abinit/tests/v6/Refs/t49.abo

1219 lines
64 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h11 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v6_t49/t49.abi
- output file -> t49.abo
- root for input files -> t49i
- root for output files -> t49o
DATASET 1 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 45 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 8 mffmem = 1 mkmem = 1
mpw = 2169 nfft = 91125 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 48 nfftf = 110592
================================================================================
P This job should need less than 41.336 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.267 Mbytes ; DEN or POT disk file : 0.846 Mbytes.
================================================================================
DATASET 2 : space group P4 (# 75); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 45 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 2
nsppol = 1 nsym = 4 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 2
- mband = 16 mffmem = 1 mkmem = 1
mpw = 4337 nfft = 91125 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 48 nfftf = 110592
================================================================================
P This job should need less than 44.332 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.061 Mbytes ; DEN or POT disk file : 0.846 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 2.0000000000E+01 2.0000000000E+01 2.0000000000E+01 Bohr
amu 1.26904470E+02 3.54527000E+01
diemac 2.00000000E+00
ecut 5.00000000E+00 Hartree
- fftalg 512
istwfk1 2
istwfk2 1
ixc 11
jdtset 1 2
kptopt 0
P mkmem 1
natom 2
nband1 8
nband2 16
ndtset 2
ngfft 45 45 45
ngfftdg 48 48 48
nkpt 1
nspinor1 1
nspinor2 2
nstep 10
nsym1 8
nsym2 4
ntypat 2
nucefg 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 0.000000
occ2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 0.000000 0.000000
pawcpxocc1 1
pawcpxocc2 2
pawecutdg 6.00000000E+00 Hartree
pawspnorb1 0
pawspnorb2 1
prtden 0
prteig 0
prtwf 0
quadmom -6.96000000E-01 -8.16500000E-02
spgroup1 99
spgroup2 75
symafm1 1 1 1 1 1 1 1 1
symafm2 1 1 1 1
symrel1 1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 0 1
symrel2 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 1
0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 0 1
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
toldfe 1.00000000E-16 Hartree
typat 1 2
useylm 1
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.3209976957E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 4.3860500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.1930250000E-01
znucl 53.00000 17.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 2169, }
cutoff_energies: {ecut: 5.0, pawecutdg: 6.0, }
electrons: {nelect: 1.40000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 20.0000000 0.0000000 0.0000000 G(1)= 0.0500000 0.0000000 0.0000000
R(2)= 0.0000000 20.0000000 0.0000000 G(2)= 0.0000000 0.0500000 0.0000000
R(3)= 0.0000000 0.0000000 20.0000000 G(3)= 0.0000000 0.0000000 0.0500000
Unit cell volume ucvol= 8.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 45 45 45
ecut(hartree)= 5.000 => boxcut(ratio)= 2.18561
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 48 48 48
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/I.GGA-PBE-paw.abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/I.GGA-PBE-paw.abinit
- Paw atomic data for element I - Generated by atompaw v3.0.1.2 & AtomPAW2Abinit v3.3.1
- 53.00000 7.00000 20111024 znucl, zion, pspdat
7 11 1 0 1077 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90338629
5 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1077 , AA= 0.16480E-03 BB= 0.87344E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1072 , AA= 0.16480E-03 BB= 0.87344E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1197 , AA= 0.16480E-03 BB= 0.87344E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1262 , AA= 0.16480E-03 BB= 0.87344E-02
- mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size=1309 , AA= 0.16480E-03 BB= 0.87344E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Cl.GGA-PBE-paw.abinit
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Cl.GGA-PBE-paw.abinit
- Paw atomic data for element Cl - Generated by atompaw v3.0.1.2 & AtomPAW2Abinit v3.3.1
- 17.00000 7.00000 20111022 znucl, zion, pspdat
7 11 1 0 1033 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.80540202
5 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1033 , AA= 0.47246E-03 BB= 0.80318E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1028 , AA= 0.47246E-03 BB= 0.80318E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=1086 , AA= 0.47246E-03 BB= 0.80318E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=1241 , AA= 0.47246E-03 BB= 0.80318E-02
- mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size=1277 , AA= 0.47246E-03 BB= 0.80318E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
1.46032741E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 4337.000 4337.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -26.648152562987 -2.665E+01 9.309E-03 3.809E-01
ETOT 2 -26.657275915200 -9.123E-03 2.382E-05 3.387E-02
ETOT 3 -26.655868607494 1.407E-03 2.540E-04 5.737E-03
ETOT 4 -26.655463678376 4.049E-04 5.083E-05 5.581E-04
ETOT 5 -26.655513743074 -5.006E-05 6.554E-07 5.460E-05
ETOT 6 -26.655525479007 -1.174E-05 1.512E-07 6.876E-06
ETOT 7 -26.655533312550 -7.834E-06 1.147E-08 5.161E-07
ETOT 8 -26.655535608940 -2.296E-06 2.190E-09 4.924E-08
ETOT 9 -26.655535998373 -3.894E-07 1.660E-10 4.331E-09
ETOT 10 -26.655536103283 -1.049E-07 3.912E-11 6.952E-10
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.97118691E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.97118691E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.37234099E-05 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum energy difference= 1.049E-07 exceeds toldfe= 1.000E-16
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 20.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 20.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 20.0000000, ]
lattice_lengths: [ 20.00000, 20.00000, 20.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 8.0000000E+03
convergence: {deltae: -1.049E-07, res2: 6.952E-10, residm: 3.912E-11, diffor: null, }
etotal : -2.66555361E+01
entropy : 0.00000000E+00
fermie : -2.38259275E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.97118691E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.97118691E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.37234099E-05, ]
pressure_GPa: -1.0116E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, I]
- [ 0.0000E+00, 0.0000E+00, 2.1930E-01, Cl]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -1.43944905E-02, ]
- [ -0.00000000E+00, -0.00000000E+00, 1.43944905E-02, ]
force_length_stats: {min: 1.43944905E-02, max: 1.43944905E-02, mean: 1.43944905E-02, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90339 2.37422597
2 1.80540 4.24485972
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -1.500419249815944
Compensation charge over fine fft grid = -1.500100996219531
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-1.49498 -0.01262 0.00000 0.00041 0.00000 0.00000 0.00152 0.00000
-0.01262 -15.91579 0.00000 0.00093 0.00000 0.00000 -0.01304 0.00000
0.00000 0.00000 -0.42469 0.00000 0.00000 0.03202 0.00000 0.00000
0.00041 0.00093 0.00000 -0.42415 0.00000 0.00000 0.03256 0.00000
0.00000 0.00000 0.00000 0.00000 -0.42469 0.00000 0.00000 0.03202
0.00000 0.00000 0.03202 0.00000 0.00000 -7.59831 0.00000 0.00000
0.00152 -0.01304 0.00000 0.03256 0.00000 0.00000 -7.61121 0.00000
0.00000 0.00000 0.00000 0.00000 0.03202 0.00000 0.00000 -7.59831
Atom # 2
2.10743 -0.09758 0.00000 -0.00181 0.00000 0.00000 0.01147 0.00000
-0.09758 14.06531 0.00000 -0.00148 0.00000 0.00000 -0.01503 0.00000
0.00000 0.00000 0.41017 0.00000 0.00000 -0.15009 0.00000 0.00000
-0.00181 -0.00148 0.00000 0.41141 0.00000 0.00000 -0.15563 0.00000
0.00000 0.00000 0.00000 0.00000 0.41017 0.00000 0.00000 -0.15009
0.00000 0.00000 -0.15009 0.00000 0.00000 -10.25242 0.00000 0.00000
0.01147 -0.01503 0.00000 -0.15563 0.00000 0.00000 -10.22212 0.00000
0.00000 0.00000 0.00000 0.00000 -0.15009 0.00000 0.00000 -10.25242
Augmentation waves occupancies Rhoij:
Atom # 1
2.01554 0.00202 0.00000 -0.19521 0.00000 0.00000 -0.00004 0.00000
0.00202 0.00001 0.00000 -0.00193 0.00000 0.00000 -0.00000 0.00000
0.00000 0.00000 2.11956 0.00000 0.00000 0.01115 0.00000 0.00000
-0.19521 -0.00193 0.00000 0.92438 0.00000 0.00000 0.00264 0.00000
0.00000 0.00000 0.00000 0.00000 2.11956 0.00000 0.00000 0.01115
0.00000 0.00000 0.01115 0.00000 0.00000 0.00006 0.00000 0.00000
-0.00004 -0.00000 0.00000 0.00264 0.00000 0.00000 0.00002 0.00000
0.00000 0.00000 0.00000 0.00000 0.01115 0.00000 0.00000 0.00006
Atom # 2
1.97532 0.00766 0.00000 0.14327 0.00000 0.00000 0.00119 0.00000
0.00766 0.00007 0.00000 -0.00451 0.00000 0.00000 -0.00007 0.00000
0.00000 0.00000 1.57821 0.00000 0.00000 0.01673 0.00000 0.00000
0.14327 -0.00451 0.00000 0.98131 0.00000 0.00000 0.01307 0.00000
0.00000 0.00000 0.00000 0.00000 1.57821 0.00000 0.00000 0.01673
0.00000 0.00000 0.01673 0.00000 0.00000 0.00018 0.00000 0.00000
0.00119 -0.00007 0.00000 0.01307 0.00000 0.00000 0.00018 0.00000
0.00000 0.00000 0.00000 0.00000 0.01673 0.00000 0.00000 0.00018
Electric Field Gradient Calculation
atom : 1 typat : 1
Nuclear quad. mom. (barns) : -0.6960 Cq (MHz) : ********* eta : 0.0000
efg eigval (au) : -8.967208 ; (V/m^2) : -8.71376131E+22
- eigvec : 1.000000 0.000000 0.000000
efg eigval (au) : -8.967208 ; (V/m^2) : -8.71376131E+22
- eigvec : -0.000000 1.000000 0.000000
efg eigval (au) : 17.934416 ; (V/m^2) : 1.74275226E+23
- eigvec : 0.000000 0.000000 1.000000
total efg : -8.967208 0.000000 0.000000
total efg : 0.000000 -8.967208 0.000000
total efg : 0.000000 0.000000 17.934416
efg_el : 0.007062 0.000000 0.000000
efg_el : 0.000000 0.007062 0.000000
efg_el : 0.000000 0.000000 -0.014124
efg_ion : -0.083773 0.000000 0.000000
efg_ion : 0.000000 -0.083773 0.000000
efg_ion : 0.000000 0.000000 0.167546
efg_paw : -8.890497 0.000000 0.000000
efg_paw : 0.000000 -8.890497 0.000000
efg_paw : 0.000000 0.000000 17.780994
atom : 2 typat : 2
Nuclear quad. mom. (barns) : -0.0817 Cq (MHz) : -67.4498 eta : 0.0000
efg eigval (au) : -1.757889 ; (V/m^2) : -1.70820489E+22
- eigvec : 1.000000 0.000000 0.000000
efg eigval (au) : -1.757889 ; (V/m^2) : -1.70820489E+22
- eigvec : -0.000000 1.000000 0.000000
efg eigval (au) : 3.515779 ; (V/m^2) : 3.41640979E+22
- eigvec : 0.000000 0.000000 1.000000
total efg : -1.757889 0.000000 0.000000
total efg : 0.000000 -1.757889 0.000000
total efg : 0.000000 0.000000 3.515779
efg_el : -0.054730 0.000000 0.000000
efg_el : 0.000000 -0.054730 0.000000
efg_el : 0.000000 0.000000 0.109461
efg_ion : -0.083773 0.000000 0.000000
efg_ion : 0.000000 -0.083773 0.000000
efg_ion : 0.000000 0.000000 0.167546
efg_paw : -1.619386 0.000000 0.000000
efg_paw : 0.000000 -1.619386 0.000000
efg_paw : 0.000000 0.000000 3.238772
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 65.059E-13; max= 39.123E-12
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.219302500000
rms dE/dt= 1.6621E-01; max dE/dt= 2.8796E-01; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.287964766808
2 0.000000000000 0.000000000000 -0.287814852103
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 2.32099769573617
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.01439449047278
2 -0.00000000000000 -0.00000000000000 0.01439449047278
frms,max,avg= 8.3106629E-03 1.4394490E-02 0.000E+00 0.000E+00 -3.748E-06 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.74019439871120
2 -0.00000000000000 -0.00000000000000 0.74019439871120
frms,max,avg= 4.2735144E-01 7.4019440E-01 0.000E+00 0.000E+00 -1.927E-04 e/A
length scales= 20.000000000000 20.000000000000 20.000000000000 bohr
= 10.583544171800 10.583544171800 10.583544171800 angstroms
Fermi (or HOMO) energy (hartree) = -0.23826 Average Vxc (hartree)= -0.04161
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.81053 -0.64301 -0.39082 -0.32390 -0.32390 -0.23826 -0.23826 -0.15584
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 9.30826946081848E+00
hartree : 1.97197018605705E+01
xc : -7.58898587443079E+00
Ewald energy : -2.46637979839878E+00
psp_core : 1.82540925844888E-01
local_psp : -4.68676357718577E+01
spherical_terms : 1.05696179456378E+00
total_energy : -2.66555274028896E+01
total_energy_eV : -7.25333788150778E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.93734672137597E+00
Ewald energy : -2.46637979839878E+00
psp_core : 1.82540925844888E-01
xc_dc : -1.92093269275512E+01
spherical_terms : 7.74976418197908E-01
total_energy_dc : -2.66555361032832E+01
total_energy_dc_eV : -7.25334024900527E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.97118691E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.97118691E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.37234099E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.0116E+00 GPa]
- sigma(1 1)= 1.16836333E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.16836333E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.97966700E-01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 16, nsppol: 1, nspinor: 2, nspden: 1, mpw: 4337, }
cutoff_energies: {ecut: 5.0, pawecutdg: 6.0, }
electrons: {nelect: 1.40000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 20.0000000 0.0000000 0.0000000 G(1)= 0.0500000 0.0000000 0.0000000
R(2)= 0.0000000 20.0000000 0.0000000 G(2)= 0.0000000 0.0500000 0.0000000
R(3)= 0.0000000 0.0000000 20.0000000 G(3)= 0.0000000 0.0000000 0.0500000
Unit cell volume ucvol= 8.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 45 45 45
ecut(hartree)= 5.000 => boxcut(ratio)= 2.18561
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 48 48 48
ecut(hartree)= 6.000 => boxcut(ratio)= 2.17656
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 4337.000 4337.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -26.614979355329 -2.661E+01 1.664E-02 3.739E-01
ETOT 2 -26.665108065284 -5.013E-02 2.029E-06 4.323E-02
ETOT 3 -26.662795869932 2.312E-03 3.030E-04 6.769E-03
ETOT 4 -26.662388233691 4.076E-04 5.241E-05 9.030E-04
ETOT 5 -26.662423478344 -3.524E-05 8.347E-07 4.816E-05
ETOT 6 -26.662443285453 -1.981E-05 1.535E-07 5.224E-06
ETOT 7 -26.662450316223 -7.031E-06 1.312E-08 5.607E-07
ETOT 8 -26.662452948603 -2.632E-06 1.574E-09 8.067E-08
ETOT 9 -26.662453468777 -5.202E-07 2.450E-10 9.898E-09
ETOT 10 -26.662453578360 -1.096E-07 5.580E-11 2.150E-09
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.96610502E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.96610502E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.20805275E-05 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum energy difference= 1.096E-07 exceeds toldfe= 1.000E-16
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 20.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 20.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 20.0000000, ]
lattice_lengths: [ 20.00000, 20.00000, 20.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 8.0000000E+03
convergence: {deltae: -1.096E-07, res2: 2.150E-09, residm: 5.580E-11, diffor: null, }
etotal : -2.66624536E+01
entropy : 0.00000000E+00
fermie : -2.28918732E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.96610502E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.96610502E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.20805275E-05, ]
pressure_GPa: -9.9446E-01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, I]
- [ 0.0000E+00, 0.0000E+00, 2.1930E-01, Cl]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -1.77711137E-02, ]
- [ -0.00000000E+00, -0.00000000E+00, 1.77711137E-02, ]
force_length_stats: {min: 1.77711137E-02, max: 1.77711137E-02, mean: 1.77711137E-02, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90339 2.38049786
2 1.80540 4.24773859
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -1.502951547375713
Compensation charge over fine fft grid = -1.502627964321504
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1 - Component up-up
=== REAL PART:
-1.49505 -0.01288 0.00000 0.00041 0.00000 0.00000 0.00147 0.00000
-0.01288 -15.91439 0.00000 0.00088 0.00000 0.00000 -0.01261 0.00000
0.00000 0.00000 -0.42465 0.00000 0.00000 0.03172 0.00000 0.00000
0.00041 0.00088 0.00000 -0.42412 0.00000 0.00000 0.03223 0.00000
0.00000 0.00000 0.00000 0.00000 -0.42465 0.00000 0.00000 0.03172
0.00000 0.00000 0.03172 0.00000 0.00000 -7.59675 0.00000 0.00000
0.00147 -0.01261 0.00000 0.03223 0.00000 0.00000 -7.60924 0.00000
0.00000 0.00000 0.00000 0.00000 0.03172 0.00000 0.00000 -7.59675
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.01145 -0.00000 -0.00000 0.03280
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.01145 0.00000 -0.00000 -0.03280 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.03280 -0.00000 -0.00000 -0.09445
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.03280 0.00000 0.00000 0.09445 0.00000 -0.00000
Atom # 1 - Component dwn-dwn
=== REAL PART:
-1.49505 -0.01288 0.00000 0.00041 0.00000 0.00000 0.00147 0.00000
-0.01288 -15.91439 0.00000 0.00088 0.00000 0.00000 -0.01261 0.00000
0.00000 0.00000 -0.42465 0.00000 0.00000 0.03172 0.00000 0.00000
0.00041 0.00088 0.00000 -0.42412 0.00000 0.00000 0.03223 0.00000
0.00000 0.00000 0.00000 0.00000 -0.42465 0.00000 0.00000 0.03172
0.00000 0.00000 0.03172 0.00000 0.00000 -7.59675 0.00000 0.00000
0.00147 -0.01261 0.00000 0.03223 0.00000 0.00000 -7.60924 0.00000
0.00000 0.00000 0.00000 0.00000 0.03172 0.00000 0.00000 -7.59675
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.01145 -0.00000 -0.00000 -0.03280
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.01145 0.00000 -0.00000 0.03280 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.03280 -0.00000 -0.00000 0.09445
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.03280 0.00000 0.00000 -0.09445 0.00000 -0.00000
Atom # 1 - Component up-dwn
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.01145 0.00000 0.00000 -0.03280
0.00000 0.00000 0.00000 -0.01145 0.00000 0.00000 0.03280 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03280 0.00000 0.00000 0.09445
0.00000 0.00000 0.00000 0.03280 0.00000 0.00000 -0.09445 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.01145 -0.00000 -0.00000 -0.03280 -0.00000
0.00000 0.00000 -0.01145 -0.00000 -0.00000 0.03280 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.03280 0.00000 -0.00000 0.09445 -0.00000
0.00000 0.00000 0.03280 0.00000 0.00000 -0.09445 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 1 - Component dwn-up
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.01145 0.00000 0.00000 0.03280
0.00000 0.00000 0.00000 0.01145 0.00000 0.00000 -0.03280 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.03280 0.00000 0.00000 -0.09445
0.00000 0.00000 0.00000 -0.03280 0.00000 0.00000 0.09445 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.01145 -0.00000 -0.00000 -0.03280 -0.00000
0.00000 0.00000 -0.01145 -0.00000 -0.00000 0.03280 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.03280 0.00000 -0.00000 0.09445 -0.00000
0.00000 0.00000 0.03280 0.00000 0.00000 -0.09445 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Component up-up
=== REAL PART:
2.10649 -0.09722 0.00000 -0.00179 0.00000 0.00000 0.01128 0.00000
-0.09722 14.06139 0.00000 -0.00147 0.00000 0.00000 -0.01493 0.00000
0.00000 0.00000 0.41005 0.00000 0.00000 -0.14892 0.00000 0.00000
-0.00179 -0.00147 0.00000 0.41128 0.00000 0.00000 -0.15435 0.00000
0.00000 0.00000 0.00000 0.00000 0.41005 0.00000 0.00000 -0.14892
0.00000 0.00000 -0.14892 0.00000 0.00000 -10.26066 0.00000 0.00000
0.01128 -0.01493 0.00000 -0.15435 0.00000 0.00000 -10.23078 0.00000
0.00000 0.00000 0.00000 0.00000 -0.14892 0.00000 0.00000 -10.26066
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00151 -0.00000 -0.00000 0.00250
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00151 0.00000 -0.00000 -0.00250 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00250 -0.00000 -0.00000 -0.00621
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00250 0.00000 0.00000 0.00621 0.00000 -0.00000
Atom # 2 - Component dwn-dwn
=== REAL PART:
2.10649 -0.09722 0.00000 -0.00179 0.00000 0.00000 0.01128 0.00000
-0.09722 14.06139 0.00000 -0.00147 0.00000 0.00000 -0.01493 0.00000
0.00000 0.00000 0.41005 0.00000 0.00000 -0.14892 0.00000 0.00000
-0.00179 -0.00147 0.00000 0.41128 0.00000 0.00000 -0.15435 0.00000
0.00000 0.00000 0.00000 0.00000 0.41005 0.00000 0.00000 -0.14892
0.00000 0.00000 -0.14892 0.00000 0.00000 -10.26066 0.00000 0.00000
0.01128 -0.01493 0.00000 -0.15435 0.00000 0.00000 -10.23078 0.00000
0.00000 0.00000 0.00000 0.00000 -0.14892 0.00000 0.00000 -10.26066
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.00151 -0.00000 -0.00000 -0.00250
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00151 0.00000 -0.00000 0.00250 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00250 -0.00000 -0.00000 0.00621
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00250 0.00000 0.00000 -0.00621 0.00000 -0.00000
Atom # 2 - Component up-dwn
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00151 0.00000 0.00000 -0.00250
0.00000 0.00000 0.00000 -0.00151 0.00000 0.00000 0.00250 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00250 0.00000 0.00000 0.00621
0.00000 0.00000 0.00000 0.00250 0.00000 0.00000 -0.00621 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00151 -0.00000 -0.00000 -0.00250 -0.00000
0.00000 0.00000 -0.00151 -0.00000 -0.00000 0.00250 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00250 0.00000 -0.00000 0.00621 -0.00000
0.00000 0.00000 0.00250 0.00000 0.00000 -0.00621 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Component dwn-up
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00151 0.00000 0.00000 0.00250
0.00000 0.00000 0.00000 0.00151 0.00000 0.00000 -0.00250 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00250 0.00000 0.00000 -0.00621
0.00000 0.00000 0.00000 -0.00250 0.00000 0.00000 0.00621 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00151 -0.00000 -0.00000 -0.00250 -0.00000
0.00000 0.00000 -0.00151 -0.00000 -0.00000 0.00250 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00250 0.00000 -0.00000 0.00621 -0.00000
0.00000 0.00000 0.00250 0.00000 0.00000 -0.00621 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Augmentation waves occupancies Rhoij:
Atom # 1 - Component dens (n)
=== REAL PART:
2.01482 0.00199 0.00000 -0.18811 0.00000 0.00000 0.00016 0.00000
0.00199 0.00001 0.00000 -0.00184 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 2.12260 0.00000 0.00000 0.01200 0.00000 -0.00000
-0.18811 -0.00184 0.00000 0.97240 0.00000 0.00000 0.00422 0.00000
0.00000 0.00000 0.00000 0.00000 2.12260 0.00000 0.00000 0.01200
0.00000 0.00000 0.01200 0.00000 0.00000 0.00009 0.00000 0.00000
0.00016 0.00000 0.00000 0.00422 0.00000 0.00000 0.00007 0.00000
0.00000 0.00000 -0.00000 0.00000 0.01200 0.00000 0.00000 0.00009
=== IMAGINARY PART:
0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000
-0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000
-0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000
Atom # 1 - Component magn (x)
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.02541 -0.00000 -0.00000 0.00026 -0.00000 0.00000
0.00000 -0.00000 -0.00032 -0.00000 -0.00000 0.00000 -0.00000 -0.00000
0.02541 0.00032 -0.00000 0.26771 -0.00000 -0.00000 0.00746 -0.00000
0.00000 0.00000 -0.26771 -0.00000 -0.00000 -0.00424 -0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00026 -0.00000 0.00000 0.00424 0.00000 -0.00000 0.00007 -0.00000
0.00000 0.00000 -0.00746 0.00000 0.00000 -0.00007 -0.00000 0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000
Atom # 1 - Component magn (y)
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00000 -0.00000 0.02541 0.00000 -0.00000 -0.00026
0.00000 -0.00000 -0.00000 -0.00000 0.00032 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 0.26771 0.00000 -0.00000 0.00424
-0.02541 -0.00032 0.00000 -0.26771 -0.00000 -0.00000 -0.00746 -0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00746 0.00000 -0.00000 0.00007
0.00026 0.00000 0.00000 -0.00424 0.00000 0.00000 -0.00007 -0.00000
Atom # 1 - Component magn (z)
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.16682 0.00000 -0.00000 -0.00663
-0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.16682 0.00000 -0.00000 0.00663 -0.00000 0.00000
0.00000 0.00000 -0.00000 0.00000 -0.00663 -0.00000 -0.00000 -0.00007
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00663 0.00000 -0.00000 0.00007 0.00000 -0.00000
Atom # 2 - Component dens (n)
=== REAL PART:
1.97499 0.00768 0.00000 0.13969 0.00000 0.00000 0.00117 0.00000
0.00768 0.00007 0.00000 -0.00440 0.00000 0.00000 -0.00007 0.00000
0.00000 0.00000 1.57459 0.00000 0.00000 0.01672 0.00000 -0.00000
0.13969 -0.00440 0.00000 0.99272 0.00000 0.00000 0.01315 0.00000
0.00000 0.00000 0.00000 0.00000 1.57459 0.00000 0.00000 0.01672
0.00000 0.00000 0.01672 0.00000 0.00000 0.00018 0.00000 0.00000
0.00117 -0.00007 0.00000 0.01315 0.00000 0.00000 0.00018 0.00000
0.00000 0.00000 -0.00000 0.00000 0.01672 0.00000 0.00000 0.00018
=== IMAGINARY PART:
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000
0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Component magn (x)
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 -0.00731 -0.00000 0.00000 -0.00004 -0.00000 0.00000
0.00000 -0.00000 0.00021 -0.00000 -0.00000 0.00000 -0.00000 -0.00000
0.00731 -0.00021 -0.00000 -0.01990 -0.00000 -0.00000 -0.00020 -0.00000
0.00000 0.00000 0.01990 -0.00000 -0.00000 0.00015 -0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00004 -0.00000 0.00000 -0.00015 0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00020 0.00000 -0.00000 0.00000 -0.00000 -0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Component magn (y)
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
=== IMAGINARY PART:
-0.00000 -0.00000 0.00000 -0.00000 0.00731 0.00000 -0.00000 0.00004
0.00000 -0.00000 -0.00000 -0.00000 -0.00021 -0.00000 -0.00000 -0.00000
-0.00000 0.00000 -0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.01990 0.00000 -0.00000 -0.00015
-0.00731 0.00021 0.00000 0.01990 -0.00000 -0.00000 0.00020 -0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000
0.00000 0.00000 -0.00000 0.00000 -0.00020 -0.00000 -0.00000 -0.00000
-0.00004 0.00000 0.00000 0.00015 0.00000 0.00000 0.00000 -0.00000
Atom # 2 - Component magn (z)
=== REAL PART:
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
=== IMAGINARY PART:
0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
-0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00000 -0.00000 -0.00374 0.00000 -0.00000 0.00005
0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000
0.00000 0.00000 0.00374 0.00000 -0.00000 -0.00005 -0.00000 0.00000
0.00000 0.00000 -0.00000 0.00000 0.00005 -0.00000 -0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000
0.00000 0.00000 -0.00005 0.00000 -0.00000 -0.00000 0.00000 -0.00000
Electric Field Gradient Calculation
atom : 1 typat : 1
Nuclear quad. mom. (barns) : -0.6960 Cq (MHz) : ********* eta : 0.0000
efg eigval (au) : -8.646586 ; (V/m^2) : -8.40220158E+22
- eigvec : 1.000000 0.000000 0.000000
efg eigval (au) : -8.646586 ; (V/m^2) : -8.40220158E+22
- eigvec : -0.000000 1.000000 0.000000
efg eigval (au) : 17.293172 ; (V/m^2) : 1.68044032E+23
- eigvec : 0.000000 0.000000 1.000000
total efg : -8.646586 0.000000 0.000000
total efg : 0.000000 -8.646586 0.000000
total efg : 0.000000 0.000000 17.293172
efg_el : 0.010120 0.000000 0.000000
efg_el : 0.000000 0.010120 0.000000
efg_el : 0.000000 0.000000 -0.020241
efg_ion : -0.083773 0.000000 0.000000
efg_ion : 0.000000 -0.083773 0.000000
efg_ion : 0.000000 0.000000 0.167546
efg_paw : -8.572934 0.000000 0.000000
efg_paw : 0.000000 -8.572934 0.000000
efg_paw : 0.000000 0.000000 17.145867
atom : 2 typat : 2
Nuclear quad. mom. (barns) : -0.0817 Cq (MHz) : -65.7507 eta : 0.0000
efg eigval (au) : -1.713609 ; (V/m^2) : -1.66517563E+22
- eigvec : 1.000000 0.000000 0.000000
efg eigval (au) : -1.713609 ; (V/m^2) : -1.66517563E+22
- eigvec : -0.000000 1.000000 0.000000
efg eigval (au) : 3.427217 ; (V/m^2) : 3.33035125E+22
- eigvec : 0.000000 0.000000 1.000000
total efg : -1.713609 0.000000 0.000000
total efg : 0.000000 -1.713609 0.000000
total efg : 0.000000 0.000000 3.427217
efg_el : -0.051288 0.000000 0.000000
efg_el : 0.000000 -0.051288 0.000000
efg_el : 0.000000 0.000000 0.102576
efg_ion : -0.083773 0.000000 0.000000
efg_ion : 0.000000 -0.083773 0.000000
efg_ion : 0.000000 0.000000 0.167546
efg_paw : -1.578548 0.000000 0.000000
efg_paw : 0.000000 -1.578548 0.000000
efg_paw : 0.000000 0.000000 3.157095
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.640E-12; max= 55.796E-12
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.219302500000
rms dE/dt= 2.0520E-01; max dE/dt= 3.5541E-01; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.355409037904
2 0.000000000000 0.000000000000 -0.355435510762
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 2.32099769573617
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.01777111371665
2 -0.00000000000000 -0.00000000000000 0.01777111371665
frms,max,avg= 1.0260157E-02 1.7771114E-02 0.000E+00 0.000E+00 6.618E-07 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.91382733253364
2 -0.00000000000000 -0.00000000000000 0.91382733253364
frms,max,avg= 5.2759846E-01 9.1382733E-01 0.000E+00 0.000E+00 3.403E-05 e/A
length scales= 20.000000000000 20.000000000000 20.000000000000 bohr
= 10.583544171800 10.583544171800 10.583544171800 angstroms
Fermi (or HOMO) energy (hartree) = -0.22892 Average Vxc (hartree)= -0.04166
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 16, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.80849 -0.80849 -0.64255 -0.64255 -0.39074 -0.39074 -0.32689 -0.32689
-0.31926 -0.31926 -0.24835 -0.24835 -0.22892 -0.22892 -0.15377 -0.15377
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 9.32589694260458E+00
hartree : 1.97331131646685E+01
xc : -7.59330143754681E+00
Ewald energy : -2.46637979839878E+00
psp_core : 1.82540925844888E-01
local_psp : -4.68757674235440E+01
spherical_terms : 1.03142289297042E+00
total_energy : -2.66624747334012E+01
total_energy_eV : -7.25522834628131E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.93040114626146E+00
Ewald energy : -2.46637979839878E+00
psp_core : 1.82540925844888E-01
xc_dc : -1.92223963782496E+01
spherical_terms : 7.74182818704745E-01
total_energy_dc : -2.66624535783602E+01
total_energy_dc_eV : -7.25522258970191E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.96610502E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.96610502E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.20805275E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -9.9446E-01 GPa]
- sigma(1 1)= 1.16686819E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.16686819E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.49631437E-01 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 2.0000000000E+01 2.0000000000E+01 2.0000000000E+01 Bohr
amu 1.26904470E+02 3.54527000E+01
diemac 2.00000000E+00
ecut 5.00000000E+00 Hartree
etotal1 -2.6655536103E+01
etotal2 -2.6662453578E+01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -1.4394490473E-02
-0.0000000000E+00 -0.0000000000E+00 1.4394490473E-02
fcart2 -0.0000000000E+00 -0.0000000000E+00 -1.7771113717E-02
-0.0000000000E+00 -0.0000000000E+00 1.7771113717E-02
- fftalg 512
istwfk1 2
istwfk2 1
ixc 11
jdtset 1 2
kptopt 0
P mkmem 1
natom 2
nband1 8
nband2 16
ndtset 2
ngfft 45 45 45
ngfftdg 48 48 48
nkpt 1
nspinor1 1
nspinor2 2
nstep 10
nsym1 8
nsym2 4
ntypat 2
nucefg 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 0.000000
occ2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 0.000000 0.000000
pawcpxocc1 1
pawcpxocc2 2
pawecutdg 6.00000000E+00 Hartree
pawspnorb1 0
pawspnorb2 1
prtden 0
prteig 0
prtwf 0
quadmom -6.96000000E-01 -8.16500000E-02
spgroup1 99
spgroup2 75
strten1 3.9711869069E-05 3.9711869069E-05 2.3723409947E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 3.9661050192E-05 3.9661050192E-05 2.2080527473E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symafm1 1 1 1 1 1 1 1 1
symafm2 1 1 1 1
symrel1 1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 0 1
symrel2 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 1
0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 0 1
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
toldfe 1.00000000E-16 Hartree
typat 1 2
useylm 1
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.3209976957E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 4.3860500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.1930250000E-01
znucl 53.00000 17.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] First-principles calculation of electric field gradients in metals, semiconductors, and insulators.
- J.W. Zwanziger, M. Torrent, Applied Magnetic Resonance 33, 447-456 (2008).
- Comment: to be cited in case the computation of electric field gradient is used, i.e. nucefg>0 and usepaw=1.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#zwanziger2008
-
- [2] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 5.8 wall= 5.9
================================================================================
Calculation completed.
.Delivered 23 WARNINGs and 10 COMMENTs to log file.
+Overall time at end (sec) : cpu= 5.8 wall= 5.9