25.0520 0.2949 20.0872 0.1428 22.2751 0.1965
0.7000 25.3747 0.3547 20.2428 0.1696 22.4895 0.2343
0.8000 25.7595 0.4202 20.4258 0.1979 22.7428 0.2747
0.9000 26.2126 0.4928 20.6380 0.2280 23.0378 0.3182
Writing KS-RPA macroscopic dielectric function without local fields to file: t11o_DS4_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t11o_DS4_GW_NLF_MDF
Writing EXC Macroscopic dielectric function to file: t11o_DS4_EXC_MDF
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getscr/=0, take file _SCR from output of DATASET 3.
mkfilename : getbsreso/=0, take file _BSR from output of DATASET 4.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Haydock technique.
Dimension of the v, W matrices, npweps = 51
Cutoff for the wavefunctions, npwwfn = 169
Number of k-points in the IBZ, nkibz = 2
Highest empty band included, nband = 8
=== Spin UP ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 10.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.10
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 0.80
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is read from an external SCR file
Resonant-only calculation (Hermitian case)
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.938821 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.938821 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.938821) [r.l.u.]
q = ( 0.000000 0.813043 0.813043) [r.l.u.]
q = ( 0.813043 0.000000 0.813043) [r.l.u.]
q = ( 0.813043 0.813043 0.000000) [r.l.u.]
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
Writing KS-RPA macroscopic dielectric function without local fields to file: t11o_DS5_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t11o_DS5_GW_NLF_MDF
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
Writing EXC Macroscopic dielectric function to file: t11o_DS5_EXC_MDF
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 24.2067 0.0000 19.6703 0.0000 21.7046 0.0000
0.1000 24.2293 0.0454 19.6816 0.0227 21.7200 0.0309
0.2000 24.2973 0.0914 19.7156 0.0456 21.7664 0.0622
0.3000 24.4117 0.1387 19.7726 0.0688 21.8441 0.0940
0.4000 24.5740 0.1878 19.8531 0.0926 21.9540 0.1268
0.5000 24.7864 0.2396 19.9577 0.1172 22.0972 0.1608
0.6000 25.0520 0.2949 20.0872 0.1428 22.2751 0.1965
0.7000 25.3747 0.3547 20.2428 0.1696 22.4895 0.2343
0.8000 25.7595 0.4202 20.4258 0.1979 22.7428 0.2747
0.9000 26.2126 0.4928 20.6380 0.2280 23.0378 0.3182
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Haydock technique.
Dimension of the v, W matrices, npweps = 51
Cutoff for the wavefunctions, npwwfn = 169
Number of k-points in the IBZ, nkibz = 2
Highest empty band included, nband = 8
=== Spin UP ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 10.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.10
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 0.80
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is approximated with the model dielectric function
Resonant-only calculation (Hermitian case)
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.938821 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.938821 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.938821) [r.l.u.]
q = ( 0.000000 0.813043 0.813043) [r.l.u.]
q = ( 0.813043 0.000000 0.813043) [r.l.u.]
q = ( 0.813043 0.813043 0.000000) [r.l.u.]
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
. Writing resonant excitonic Hamiltonian on file t11o_DS6_BSR; file size= 0.00 [Gb].
Writing KS-RPA macroscopic dielectric function without local fields to file: t11o_DS6_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t11o_DS6_GW_NLF_MDF
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
Writing EXC Macroscopic dielectric function to file: t11o_DS6_EXC_MDF
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 24.2067 0.0000 19.6703 0.0000 22.2842 0.0000
0.1000 24.2293 0.0454 19.6816 0.0227 22.3010 0.0339
0.2000 24.2973 0.0914 19.7156 0.0456 22.3518 0.0681
0.3000 24.4117 0.1387 19.7726 0.0688 22.4370 0.1031
0.4000 24.5740 0.1878 19.8531 0.0926 22.5575 0.1391
0.5000 24.7864 0.2396 19.9577 0.1172 22.7147 0.1766
0.6000 25.0520 0.2949 20.0872 0.1428 22.9102 0.2161
0.7000 25.3747 0.3547 20.2428 0.1696 23.1461 0.2581
0.8000 25.7595 0.4202 20.4258 0.1979 23.4254 0.3032
0.9000 26.2126 0.4928 20.6380 0.2280 23.7513 0.3520
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Haydock technique.
Dimension of the v, W matrices, npweps = 51
Cutoff for the wavefunctions, npwwfn = 169
Number of k-points in the IBZ, nkibz = 2
Highest empty band included, nband = 8
=== Spin UP ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 10.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.10
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 0.80
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is approximated with the model dielectric function
Resonant-only calculation (Hermitian case)
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.938821 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.938821 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.938821) [r.l.u.]
q = ( 0.000000 0.813043 0.813043) [r.l.u.]
q = ( 0.813043 0.000000 0.813043) [r.l.u.]
q = ( 0.813043 0.813043 0.000000) [r.l.u.]
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
. Writing resonant excitonic Hamiltonian on file t11o_DS7_BSR; file size= 0.00 [Gb].
Writing KS-RPA macroscopic dielectric function without local fields to file: t11o_DS7_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t11o_DS7_GW_NLF_MDF
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
>>> Haydock algorithm converged twice within haydock_tol= 2.00E-02 after less than 100 iterations.
Writing EXC Macroscopic dielectric function to file: t11o_DS7_EXC_MDF
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 24.2067 0.0000 19.6703 0.0000 22.2842 0.0000
0.1000 24.2293 0.0454 19.6816 0.0227 22.3010 0.0339
0.2000 24.2973 0.0914 19.7156 0.0456 22.3518 0.0681
0.3000 24.4117 0.1387 19.7726 0.0688 22.4370 0.1031
0.4000 24.5740 0.1878 19.8531 0.0926 22.5575 0.1391
0.5000 24.7864 0.2396 19.9577 0.1172 22.7147 0.1766
0.6000 25.0520 0.2949 20.0872 0.1428 22.9102 0.2161
0.7000 25.3747 0.3547 20.2428 0.1696 23.1461 0.2581
0.8000 25.7595 0.4202 20.4258 0.1979 23.4254 0.3032
0.9000 26.2126 0.4928 20.6380 0.2280 23.7513 0.3520
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 2, nkpt: 2, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 188, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 99, bs_calctype: 1, bs_algorithm: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getscr/=0, take file _SCR from output of DATASET 3.
mkfilename : getbsreso/=0, take file _BSR from output of DATASET 4.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Exciton: Calculation of dielectric properties by solving the Bethe-Salpeter equation
in frequency domain and reciprocal space on a transitions basis set.
Based on a program developed by L. Reining, V. Olevano, F. Sottile,
S. Albrecht, and G. Onida. Incorporated in ABINIT by M. Giantomassi.
.Using double precision arithmetic ; gwpc = 8
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1085000 5.1085000 G(1)= -0.0978761 0.0978761 0.0978761
R(2)= 5.1085000 0.0000000 5.1085000 G(2)= 0.0978761 -0.0978761 0.0978761
R(3)= 5.1085000 5.1085000 0.0000000 G(3)= 0.0978761 0.0978761 -0.0978761
Unit cell volume ucvol= 2.6663072E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 2
Reduced coordinates and weights :
1) -2.50000000E-01 5.00000000E-01 0.00000000E+00 0.75000
2) -2.50000000E-01 0.00000000E+00 0.00000000E+00 0.25000
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 6
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.03125
2) -2.50000000E-01 0.00000000E+00 2.50000000E-01 0.37500
3) 0.00000000E+00 5.00000000E-01 5.00000000E-01 0.09375
4) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.12500
5) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
6) -2.50000000E-01 5.00000000E-01 2.50000000E-01 0.18750
Together with 24 symmetry operations and time-reversal symmetry
yields 32 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 15x 15x 15
total number of points = 3375
==== Fundamental parameters for the solution of the Bethe-Salpeter equation: ====
Algorithm: Direct diagonalization.
Dimension of the v, W matrices, npweps = 51
Cutoff for the wavefunctions, npwwfn = 169
Number of k-points in the IBZ, nkibz = 2
Highest empty band included, nband = 8
=== Spin UP ===
Number of resonant transitions 384
Lowest occupied state 2
Highest occupied state 4
Lowest unoccupied state 5
Highest unoccupied state 8
Minimum frequency [eV] Emin = 0.00
Maximum frequency [eV] Emax = 10.00
Frequency step [eV] dE = 0.10
Lorentzian broadening [eV] eta = 0.10
RPA L0 with KS energies and KS wavefunctions
Scissors operator energy [eV] = 0.80
Local fields effects (v term) included
Excitonic effects (W term) included
Full W_GG' included
W is read from an external SCR file
Resonant + Coupling calculation
Calculating epsilon_Macro(q-->0,w), along the following directions:
q = ( 0.938821 0.000000 0.000000) [r.l.u.]
q = ( 0.000000 0.938821 0.000000) [r.l.u.]
q = ( 0.000000 0.000000 0.938821) [r.l.u.]
q = ( 0.000000 0.813043 0.813043) [r.l.u.]
q = ( 0.813043 0.000000 0.813043) [r.l.u.]
q = ( 0.813043 0.813043 0.000000) [r.l.u.]
Number of electrons calculated from density = 8.0000; Expected = 8.0000
average of density, n = 0.030004
r_s = 1.9964
omega_plasma = 16.7088 [eV]
. Writing coupling excitonic Hamiltonian on file t11o_DS8_BSC; file size= 0.00 [Gb].
. Direct diagonalization of the full excitonic Hamiltonian, Matrix size= 768
. Using LAPACK sequential version to solve FHv = ev with H positive definite.
First excitonic eigenvalue: 3.33 [eV].
Last excitonic eigenvalue: 13.19 [eV].
GW direct gap 3.52 0.00 [eV]
EXC direct gap 3.33 0.00 [eV]
EXC binding energy 0.19 0.00 [eV]
Excitonic eigenvalues up to the GW energy gap [eV]
385 ( 3.33 0.00)
386 ( 3.33 0.00)
387 ( 3.33 0.00)
388 ( 3.39 0.00)
389 ( 3.39 0.00)
390 ( 3.39 0.00)
391 ( 3.42 0.00)
392 ( 3.42 0.00)
393 ( 3.44 0.00)
394 ( 3.44 0.00)
395 ( 3.44 0.00)
396 ( 3.45 0.00)
397 ( 3.45 0.00)
398 ( 3.45 0.00)
399 ( 3.45 0.00)
400 ( 3.45 0.00)
Macroscopic dielectric function:
omega [eV] <KS_RPA_nlf> <GW_RPA_nlf> <BSE>
0.0000 24.2067 0.0000 19.6703 0.0000 21.0330 -0.0000
0.1000 24.2293 0.0454 19.6816 0.0227 21.0480 0.0301
0.2000 24.2973 0.0914 19.7156 0.0456 21.0931 0.0605
0.3000 24.4117 0.1387 19.7726 0.0688 21.1688 0.0916
0.4000 24.5740 0.1878 19.8531 0.0926 21.2759 0.1235
0.5000 24.7864 0.2396 19.9577 0.1172 21.4154 0.1566
0.6000 25.0520 0.2949 20.0872 0.1428 21.5886 0.1914
0.7000 25.3747 0.3547 20.2428 0.1696 21.7975 0.2282
0.8000 25.7595 0.4202 20.4258 0.1979 22.0443 0.2676
0.9000 26.2126 0.4928 20.6380 0.2280 22.3317 0.3100
Writing KS-RPA macroscopic dielectric function without local fields to file: t11o_DS8_RPA_NLF_MDF
Writing GW-RPA macroscopic dielectric function without local fields to file: t11o_DS8_GW_NLF_MDF
Writing EXC Macroscopic dielectric function to file: t11o_DS8_EXC_MDF
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0217000000E+01 1.0217000000E+01 1.0217000000E+01 Bohr
amu 2.80855000E+01
bs_algorithm1 2
bs_algorithm2 2
bs_algorithm3 2
bs_algorithm4 1
bs_algorithm5 2
bs_algorithm6 2
bs_algorithm7 2
bs_algorithm8 1
bs_coulomb_term1 11
bs_coulomb_term2 11
bs_coulomb_term3 11
bs_coulomb_term4 11
bs_coulomb_term5 11
bs_coulomb_term6 21
bs_coulomb_term7 21
bs_coulomb_term8 11
bs_coupling1 0
bs_coupling2 0
bs_coupling3 0
bs_coupling4 0
bs_coupling5 0
bs_coupling6 0
bs_coupling7 0
bs_coupling8 1
bs_freq_mesh1 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh2 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh3 0.00000000E+00 0.00000000E+00 3.67493254E-04 Hartree
bs_freq_mesh4 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh5 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh6 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh7 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_freq_mesh8 0.00000000E+00 3.67493254E-01 3.67493254E-03 Hartree
bs_haydock_niter1 100
bs_haydock_niter2 100
bs_haydock_niter3 100
bs_haydock_niter4 100
bs_haydock_niter5 60
bs_haydock_niter6 60
bs_haydock_niter7 60
bs_haydock_niter8 100
bs_hayd_term1 1
bs_hayd_term2 1
bs_hayd_term3 1
bs_hayd_term4 1
bs_hayd_term5 0
bs_hayd_term6 0
bs_hayd_term7 0
bs_hayd_term8 1
bs_loband1 0
bs_loband2 0
bs_loband3 0
bs_loband4 2
bs_loband5 2
bs_loband6 2
bs_loband7 2
bs_loband8 2
diemac 1.20000000E+01
ecut 6.00000000E+00 Hartree
ecuteps 2.10000000E+00 Hartree
ecutwfn 6.00000000E+00 Hartree
etotal1 -8.8593207746E+00
etotal3 0.0000000000E+00
etotal4 0.0000000000E+00
etotal5 0.0000000000E+00
etotal6 0.0000000000E+00
etotal7 0.0000000000E+00
etotal8 0.0000000000E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
fftgw1 21
fftgw2 21
fftgw3 11
fftgw4 21
fftgw5 21
fftgw6 21
fftgw7 21
fftgw8 21
getbsreso1 0
getbsreso2 0
getbsreso3 0
getbsreso4 0
getbsreso5 4
getbsreso6 0
getbsreso7 0
getbsreso8 4
getden1 0
getden2 -1
getden3 0
getden4 0
getden5 0
getden6 0
getden7 0
getden8 0
getscr1 0
getscr2 0
getscr3 0
getscr4 -1
getscr5 -2
getscr6 0
getscr7 0
getscr8 3
getwfk1 0
getwfk2 0
getwfk3 -1
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 2
gwmem1 11
gwmem2 11
gwmem3 11
gwmem4 11
gwmem5 11
gwmem6 11
gwmem7 1
gwmem8 11
gw_icutcoul 3
inclvkb1 2
inclvkb2 2
inclvkb3 0
inclvkb4 2
inclvkb5 2
inclvkb6 2
inclvkb7 2
inclvkb8 2
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
iscf5 7
iscf6 7
iscf7 7
iscf8 7
jdtset 1 2 3 4 5 6 7 8
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.04340000E+01
mbpt_sciss1 0.00000000E+00 Hartree
mbpt_sciss2 0.00000000E+00 Hartree
mbpt_sciss3 0.00000000E+00 Hartree
mbpt_sciss4 2.93994603E-02 Hartree
mbpt_sciss5 2.93994603E-02 Hartree
mbpt_sciss6 2.93994603E-02 Hartree
mbpt_sciss7 2.93994603E-02 Hartree
mbpt_sciss8 2.93994603E-02 Hartree
mdf_epsinf 1.20000000E+01
P mkmem 2
natom 2
nband1 5
nband2 35
nband3 15
nband4 8
nband5 8
nband6 8
nband7 8
nband8 8
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
nbdbuf4 0
nbdbuf5 0
nbdbuf6 0
nbdbuf7 0
nbdbuf8 0
ndtset 8
nfreqim1 -1
nfreqim2 -1
nfreqim3 0
nfreqim4 -1
nfreqim5 -1
nfreqim6 -1
nfreqim7 -1
nfreqim8 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 1
nfreqre4 -1
nfreqre5 -1
nfreqre6 -1
nfreqre7 -1
nfreqre8 -1
ngfft 16 16 16
nkpt 2
npweps1 0
npweps2 0
npweps3 51
npweps4 51
npweps5 51
npweps6 51
npweps7 51
npweps8 51
npwwfn1 0
npwwfn2 0
npwwfn3 169
npwwfn4 169
npwwfn5 169
npwwfn6 169
npwwfn7 169
npwwfn8 169
nstep 50
nsym 24
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ5 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ6 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ7 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
occ8 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 0
optdriver3 3
optdriver4 99
optdriver5 99
optdriver6 99
optdriver7 99
optdriver8 99
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
strten1 6.2907269508E-05 6.2907269508E-05 6.2907269508E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symmorphi 0
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
toldfe1 1.00000000E-06 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 0.00000000E+00 Hartree
toldfe5 0.00000000E+00 Hartree
toldfe6 0.00000000E+00 Hartree
toldfe7 0.00000000E+00 Hartree
toldfe8 0.00000000E+00 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-08
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
tolwfr7 0.00000000E+00
tolwfr8 0.00000000E+00
typat 1 1
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3516508850E+00 1.3516508850E+00 1.3516508850E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5542500000E+00 2.5542500000E+00 2.5542500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 15.4 wall= 18.5
================================================================================
Calculation completed.
.Delivered 16 WARNINGs and 23 COMMENTs to log file.
+Overall time at end (sec) : cpu= 15.4 wall= 18.5