abinit/tests/v67mbpt/Input/t31.abi

159 lines
5.3 KiB
Plaintext

# Crystalline silicon
ndtset 5
gwpara 2
# Definition of the unit cell: fcc
acell 3*10.217 # This is equivalent to 10.217 10.217 10.217
rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell)
0.5 0.0 0.5
0.5 0.5 0.0
# Definition of the atom types
ntypat 1 # There is only one type of atom
znucl 14 # The keyword "zatnum" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, the only type is Silicon.
# Definition of the atoms
natom 2 # There are two atoms
typat 1 1 # They both are of type 1, that is, Silicon.
xred # Reduced coordinate of atoms
0.0 0.0 0.0
0.25 0.25 0.25
# Definition of the planewave basis set (at convergence 16 Rydberg 8 Hartree)
ecut 6 # Maximal kinetic energy cut-off, in Hartree
ecutwfn 6
ecuteps 2.1
istwfk *1
nstep 50 # Maximal number of SCF cycles
diemac 12.0
# Dataset1: self-consistent calculation
# Definition of the k-point grid
kptopt 1 # Option for the automatic generation of k points,
ngkpt 2 2 2
nshiftk 1
shiftk 0.11 0.12 0.13 # These shifts will be the same for all grids
chksymbreak 0
# Definition of the SCF procedure
toldfe1 1.0d-6
prtden1 1
# Dataset2: definition of parameters for the calculation of the WFK file
iscf2 -2 # non self-consistency, read previous density file
getden2 -1
tolwfr2 1.0d-8 # it is not important as later there is a diago
nband2 35
# Dataset 3 BSE equation with Model dielectric function and Haydock (only resonant + W + v)
# Note that SCR file is not needed here
optdriver3 99
getwfk3 2
inclvkb3 2
bs_algorithm3 2 # Haydock
bs_haydock_niter3 200 # No. of iterations for Haydock
bs_exchange_term3 1
bs_coulomb_term3 21 # Use model W and full W_GG.
mdf_epsinf3 12.0
bs_calctype3 1 # Use KS energies and orbitals to construct L0
mbpt_sciss3 0.8 eV
bs_coupling3 0
bs_haydock_tol3 -0.001 0
bs_loband3 2
nband3 8
bs_freq_mesh3 0 6 0.1 eV
bs_hayd_term3 0 # No terminator
# Preparation of interpolation
bs_interp_prep3 1
# Dataset 4: definition of parameters for the calculation of the WFK file
iscf4 -2 # non self-consistency, read previous density file
getden4 1
tolwfr4 1.0d-8 # it is not important as later there is a diago
nband4 35
ngkpt4 4 4 4
shiftk4 0.22 0.24 0.26
# Dataset 5 : Full BSE for comparison
optdriver5 99
getwfk5 4
inclvkb5 2
bs_algorithm5 2 # Haydock
bs_haydock_niter5 200 # No. of iterations for Haydock
bs_exchange_term5 1
bs_coulomb_term5 21 # Use model W and full W_GG.
mdf_epsinf5 12.0
bs_calctype5 1 # Use KS energies and orbitals to construct L0
mbpt_sciss5 0.8 eV
bs_coupling5 0
bs_haydock_tol5 -0.001 0
bs_loband5 2
nband5 8
bs_freq_mesh5 0 6 0.1 eV
bs_hayd_term5 0 # No terminator
ngkpt5 4 4 4
nshiftk5 1
shiftk5 0.22 0.24 0.26
pp_dirpath "$ABI_PSPDIR"
pseudos "PseudosTM_pwteter/14si.pspnc"
#%%<BEGIN TEST_INFO>
#%% [setup]
#%% executable = abinit
#%% test_chain = t31.abi, t32.abi, t33.abi, t34.abi, t35.abi
#%% [files]
#%% files_to_test =
#%% t31.abo, tolnlines = 20 , tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% t31o_DS3_EXC_MDF , tolnlines = 800, tolabs = 0.5, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% t31o_DS3_GW_NLF_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% t31o_DS3_RPA_NLF_MDF, tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% t31o_DS5_EXC_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% t31o_DS5_GW_NLF_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% t31o_DS5_RPA_NLF_MDF, tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous;
#%% [paral_info]
#%% max_nprocs = 1
#%% [shell]
#%% post_commands =
#%% ww_cp t31o_DS2_WFK t32i_DS1_WFK;
#%% ww_cp t31o_DS3_BSR t32i_DS1_BSR;
#%% ww_cp t31o_DS4_WFK t32o_DS99_WFK;
#%% ww_cp t31o_DS2_WFK t33i_DS1_WFK;
#%% ww_cp t31o_DS3_BSR t33i_DS1_BSR;
#%% ww_cp t31o_DS3_ABSR t33i_DS1_ABSR;
#%% ww_cp t31o_DS3_BBSR t33i_DS1_BBSR;
#%% ww_cp t31o_DS3_CBSR t33i_DS1_CBSR;
#%% ww_cp t31o_DS4_WFK t33o_DS99_WFK;
#%% ww_cp t31o_DS2_WFK t34i_DS1_WFK;
#%% ww_cp t31o_DS3_BSR t34i_DS1_BSR;
#%% ww_cp t31o_DS3_ABSR t34i_DS1_ABSR;
#%% ww_cp t31o_DS3_BBSR t34i_DS1_BBSR;
#%% ww_cp t31o_DS3_CBSR t34i_DS1_CBSR;
#%% ww_cp t31o_DS4_WFK t34o_DS99_WFK;
#%% ww_cp t31o_DS2_WFK t35i_DS1_WFK;
#%% ww_cp t31o_DS3_BSR t35i_DS1_BSR;
#%% ww_cp t31o_DS4_WFK t35o_DS99_WFK;
#%% [extra_info]
#%% authors = Y. Gillet
#%% keywords = NC, GW, BSE
#%% description =
#%% Silicon: Solution of the Bethe-Salpeter equation (BSE) with the interpolation technique
#%% In t31, preparation, BSE equation with Model dielectric function and Haydock
#%% (only resonant + W + v), then full BSE
#%% In t32, bs_interp_mode 1
#%% In t33, bs_interp_mode 2
#%% In t34, bs_interp_mode 3
#%% In t35, Rohlfing-Louie
#%% topics = BSE
#%%<END TEST_INFO>