abinit/tests/v6/Refs/t54.abo

2706 lines
129 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h11 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v6_t54-t55-t56-t57/t54.abi
- output file -> t54.abo
- root for input files -> t54i
- root for output files -> t54o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 12 mpssoang = 1 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 4
mpw = 47 nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 0.904 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.025 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 12 mpssoang = 1 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 8 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 94
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 0.914 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 3 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 12 mpssoang = 1 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 8 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 94
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.011 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 4 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 12 mpssoang = 1 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 8 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 94
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.011 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 5 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 12 mpssoang = 1 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 8 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 94
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.011 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.048 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 4.3000000000E+00 4.3000000000E+00 4.3000000000E+00 Bohr
amu 4.00260200E+00
bdeigrf 8
diemac 2.00000000E+00
ecut 8.00000000E+00 Hartree
- fftalg 512
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
ieig2rf1 0
ieig2rf2 1
ieig2rf3 1
ieig2rf4 1
ieig2rf5 1
istwfk1 6 3 4 9
istwfk2 1 1 1 1
istwfk3 1 1 1 1
istwfk4 1 1 1 1
istwfk5 1 1 1 1
jdtset 1 2 3 4 5
kpt 0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt 3
kptrlatt 1 1 -1 -1 1 1 1 -1 1
kptrlen 7.44781847E+00
P mkmem 4
P mkqmem 4
P mk1mem 4
natom 2
nband 8
ndtset 5
ngfft 12 12 12
nkpt 4
nqpt1 0
nqpt2 1
nqpt3 1
nqpt4 1
nqpt5 1
nstep 40
nsym 1
ntypat 1
occ 2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 1
optdriver3 1
optdriver4 1
optdriver5 1
prtpot1 0
prtpot2 1
prtpot3 1
prtpot4 1
prtpot5 1
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 5.00000000E-01 5.00000000E-01
qpt4 5.00000000E-01 0.00000000E+00 5.00000000E-01
qpt5 5.00000000E-01 5.00000000E-01 0.00000000E+00
rfphon1 0
rfphon2 1
rfphon3 1
rfphon4 1
rfphon5 1
shiftk -5.00000000E-01 5.00000000E-01 5.00000000E-01
smdelta1 0
smdelta2 1
smdelta3 1
smdelta4 1
smdelta5 1
spgroup 1
tolvrs1 1.00000000E-18
tolvrs2 1.00000000E-08
tolvrs3 1.00000000E-08
tolvrs4 1.00000000E-08
tolvrs5 1.00000000E-08
typat 1 1
wtk 0.25000 0.25000 0.25000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.1377309985E+00 1.1377309985E+00 1.1377309985E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.1500000000E+00 2.1500000000E+00 2.1500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 2.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 4, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 47, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 4.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.3000000 0.0000000 0.0000000 G(1)= 0.2325581 0.0000000 0.0000000
R(2)= 0.0000000 4.3000000 0.0000000 G(2)= 0.0000000 0.2325581 0.0000000
R(3)= 0.0000000 0.0000000 4.3000000 G(3)= 0.0000000 0.0000000 0.2325581
Unit cell volume ucvol= 7.9507000E+01 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 8.000 => boxcut(ratio)= 2.19181
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/02he.fakesmooth
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/02he.fakesmooth
- Bare (erfc) Goedecker-Teter-Hutter Wed May 8 14:27:44 EDT 1996
- 2.00000 2.00000 960508 znucl, zion, pspdat
2 1 0 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.5000000
cc1= 0.0000000; cc2= 0.0000000; cc3= 0.0000000; cc4= 0.0000000
rrs= 0.0000000; h1s= 0.0000000; h2s= 0.0000000
rrp= 0.0000000; h1p= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 3.14159265
--- l ekb(1:nproj) -->
pspatm: atomic psp has been read and splines computed
2.51327412E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 92.500 92.463
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-18, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -3.2534997340841 -3.253E+00 3.979E-04 9.057E+00
ETOT 2 -3.2727721326783 -1.927E-02 1.283E-09 1.414E-02
ETOT 3 -3.2727952143826 -2.308E-05 3.909E-06 3.250E-05
ETOT 4 -3.2727952291780 -1.480E-08 2.726E-10 1.426E-08
ETOT 5 -3.2727952292005 -2.253E-11 3.783E-12 1.924E-11
ETOT 6 -3.2727952292006 -4.086E-14 7.412E-15 2.350E-14
ETOT 7 -3.2727952292006 -1.332E-15 1.123E-17 1.569E-16
ETOT 8 -3.2727952292006 8.882E-16 9.216E-20 2.933E-19
At SCF step 8 vres2 = 2.93E-19 < tolvrs= 1.00E-18 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.61395454E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.61395454E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.61395454E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 4.3000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 4.3000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 4.3000000, ]
lattice_lengths: [ 4.30000, 4.30000, 4.30000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.9507000E+01
convergence: {deltae: 8.882E-16, res2: 2.933E-19, residm: 9.216E-20, diffor: null, }
etotal : -3.27279523E+00
entropy : 0.00000000E+00
fermie : 9.74722111E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.61395454E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.61395454E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.61395454E-03, ]
pressure_GPa: 4.7484E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, He]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, He]
cartesian_forces: # hartree/bohr
- [ -2.27987009E-12, -2.09175972E-12, -2.93840267E-12, ]
- [ 2.27987009E-12, 2.09175972E-12, 2.93840267E-12, ]
force_length_stats: {min: 4.26702199E-12, max: 4.26702199E-12, mean: 4.26702199E-12, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.86411081
2 2.00000 1.86411081
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 19.718E-21; max= 92.159E-21
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
rms dE/dt= 1.0593E-11; max dE/dt= 1.2642E-11; dE/dt below (all hartree)
1 0.000000000010 0.000000000009 0.000000000013
2 -0.000000000010 -0.000000000009 -0.000000000013
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.13773099846850 1.13773099846850 1.13773099846850
cartesian forces (hartree/bohr) at end:
1 -0.00000000000228 -0.00000000000209 -0.00000000000294
2 0.00000000000228 0.00000000000209 0.00000000000294
frms,max,avg= 2.4635663E-12 2.9384027E-12 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000011724 -0.00000000010756 -0.00000000015110
2 0.00000000011724 0.00000000010756 0.00000000015110
frms,max,avg= 1.2668166E-10 1.5109873E-10 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 4.300000000000 4.300000000000 4.300000000000 bohr
= 2.275461996937 2.275461996937 2.275461996937 angstroms
prteigrs : about to open file t54o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.09747 Average Vxc (hartree)= -0.40410
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.19671 -0.19671 0.71559 0.71559 0.93348 0.93348 0.93348 0.93348
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.90096916120025E+00
hartree : 1.33653961875695E-01
xc : -1.38266821092565E+00
Ewald energy : -3.38533344140339E+00
psp_core : 3.16107276450103E-01
local_psp : -8.55523976397560E-01
non_local_psp : 0.00000000000000E+00
total_energy : -3.27279522920055E+00
total_energy_eV : -8.90572872769530E+01
band_energy : -4.92661041818513E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.61395454E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.61395454E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.61395454E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.7484E+01 GPa]
- sigma(1 1)= -4.74841741E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.74841741E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.74841741E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 4, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 94, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 4.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.3000000 0.0000000 0.0000000 G(1)= 0.2325581 0.0000000 0.0000000
R(2)= 0.0000000 4.3000000 0.0000000 G(2)= 0.0000000 0.2325581 0.0000000
R(3)= 0.0000000 0.0000000 4.3000000 G(3)= 0.0000000 0.0000000 0.2325581
Unit cell volume ucvol= 7.9507000E+01 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 8.000 => boxcut(ratio)= 2.19181
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.6834805604353 -1.466E+01 5.010E-02 2.596E+02
ETOT 2 0.79343591669211 -8.900E-01 1.431E-03 3.699E+00
ETOT 3 0.77958228428543 -1.385E-02 1.485E-05 1.907E-03
ETOT 4 0.77957778647825 -4.498E-06 9.169E-09 4.367E-06
ETOT 5 0.77957777830101 -8.177E-09 6.443E-11 4.265E-10
At SCF step 5 vres2 = 4.26E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 64.569E-13; max= 64.434E-12
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96971950E+00 eigvalue= 1.08901143E-01 local= -1.02502163E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.11373397E+01 Hartree= 5.67385647E+00 xc= -3.02799660E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 8.86921138E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.55686694E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 3.89654903E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7795777783E+00 Ha. Also 2DEtotal= 0.212133901741E+02 eV
(2DErelax= -1.5568669447E+01 Ha. 2DEnonrelax= 1.6348247225E+01 Ha)
( non-var. 2DEtotal : 7.7957737021E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.6834804987495 -1.466E+01 5.010E-02 2.596E+02
ETOT 2 0.79343584939344 -8.900E-01 1.431E-03 3.699E+00
ETOT 3 0.77958228429282 -1.385E-02 1.485E-05 1.907E-03
ETOT 4 0.77957778641525 -4.498E-06 9.159E-09 4.368E-06
ETOT 5 0.77957777823779 -8.177E-09 2.668E-11 4.264E-10
At SCF step 5 vres2 = 4.26E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 44.439E-13; max= 26.681E-12
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96971950E+00 eigvalue= 1.08901143E-01 local= -1.02502163E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.11373397E+01 Hartree= 5.67385647E+00 xc= -3.02799660E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 8.86921138E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.55686694E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 3.89654903E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7795777782E+00 Ha. Also 2DEtotal= 0.212133901724E+02 eV
(2DErelax= -1.5568669447E+01 Ha. 2DEnonrelax= 1.6348247225E+01 Ha)
( non-var. 2DEtotal : 7.7957736954E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.6834802748909 -1.466E+01 5.010E-02 2.596E+02
ETOT 2 0.79343614987339 -8.900E-01 1.431E-03 3.699E+00
ETOT 3 0.77958228409821 -1.385E-02 1.485E-05 1.906E-03
ETOT 4 0.77957778650603 -4.498E-06 9.169E-09 4.367E-06
ETOT 5 0.77957777832951 -8.177E-09 2.580E-11 4.265E-10
At SCF step 5 vres2 = 4.27E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 44.498E-13; max= 25.796E-12
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96971950E+00 eigvalue= 1.08901143E-01 local= -1.02502163E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.11373397E+01 Hartree= 5.67385646E+00 xc= -3.02799660E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 8.86921138E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.55686694E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 3.89654903E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7795777783E+00 Ha. Also 2DEtotal= 0.212133901749E+02 eV
(2DErelax= -1.5568669447E+01 Ha. 2DEnonrelax= 1.6348247225E+01 Ha)
( non-var. 2DEtotal : 7.7957737283E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.6834805599611 -1.466E+01 5.010E-02 2.596E+02
ETOT 2 0.79343591622180 -8.900E-01 1.431E-03 3.699E+00
ETOT 3 0.77958228381515 -1.385E-02 1.485E-05 1.907E-03
ETOT 4 0.77957778600806 -4.498E-06 2.153E-08 4.367E-06
ETOT 5 0.77957777783086 -8.177E-09 2.657E-11 4.265E-10
At SCF step 5 vres2 = 4.26E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 44.775E-13; max= 26.570E-12
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96971950E+00 eigvalue= 1.08901143E-01 local= -1.02502163E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.11373397E+01 Hartree= 5.67385647E+00 xc= -3.02799660E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 8.86921138E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.55686694E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 3.89654903E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7795777778E+00 Ha. Also 2DEtotal= 0.212133901613E+02 eV
(2DErelax= -1.5568669447E+01 Ha. 2DEnonrelax= 1.6348247224E+01 Ha)
( non-var. 2DEtotal : 7.7957736974E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.6834804982753 -1.466E+01 5.010E-02 2.596E+02
ETOT 2 0.79343584892283 -8.900E-01 1.431E-03 3.699E+00
ETOT 3 0.77958228382238 -1.385E-02 1.485E-05 1.907E-03
ETOT 4 0.77957778594479 -4.498E-06 9.159E-09 4.368E-06
ETOT 5 0.77957777776736 -8.177E-09 2.668E-11 4.264E-10
At SCF step 5 vres2 = 4.26E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 44.401E-13; max= 26.681E-12
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96971950E+00 eigvalue= 1.08901143E-01 local= -1.02502163E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.11373397E+01 Hartree= 5.67385647E+00 xc= -3.02799660E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 8.86921138E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.55686694E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 3.89654903E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7795777778E+00 Ha. Also 2DEtotal= 0.212133901596E+02 eV
(2DErelax= -1.5568669447E+01 Ha. 2DEnonrelax= 1.6348247224E+01 Ha)
( non-var. 2DEtotal : 7.7957736907E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.6834802744191 -1.466E+01 5.010E-02 2.596E+02
ETOT 2 0.79343614940574 -8.900E-01 1.431E-03 3.699E+00
ETOT 3 0.77958228363072 -1.385E-02 1.485E-05 1.906E-03
ETOT 4 0.77957778603848 -4.498E-06 2.123E-08 4.367E-06
ETOT 5 0.77957777786187 -8.177E-09 2.580E-11 4.265E-10
At SCF step 5 vres2 = 4.27E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 44.708E-13; max= 25.796E-12
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96971950E+00 eigvalue= 1.08901143E-01 local= -1.02502163E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.11373397E+01 Hartree= 5.67385646E+00 xc= -3.02799660E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 8.86921138E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.55686694E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 3.89654903E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7795777779E+00 Ha. Also 2DEtotal= 0.212133901621E+02 eV
(2DErelax= -1.5568669447E+01 Ha. 2DEnonrelax= 1.6348247224E+01 Ha)
( non-var. 2DEtotal : 7.7957737236E-01 Ha)
Components of second-order derivatives of the electronic energy, EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -2.2452141715E+00 0.0000000000E+00
1 1 2 1 -2.1548317451E-10 0.0000000000E+00
1 1 3 1 0.0000000000E+00 0.0000000000E+00
2 1 1 1 -2.1548318828E-10 0.0000000000E+00
2 1 2 1 -1.5466482868E+00 0.0000000000E+00
2 1 3 1 -2.4006997381E-10 0.0000000000E+00
3 1 1 1 0.0000000000E+00 0.0000000000E+00
3 1 2 1 -2.4006999936E-10 0.0000000000E+00
3 1 3 1 -2.2452141710E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 0.0000000000E+00 0.0000000000E+00
1 1 2 1 8.5695105307E-10 0.0000000000E+00
1 1 3 1 0.0000000000E+00 0.0000000000E+00
2 1 1 1 8.5695105307E-10 0.0000000000E+00
2 1 2 1 6.5213890867E+00 0.0000000000E+00
2 1 3 1 1.3740103993E-09 0.0000000000E+00
3 1 1 1 0.0000000000E+00 0.0000000000E+00
3 1 2 1 1.3740103993E-09 0.0000000000E+00
3 1 3 1 0.0000000000E+00 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.7795773702 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.7795769741 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.7795773695 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 -0.7795769737 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 3 1 0.7795773728 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.7795769756 0.0000000000
1 2 1 1 -0.7795769741 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.7795773697 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 -0.7795769737 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 0.7795773691 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 -0.7795769756 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.7795773724 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0421620862 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.0421620862 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.0421620862 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 -0.0421620862 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 3 1 0.0421620863 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.0421620863 0.0000000000
1 2 1 1 -0.0421620862 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0421620862 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 -0.0421620862 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 0.0421620862 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 -0.0421620863 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 0.0421620863 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 3.399576E-03 3.399576E-03
3.399576E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 7.461207E+02 7.461207E+02
- 7.461207E+02
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Phonons at gamma, also compute the Diagonal Debye-Waller shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.19671 -0.19671 0.71559 0.71559 0.93348 0.93348 0.93348 0.93348
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.00403 -0.00403 -0.00359 -0.00359 -0.00044 -0.00044 -0.00044 -0.00044
prteigrs : prtvol=0 or 1, do not print more k-points.
DDW corrections to eigenvalues at T=0 (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
0.00327 0.00327 0.00597 0.00597 -0.00023 -0.00023 -0.00023 -0.00023
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan+DDW corrs to eigenvalues at T=0 (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.00076 -0.00076 0.00238 0.00238 -0.00067 -0.00067 -0.00067 -0.00067
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 4, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 94, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 4.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.3000000 0.0000000 0.0000000 G(1)= 0.2325581 0.0000000 0.0000000
R(2)= 0.0000000 4.3000000 0.0000000 G(2)= 0.0000000 0.2325581 0.0000000
R(3)= 0.0000000 0.0000000 4.3000000 G(3)= 0.0000000 0.0000000 0.2325581
Unit cell volume ucvol= 7.9507000E+01 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.5000 0.5000 ngfft= 12 12 12
ecut(hartree)= 8.000 => boxcut(ratio)= 2.01744
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.500000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.8001385575274 -1.246E+01 3.849E-02 6.653E+01
ETOT 2 2.5561031523488 -2.440E-01 4.241E-04 4.834E-02
ETOT 3 2.5559090179958 -1.941E-04 6.076E-07 1.579E-04
ETOT 4 2.5559087782669 -2.397E-07 2.075E-09 9.327E-09
At SCF step 4 vres2 = 9.33E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.285E-11; max= 20.747E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.50703574E+00 eigvalue= 1.16212759E-01 local= -1.15903240E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54176327E+01 Hartree= 3.69023335E+00 xc= -2.17526694E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.72963465E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.27088155E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 2.81302608E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2555908778E+01 Ha. Also 2DEtotal= 0.695498148766E+02 eV
(2DErelax= -1.2708815503E+01 Ha. 2DEnonrelax= 1.5264724282E+01 Ha)
( non-var. 2DEtotal : 2.5559079503E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.500000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3649233582921 -1.337E+01 4.992E-02 2.957E+03
ETOT 2 3.5705609816044 -5.794E+00 2.275E-02 3.049E+02
ETOT 3 2.8833465226342 -6.872E-01 1.248E-03 3.270E-02
ETOT 4 2.8832859802049 -6.054E-05 3.799E-07 8.533E-05
ETOT 5 2.8832858307707 -1.494E-07 6.272E-10 1.153E-08
ETOT 6 2.8832858307522 -1.846E-11 9.938E-14 2.086E-10
At SCF step 6 vres2 = 2.09E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.874E-15; max= 99.379E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222677E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782766E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285831E+01 Ha. Also 2DEtotal= 0.784581975187E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862715E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.500000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3648562785800 -1.337E+01 5.140E-02 2.957E+03
ETOT 2 3.5705468308522 -5.794E+00 2.210E-02 3.049E+02
ETOT 3 2.8833465560094 -6.872E-01 1.285E-03 3.270E-02
ETOT 4 2.8832859803124 -6.058E-05 1.399E-07 8.534E-05
ETOT 5 2.8832858308416 -1.495E-07 6.574E-10 1.165E-08
ETOT 6 2.8832858308229 -1.871E-11 1.019E-13 2.151E-10
At SCF step 6 vres2 = 2.15E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.268E-15; max= 10.190E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222676E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782766E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285831E+01 Ha. Also 2DEtotal= 0.784581975206E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862786E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.500000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.8001385571225 -1.246E+01 3.849E-02 6.653E+01
ETOT 2 2.5561031519520 -2.440E-01 4.241E-04 4.834E-02
ETOT 3 2.5559090175989 -1.941E-04 6.076E-07 1.579E-04
ETOT 4 2.5559087778701 -2.397E-07 2.075E-09 9.327E-09
At SCF step 4 vres2 = 9.33E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.173E-11; max= 20.747E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.50703574E+00 eigvalue= 1.16212759E-01 local= -1.15903240E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54176327E+01 Hartree= 3.69023335E+00 xc= -2.17526694E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.72963465E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.27088155E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 2.81302608E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2555908778E+01 Ha. Also 2DEtotal= 0.695498148658E+02 eV
(2DErelax= -1.2708815503E+01 Ha. 2DEnonrelax= 1.5264724281E+01 Ha)
( non-var. 2DEtotal : 2.5559079499E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.500000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3649233578828 -1.337E+01 4.992E-02 2.957E+03
ETOT 2 3.5705609812210 -5.794E+00 2.275E-02 3.049E+02
ETOT 3 2.8833465222554 -6.872E-01 1.248E-03 3.270E-02
ETOT 4 2.8832859798260 -6.054E-05 3.799E-07 8.533E-05
ETOT 5 2.8832858303917 -1.494E-07 6.272E-10 1.153E-08
ETOT 6 2.8832858303732 -1.853E-11 1.165E-13 2.086E-10
At SCF step 6 vres2 = 2.09E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 17.826E-15; max= 11.651E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222677E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782766E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285830E+01 Ha. Also 2DEtotal= 0.784581975084E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862711E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.500000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3648562781764 -1.337E+01 5.140E-02 2.957E+03
ETOT 2 3.5705468304713 -5.794E+00 2.210E-02 3.049E+02
ETOT 3 2.8833465556316 -6.872E-01 1.285E-03 3.270E-02
ETOT 4 2.8832859799346 -6.058E-05 1.399E-07 8.534E-05
ETOT 5 2.8832858304639 -1.495E-07 6.574E-10 1.165E-08
ETOT 6 2.8832858304451 -1.880E-11 1.019E-13 2.151E-10
At SCF step 6 vres2 = 2.15E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.755E-15; max= 10.190E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222676E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782766E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285830E+01 Ha. Also 2DEtotal= 0.784581975103E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862783E+00 Ha)
Components of second-order derivatives of the electronic energy, EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -2.2566147925E+00 0.0000000000E+00
1 1 2 1 -5.0975583564E-09 0.0000000000E+00
1 1 3 1 3.3541022154E-10 0.0000000000E+00
2 1 1 1 -5.0975583003E-09 0.0000000000E+00
2 1 2 1 -2.1014264138E+00 0.0000000000E+00
2 1 3 1 -3.9729350334E-08 0.0000000000E+00
3 1 1 1 3.3541024972E-10 0.0000000000E+00
3 1 2 1 -3.9729350313E-08 0.0000000000E+00
3 1 3 1 -2.2910859183E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 0.0000000000E+00 0.0000000000E+00
1 1 2 1 2.1127482369E-07 0.0000000000E+00
1 1 3 1 1.0340156907E-08 0.0000000000E+00
2 1 1 1 2.1127482369E-07 0.0000000000E+00
2 1 2 1 4.5785667703E-01 0.0000000000E+00
2 1 3 1 2.0611428541E-07 0.0000000000E+00
3 1 1 1 1.0340156907E-08 0.0000000000E+00
3 1 2 1 2.0611428541E-07 0.0000000000E+00
3 1 3 1 1.3406527866E+01 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 2.5559079503 0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.0000000000 0.0000000000
1 1 2 2 -0.0000000000 0.0000000000
1 1 3 2 -0.0000000000 -0.0000000000
2 1 1 1 -0.0000000001 -0.0000000000
2 1 2 1 2.8832862715 0.0000000000
2 1 3 1 0.0000000037 0.0000000000
2 1 1 2 0.0000000001 0.0000000000
2 1 2 2 -0.0000000036 0.0000000000
2 1 3 2 -1.6028284049 -0.0000000000
3 1 1 1 -0.0000000001 0.0000000000
3 1 2 1 0.0000000039 -0.0000000000
3 1 3 1 2.8832862786 0.0000000000
3 1 1 2 0.0000000001 0.0000000000
3 1 2 2 -1.6028284000 0.0000000000
3 1 3 2 -0.0000000035 0.0000000000
1 2 1 1 -0.0000000000 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 0.0000000000
1 2 1 2 2.5559079499 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000001 0.0000000000
2 2 2 1 -0.0000000036 -0.0000000000
2 2 3 1 -1.6028284049 0.0000000000
2 2 1 2 -0.0000000001 0.0000000000
2 2 2 2 2.8832862711 0.0000000000
2 2 3 2 0.0000000037 -0.0000000000
3 2 1 1 0.0000000001 0.0000000000
3 2 2 1 -1.6028284000 -0.0000000000
3 2 3 1 -0.0000000035 -0.0000000000
3 2 1 2 -0.0000000001 -0.0000000000
3 2 2 2 0.0000000039 -0.0000000000
3 2 3 2 2.8832862783 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.1382319065 0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.0000000000 0.0000000000
1 1 2 2 -0.0000000000 0.0000000000
1 1 3 2 -0.0000000000 -0.0000000000
2 1 1 1 -0.0000000000 -0.0000000000
2 1 2 1 0.1559376026 0.0000000000
2 1 3 1 0.0000000002 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 -0.0000000002 0.0000000000
2 1 3 2 -0.0866862307 -0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000002 -0.0000000000
3 1 3 1 0.1559376030 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 -0.0866862304 0.0000000000
3 1 3 2 -0.0000000002 0.0000000000
1 2 1 1 -0.0000000000 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 0.0000000000
1 2 1 2 0.1382319064 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 -0.0000000002 -0.0000000000
2 2 3 1 -0.0866862307 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 0.1559376025 0.0000000000
2 2 3 2 0.0000000002 -0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 -0.0866862304 -0.0000000000
3 2 3 1 -0.0000000002 -0.0000000000
3 2 1 2 -0.0000000000 -0.0000000000
3 2 2 2 0.0000000002 -0.0000000000
3 2 3 2 0.1559376029 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.50000 0.50000
Phonon energies in Hartree :
3.080796E-03 3.080796E-03 4.352641E-03 4.352641E-03 5.766542E-03
5.766542E-03
Phonon frequencies in cm-1 :
- 6.761566E+02 6.761566E+02 9.552944E+02 9.552944E+02 1.265610E+03
- 1.265610E+03
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.19671 -0.19671 0.71559 0.71559 0.93348 0.93348 0.93348 0.93348
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.00640 -0.00640 -0.01166 -0.01166 0.00128 0.00128 0.00128 0.00128
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 4, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 94, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 4.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.3000000 0.0000000 0.0000000 G(1)= 0.2325581 0.0000000 0.0000000
R(2)= 0.0000000 4.3000000 0.0000000 G(2)= 0.0000000 0.2325581 0.0000000
R(3)= 0.0000000 0.0000000 4.3000000 G(3)= 0.0000000 0.0000000 0.2325581
Unit cell volume ucvol= 7.9507000E+01 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.0000 0.5000 ngfft= 12 12 12
ecut(hartree)= 8.000 => boxcut(ratio)= 2.01744
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3648921378927 -1.337E+01 4.992E-02 2.957E+03
ETOT 2 3.5705536681484 -5.794E+00 2.267E-02 3.049E+02
ETOT 3 2.8833465346340 -6.872E-01 1.248E-03 3.270E-02
ETOT 4 2.8832859802540 -6.055E-05 3.786E-07 8.532E-05
ETOT 5 2.8832858308424 -1.494E-07 6.234E-10 1.161E-08
ETOT 6 2.8832858308237 -1.862E-11 1.001E-13 2.165E-10
At SCF step 6 vres2 = 2.16E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.518E-15; max= 10.009E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222676E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782766E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285831E+01 Ha. Also 2DEtotal= 0.784581975206E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862776E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.8001395708446 -1.246E+01 3.866E-02 6.653E+01
ETOT 2 2.5561031496932 -2.440E-01 4.257E-04 4.834E-02
ETOT 3 2.5559090179655 -1.941E-04 6.105E-07 1.579E-04
ETOT 4 2.5559087782309 -2.397E-07 2.089E-09 9.324E-09
At SCF step 4 vres2 = 9.32E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 25.985E-11; max= 20.888E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.50703574E+00 eigvalue= 1.16212759E-01 local= -1.15903240E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54176327E+01 Hartree= 3.69023335E+00 xc= -2.17526694E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.72963465E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.27088155E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 2.81302608E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2555908778E+01 Ha. Also 2DEtotal= 0.695498148756E+02 eV
(2DErelax= -1.2708815503E+01 Ha. 2DEnonrelax= 1.5264724282E+01 Ha)
( non-var. 2DEtotal : 2.5559079506E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3648516607372 -1.337E+01 5.122E-02 2.957E+03
ETOT 2 3.5705453474251 -5.794E+00 2.210E-02 3.049E+02
ETOT 3 2.8833465589104 -6.872E-01 1.281E-03 3.270E-02
ETOT 4 2.8832859803357 -6.058E-05 1.397E-07 8.535E-05
ETOT 5 2.8832858308517 -1.495E-07 6.574E-10 1.170E-08
ETOT 6 2.8832858308329 -1.884E-11 1.023E-13 2.212E-10
At SCF step 6 vres2 = 2.21E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.732E-15; max= 10.230E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222675E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782765E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285831E+01 Ha. Also 2DEtotal= 0.784581975209E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862834E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3648921374842 -1.337E+01 4.992E-02 2.957E+03
ETOT 2 3.5705536677638 -5.794E+00 2.267E-02 3.049E+02
ETOT 3 2.8833465342534 -6.872E-01 1.248E-03 3.270E-02
ETOT 4 2.8832859798732 -6.055E-05 3.786E-07 8.532E-05
ETOT 5 2.8832858304616 -1.494E-07 6.234E-10 1.161E-08
ETOT 6 2.8832858304429 -1.873E-11 1.001E-13 2.165E-10
At SCF step 6 vres2 = 2.16E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.919E-15; max= 10.009E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222676E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782766E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285830E+01 Ha. Also 2DEtotal= 0.784581975103E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862772E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.8001395704405 -1.246E+01 3.866E-02 6.653E+01
ETOT 2 2.5561031492970 -2.440E-01 4.257E-04 4.834E-02
ETOT 3 2.5559090175693 -1.941E-04 6.105E-07 1.579E-04
ETOT 4 2.5559087778349 -2.397E-07 2.089E-09 9.324E-09
At SCF step 4 vres2 = 9.32E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.136E-11; max= 20.888E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.50703574E+00 eigvalue= 1.16212759E-01 local= -1.15903240E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54176327E+01 Hartree= 3.69023335E+00 xc= -2.17526694E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.72963465E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.27088155E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 2.81302608E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2555908778E+01 Ha. Also 2DEtotal= 0.695498148648E+02 eV
(2DErelax= -1.2708815503E+01 Ha. 2DEnonrelax= 1.5264724281E+01 Ha)
( non-var. 2DEtotal : 2.5559079502E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3648516603322 -1.337E+01 5.122E-02 2.957E+03
ETOT 2 3.5705453470446 -5.794E+00 2.210E-02 3.049E+02
ETOT 3 2.8833465585336 -6.872E-01 1.281E-03 3.270E-02
ETOT 4 2.8832859799589 -6.058E-05 1.397E-07 8.535E-05
ETOT 5 2.8832858304749 -1.495E-07 6.574E-10 1.170E-08
ETOT 6 2.8832858304560 -1.894E-11 1.023E-13 2.212E-10
At SCF step 6 vres2 = 2.21E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 12.146E-15; max= 10.230E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030919E+01 Hartree= 8.97222675E+00 xc= -3.02439333E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782765E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285830E+01 Ha. Also 2DEtotal= 0.784581975106E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862830E+00 Ha)
Components of second-order derivatives of the electronic energy, EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -3.6540648638E+00 0.0000000000E+00
1 1 2 1 -1.2248517592E-07 0.0000000000E+00
1 1 3 1 1.2080866805E-09 0.0000000000E+00
2 1 1 1 -1.2248517592E-07 0.0000000000E+00
2 1 2 1 -2.2752187059E+00 0.0000000000E+00
2 1 3 1 -1.3789921993E-07 0.0000000000E+00
3 1 1 1 1.2080866849E-09 0.0000000000E+00
3 1 2 1 -1.3789921992E-07 0.0000000000E+00
3 1 3 1 -3.6540648625E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 0.0000000000E+00 0.0000000000E+00
1 1 2 1 0.0000000000E+00 0.0000000000E+00
1 1 3 1 0.0000000000E+00 0.0000000000E+00
2 1 1 1 0.0000000000E+00 0.0000000000E+00
2 1 2 1 0.0000000000E+00 0.0000000000E+00
2 1 3 1 0.0000000000E+00 0.0000000000E+00
3 1 1 1 0.0000000000E+00 0.0000000000E+00
3 1 2 1 0.0000000000E+00 0.0000000000E+00
3 1 3 1 0.0000000000E+00 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 2.8832862776 0.0000000000
1 1 2 1 -0.0000000001 -0.0000000000
1 1 3 1 0.0000000038 0.0000000000
1 1 1 2 -0.0000000037 0.0000000000
1 1 2 2 0.0000000001 0.0000000000
1 1 3 2 -1.6028284093 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 2.5559079506 0.0000000000
2 1 3 1 -0.0000000000 -0.0000000000
2 1 1 2 -0.0000000000 0.0000000000
2 1 2 2 -0.0000000000 -0.0000000000
2 1 3 2 -0.0000000000 -0.0000000000
3 1 1 1 0.0000000040 -0.0000000000
3 1 2 1 -0.0000000001 -0.0000000000
3 1 3 1 2.8832862834 0.0000000000
3 1 1 2 -1.6028284055 -0.0000000000
3 1 2 2 0.0000000001 0.0000000000
3 1 3 2 -0.0000000035 -0.0000000000
1 2 1 1 -0.0000000037 0.0000000000
1 2 2 1 0.0000000001 0.0000000000
1 2 3 1 -1.6028284093 -0.0000000000
1 2 1 2 2.8832862772 0.0000000000
1 2 2 2 -0.0000000001 0.0000000000
1 2 3 2 0.0000000038 0.0000000000
2 2 1 1 -0.0000000000 -0.0000000000
2 2 2 1 -0.0000000000 -0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
2 2 1 2 0.0000000000 -0.0000000000
2 2 2 2 2.5559079502 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -1.6028284055 0.0000000000
3 2 2 1 0.0000000001 0.0000000000
3 2 3 1 -0.0000000035 -0.0000000000
3 2 1 2 0.0000000040 -0.0000000000
3 2 2 2 -0.0000000001 -0.0000000000
3 2 3 2 2.8832862830 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.1559376029 0.0000000000
1 1 2 1 -0.0000000000 -0.0000000000
1 1 3 1 0.0000000002 0.0000000000
1 1 1 2 -0.0000000002 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 -0.0866862309 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.1382319065 0.0000000000
2 1 3 1 -0.0000000000 -0.0000000000
2 1 1 2 -0.0000000000 0.0000000000
2 1 2 2 -0.0000000000 -0.0000000000
2 1 3 2 -0.0000000000 -0.0000000000
3 1 1 1 0.0000000002 -0.0000000000
3 1 2 1 -0.0000000000 -0.0000000000
3 1 3 1 0.1559376032 0.0000000000
3 1 1 2 -0.0866862307 -0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.0000000002 -0.0000000000
1 2 1 1 -0.0000000002 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 -0.0866862309 -0.0000000000
1 2 1 2 0.1559376029 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 0.0000000002 0.0000000000
2 2 1 1 -0.0000000000 -0.0000000000
2 2 2 1 -0.0000000000 -0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
2 2 1 2 0.0000000000 -0.0000000000
2 2 2 2 0.1382319064 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0866862307 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 -0.0000000002 -0.0000000000
3 2 1 2 0.0000000002 -0.0000000000
3 2 2 2 -0.0000000000 -0.0000000000
3 2 3 2 0.1559376032 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.00000 0.50000
Phonon energies in Hartree :
3.080796E-03 3.080796E-03 4.352641E-03 4.352641E-03 5.766542E-03
5.766542E-03
Phonon frequencies in cm-1 :
- 6.761566E+02 6.761566E+02 9.552944E+02 9.552944E+02 1.265610E+03
- 1.265610E+03
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.19671 -0.19671 0.71559 0.71559 0.93348 0.93348 0.93348 0.93348
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.00971 -0.00971 0.00200 0.00200 0.00181 0.00181 0.00181 0.00181
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 4, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 94, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 4.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.3000000 0.0000000 0.0000000 G(1)= 0.2325581 0.0000000 0.0000000
R(2)= 0.0000000 4.3000000 0.0000000 G(2)= 0.0000000 0.2325581 0.0000000
R(3)= 0.0000000 0.0000000 4.3000000 G(3)= 0.0000000 0.0000000 0.2325581
Unit cell volume ucvol= 7.9507000E+01 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.5000 0.0000 ngfft= 12 12 12
ecut(hartree)= 8.000 => boxcut(ratio)= 2.01744
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3649122964286 -1.337E+01 5.140E-02 2.957E+03
ETOT 2 3.5705600803206 -5.794E+00 2.267E-02 3.049E+02
ETOT 3 2.8833465227877 -6.872E-01 1.285E-03 3.269E-02
ETOT 4 2.8832859802110 -6.054E-05 3.785E-07 8.527E-05
ETOT 5 2.8832858308547 -1.494E-07 6.237E-10 1.134E-08
ETOT 6 2.8832858308366 -1.815E-11 9.862E-14 1.839E-10
At SCF step 6 vres2 = 1.84E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 98.419E-16; max= 98.619E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030920E+01 Hartree= 8.97222679E+00 xc= -3.02439334E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782768E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285831E+01 Ha. Also 2DEtotal= 0.784581975210E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862530E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3649388990479 -1.337E+01 5.122E-02 2.957E+03
ETOT 2 3.5705659104170 -5.794E+00 2.275E-02 3.049E+02
ETOT 3 2.8833465136846 -6.872E-01 1.281E-03 3.269E-02
ETOT 4 2.8832859801854 -6.053E-05 3.798E-07 8.530E-05
ETOT 5 2.8832858307933 -1.494E-07 6.275E-10 1.131E-08
ETOT 6 2.8832858307752 -1.810E-11 1.016E-13 1.821E-10
At SCF step 6 vres2 = 1.82E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 14.167E-15; max= 10.157E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030920E+01 Hartree= 8.97222679E+00 xc= -3.02439334E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782769E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285831E+01 Ha. Also 2DEtotal= 0.784581975193E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862517E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.8001344320670 -1.246E+01 3.778E-02 6.653E+01
ETOT 2 2.5561031626607 -2.440E-01 4.171E-04 4.833E-02
ETOT 3 2.5559090180039 -1.941E-04 5.948E-07 1.579E-04
ETOT 4 2.5559087783006 -2.397E-07 1.977E-09 9.340E-09
At SCF step 4 vres2 = 9.34E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.250E-11; max= 19.772E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.50703574E+00 eigvalue= 1.16212758E-01 local= -1.15903240E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54176327E+01 Hartree= 3.69023335E+00 xc= -2.17526694E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.72963465E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.27088155E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 2.81302608E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2555908778E+01 Ha. Also 2DEtotal= 0.695498148775E+02 eV
(2DErelax= -1.2708815503E+01 Ha. 2DEnonrelax= 1.5264724282E+01 Ha)
( non-var. 2DEtotal : 2.5559079493E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3649122960246 -1.337E+01 5.140E-02 2.957E+03
ETOT 2 3.5705600799353 -5.794E+00 2.267E-02 3.049E+02
ETOT 3 2.8833465224042 -6.872E-01 1.285E-03 3.269E-02
ETOT 4 2.8832859798276 -6.054E-05 3.785E-07 8.527E-05
ETOT 5 2.8832858304714 -1.494E-07 6.237E-10 1.134E-08
ETOT 6 2.8832858304533 -1.814E-11 9.862E-14 1.839E-10
At SCF step 6 vres2 = 1.84E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 12.101E-15; max= 98.619E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030920E+01 Hartree= 8.97222679E+00 xc= -3.02439334E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782768E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285830E+01 Ha. Also 2DEtotal= 0.784581975106E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862526E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 9.3649388986357 -1.337E+01 5.122E-02 2.957E+03
ETOT 2 3.5705659100316 -5.794E+00 2.275E-02 3.049E+02
ETOT 3 2.8833465133043 -6.872E-01 1.281E-03 3.269E-02
ETOT 4 2.8832859798052 -6.053E-05 3.798E-07 8.530E-05
ETOT 5 2.8832858304130 -1.494E-07 6.275E-10 1.131E-08
ETOT 6 2.8832858303948 -1.817E-11 9.828E-14 1.821E-10
At SCF step 6 vres2 = 1.82E-10 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.842E-15; max= 98.277E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.92076125E+00 eigvalue= 1.34721802E-01 local= -1.01959862E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.97030920E+01 Hartree= 8.97222679E+00 xc= -3.02439334E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 9.86782769E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.98515464E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 1.02831340E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2883285830E+01 Ha. Also 2DEtotal= 0.784581975090E+02 eV
(2DErelax= -1.9851546407E+01 Ha. 2DEnonrelax= 2.2734832238E+01 Ha)
( non-var. 2DEtotal : 2.8832862513E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.8001344316637 -1.246E+01 3.778E-02 6.653E+01
ETOT 2 2.5561031622652 -2.440E-01 4.171E-04 4.833E-02
ETOT 3 2.5559090176085 -1.941E-04 5.948E-07 1.579E-04
ETOT 4 2.5559087779051 -2.397E-07 1.977E-09 9.340E-09
At SCF step 4 vres2 = 9.34E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.147E-11; max= 19.772E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.50703574E+00 eigvalue= 1.16212758E-01 local= -1.15903240E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54176327E+01 Hartree= 3.69023335E+00 xc= -2.17526694E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.72963465E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.27088155E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 1.24516982E+01 fr.nonlo= 0.00000000E+00 Ewald= 2.81302608E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2555908778E+01 Ha. Also 2DEtotal= 0.695498148667E+02 eV
(2DErelax= -1.2708815503E+01 Ha. 2DEnonrelax= 1.5264724281E+01 Ha)
( non-var. 2DEtotal : 2.5559079489E+00 Ha)
Components of second-order derivatives of the electronic energy, EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -2.2910859218E+00 0.0000000000E+00
1 1 2 1 -3.4030883958E-08 0.0000000000E+00
1 1 3 1 3.3387888120E-10 0.0000000000E+00
2 1 1 1 -3.4030883992E-08 0.0000000000E+00
2 1 2 1 -2.1014264182E+00 0.0000000000E+00
2 1 3 1 -5.9487958854E-09 0.0000000000E+00
3 1 1 1 3.3387887175E-10 0.0000000000E+00
3 1 2 1 -5.9487958938E-09 0.0000000000E+00
3 1 3 1 -2.2566147928E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 1.3406527922E+01 0.0000000000E+00
1 1 2 1 2.2578611734E-07 0.0000000000E+00
1 1 3 1 1.0393723774E-08 0.0000000000E+00
2 1 1 1 2.2578611734E-07 0.0000000000E+00
2 1 2 1 4.5785668750E-01 0.0000000000E+00
2 1 3 1 2.4694524839E-07 0.0000000000E+00
3 1 1 1 1.0393723774E-08 0.0000000000E+00
3 1 2 1 2.4694524839E-07 0.0000000000E+00
3 1 3 1 0.0000000000E+00 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 2.8832862530 0.0000000000
1 1 2 1 0.0000000037 0.0000000000
1 1 3 1 -0.0000000001 -0.0000000000
1 1 1 2 -0.0000000035 -0.0000000000
1 1 2 2 -1.6028283809 0.0000000000
1 1 3 2 0.0000000002 0.0000000000
2 1 1 1 0.0000000037 -0.0000000000
2 1 2 1 2.8832862517 0.0000000000
2 1 3 1 -0.0000000001 0.0000000000
2 1 1 2 -1.6028283819 -0.0000000000
2 1 2 2 -0.0000000035 0.0000000000
2 1 3 2 0.0000000002 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 2.5559079493 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 -0.0000000000
3 1 3 2 -0.0000000000 -0.0000000000
1 2 1 1 -0.0000000035 0.0000000000
1 2 2 1 -1.6028283809 0.0000000000
1 2 3 1 0.0000000002 -0.0000000000
1 2 1 2 2.8832862526 0.0000000000
1 2 2 2 0.0000000037 0.0000000000
1 2 3 2 -0.0000000001 0.0000000000
2 2 1 1 -1.6028283819 0.0000000000
2 2 2 1 -0.0000000035 -0.0000000000
2 2 3 1 0.0000000002 0.0000000000
2 2 1 2 0.0000000037 -0.0000000000
2 2 2 2 2.8832862513 0.0000000000
2 2 3 2 -0.0000000001 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.0000000000 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 2.5559079489 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.1559376016 0.0000000000
1 1 2 1 0.0000000002 0.0000000000
1 1 3 1 -0.0000000000 -0.0000000000
1 1 1 2 -0.0000000002 -0.0000000000
1 1 2 2 -0.0866862294 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000002 -0.0000000000
2 1 2 1 0.1559376015 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 -0.0866862294 -0.0000000000
2 1 2 2 -0.0000000002 0.0000000000
2 1 3 2 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.1382319064 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 -0.0000000000
3 1 3 2 -0.0000000000 -0.0000000000
1 2 1 1 -0.0000000002 0.0000000000
1 2 2 1 -0.0866862294 0.0000000000
1 2 3 1 0.0000000000 -0.0000000000
1 2 1 2 0.1559376015 0.0000000000
1 2 2 2 0.0000000002 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 -0.0866862294 0.0000000000
2 2 2 1 -0.0000000002 -0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 0.0000000002 -0.0000000000
2 2 2 2 0.1559376015 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.0000000000 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.1382319064 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.50000 0.00000
Phonon energies in Hartree :
3.080796E-03 3.080796E-03 4.352641E-03 4.352641E-03 5.766542E-03
5.766542E-03
Phonon frequencies in cm-1 :
- 6.761566E+02 6.761566E+02 9.552944E+02 9.552944E+02 1.265610E+03
- 1.265610E+03
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.19671 -0.19671 0.71559 0.71559 0.93348 0.93348 0.93348 0.93348
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.25000, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.00640 -0.00640 -0.01166 -0.01166 0.00128 0.00128 0.00128 0.00128
prteigrs : prtvol=0 or 1, do not print more k-points.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 4.3000000000E+00 4.3000000000E+00 4.3000000000E+00 Bohr
amu 4.00260200E+00
bdeigrf 8
diemac 2.00000000E+00
ecut 8.00000000E+00 Hartree
etotal1 -3.2727952292E+00
etotal2 7.7957777786E-01
etotal3 2.8832858304E+00
etotal4 2.8832858305E+00
etotal5 2.5559087779E+00
fcart1 -2.2798700924E-12 -2.0917597206E-12 -2.9384026733E-12
2.2798700924E-12 2.0917597206E-12 2.9384026733E-12
fcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
ieig2rf1 0
ieig2rf2 1
ieig2rf3 1
ieig2rf4 1
ieig2rf5 1
istwfk1 6 3 4 9
istwfk2 1 1 1 1
istwfk3 1 1 1 1
istwfk4 1 1 1 1
istwfk5 1 1 1 1
jdtset 1 2 3 4 5
kpt 0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt 3
kptrlatt 1 1 -1 -1 1 1 1 -1 1
kptrlen 7.44781847E+00
P mkmem 4
P mkqmem 4
P mk1mem 4
natom 2
nband 8
ndtset 5
ngfft 12 12 12
nkpt 4
nqpt1 0
nqpt2 1
nqpt3 1
nqpt4 1
nqpt5 1
nstep 40
nsym 1
ntypat 1
occ 2.000000 2.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optdriver1 0
optdriver2 1
optdriver3 1
optdriver4 1
optdriver5 1
prtpot1 0
prtpot2 1
prtpot3 1
prtpot4 1
prtpot5 1
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 5.00000000E-01 5.00000000E-01
qpt4 5.00000000E-01 0.00000000E+00 5.00000000E-01
qpt5 5.00000000E-01 5.00000000E-01 0.00000000E+00
rfphon1 0
rfphon2 1
rfphon3 1
rfphon4 1
rfphon5 1
shiftk -5.00000000E-01 5.00000000E-01 5.00000000E-01
smdelta1 0
smdelta2 1
smdelta3 1
smdelta4 1
smdelta5 1
spgroup 1
strten1 -1.6139545435E-03 -1.6139545435E-03 -1.6139545436E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
tolvrs1 1.00000000E-18
tolvrs2 1.00000000E-08
tolvrs3 1.00000000E-08
tolvrs4 1.00000000E-08
tolvrs5 1.00000000E-08
typat 1 1
wtk 0.25000 0.25000 0.25000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.1377309985E+00 1.1377309985E+00 1.1377309985E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.1500000000E+00 2.1500000000E+00 2.1500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 2.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Verification of first-principles codes: Comparison of total energies, phonon frequencies,
- electron--phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo
- S. Ponce, G. Antonius, P. Boulanger, E. Cannuccia, A. Marini, M. Cote and X. Gonze. Computational Material Science 83, 341 (2014)
- Comment: the temperature-dependence of the electronic structure is computed (or the zero-point renormalisation).
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex : see https://docs.abinit.org/theory/bibliography/#ponce2014
-
- [2] Temperature dependence of the electronic structure of semiconductors and insulators
- S. Ponce, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete and X. Gonze. J. Chem. Phys. 143, 102813 (2015)
- Comment: the temperature-dependence of the electronic structure is computed (or the zero-point renormalisation).
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#ponce2015
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [5] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 1.2 wall= 1.2
================================================================================
Calculation completed.
.Delivered 6 WARNINGs and 32 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.2 wall= 1.2