abinit/tests/v6/Refs/t35.abo

2828 lines
131 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h11 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v6_t35/t35.abi
- output file -> t35.abo
- root for input files -> t35i
- root for output files -> t35o
DATASET 11 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 11.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.799 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 12 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 12 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.712 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 21 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 21.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 22 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 22 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 31 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 31.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 32 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 32 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 41 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 41.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 42 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 42 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 51 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 51.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 52 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 52 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 61 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 61.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 62 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 62 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 2.69815390E+01
ecut 2.50000000E+00 Hartree
- fftalg 512
getden11 0
getden12 11
getden21 11
getden22 11
getden31 11
getden32 11
getden41 11
getden42 11
getden51 11
getden52 11
getden61 11
getden62 11
getwfk11 0
getwfk12 11
getwfk21 11
getwfk22 11
getwfk31 11
getwfk32 11
getwfk41 11
getwfk42 11
getwfk51 11
getwfk52 11
getwfk61 11
getwfk62 11
getwfq11 0
getwfq12 0
getwfq21 0
getwfq22 -1
getwfq31 0
getwfq32 -1
getwfq41 0
getwfq42 -1
getwfq51 0
getwfq52 -1
getwfq61 0
getwfq62 -1
iscf11 7
iscf12 7
iscf21 -2
iscf22 7
iscf31 -2
iscf32 7
iscf41 -2
iscf42 7
iscf51 -2
iscf52 7
iscf61 -2
iscf62 7
ixc 7
jdtset 11 12 21 22 31 32 41 42 51 52
61 62
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 1.52000000E+01
P mkmem 32
P mkqmem 32
P mk1mem 32
natom 1
nband 4
nbdbuf 2
ndtset 12
ngfft 12 12 12
nkpt 32
nqpt11 0
nqpt12 1
nqpt21 1
nqpt22 1
nqpt31 1
nqpt32 1
nqpt41 1
nqpt42 1
nqpt51 1
nqpt52 1
nqpt61 1
nqpt62 1
nsym 48
ntypat 1
occ 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occopt 4
optdriver11 0
optdriver12 1
optdriver21 0
optdriver22 1
optdriver31 0
optdriver32 1
optdriver41 0
optdriver42 1
optdriver51 0
optdriver52 1
optdriver61 0
optdriver62 1
prtpot11 0
prtpot12 1
prtpot21 0
prtpot22 1
prtpot31 0
prtpot32 1
prtpot41 0
prtpot42 1
prtpot51 0
prtpot52 1
prtpot61 0
prtpot62 1
qpt11 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt12 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt21 0.00000000E+00 2.50000000E-01 -2.50000000E-01
qpt22 0.00000000E+00 2.50000000E-01 -2.50000000E-01
qpt31 0.00000000E+00 0.00000000E+00 5.00000000E-01
qpt32 0.00000000E+00 0.00000000E+00 5.00000000E-01
qpt41 -2.50000000E-01 0.00000000E+00 -2.50000000E-01
qpt42 -2.50000000E-01 0.00000000E+00 -2.50000000E-01
qpt51 5.00000000E-01 2.50000000E-01 -2.50000000E-01
qpt52 5.00000000E-01 2.50000000E-01 -2.50000000E-01
qpt61 5.00000000E-01 0.00000000E+00 5.00000000E-01
qpt62 5.00000000E-01 0.00000000E+00 5.00000000E-01
rfphon11 0
rfphon12 1
rfphon21 0
rfphon22 1
rfphon31 0
rfphon32 1
rfphon41 0
rfphon42 1
rfphon51 0
rfphon52 1
rfphon61 0
rfphon62 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs11 0.00000000E+00
tolvrs12 1.00000000E-10
tolvrs21 0.00000000E+00
tolvrs22 1.00000000E-10
tolvrs31 0.00000000E+00
tolvrs32 1.00000000E-10
tolvrs41 0.00000000E+00
tolvrs42 1.00000000E-10
tolvrs51 0.00000000E+00
tolvrs52 1.00000000E-10
tolvrs61 0.00000000E+00
tolvrs62 1.00000000E-10
tolwfr11 1.00000000E-22
tolwfr12 0.00000000E+00
tolwfr21 1.00000000E-22
tolwfr22 0.00000000E+00
tolwfr31 1.00000000E-22
tolwfr32 0.00000000E+00
tolwfr41 1.00000000E-22
tolwfr42 0.00000000E+00
tolwfr51 1.00000000E-22
tolwfr52 0.00000000E+00
tolwfr61 1.00000000E-22
tolwfr62 0.00000000E+00
tsmear 4.00000000E-02 Hartree
typat 1
wtk 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
znucl 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 11.
chkinp: Checking input parameters for consistency, jdtset= 12.
chkinp: Checking input parameters for consistency, jdtset= 21.
chkinp: Checking input parameters for consistency, jdtset= 22.
chkinp: Checking input parameters for consistency, jdtset= 31.
chkinp: Checking input parameters for consistency, jdtset= 32.
chkinp: Checking input parameters for consistency, jdtset= 41.
chkinp: Checking input parameters for consistency, jdtset= 42.
chkinp: Checking input parameters for consistency, jdtset= 51.
chkinp: Checking input parameters for consistency, jdtset= 52.
chkinp: Checking input parameters for consistency, jdtset= 61.
chkinp: Checking input parameters for consistency, jdtset= 62.
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- Aluminum, fhi98PP : Hamann-type, LDA CA PerdewWang, l=2 local
- 13.00000 3.00000 981214 znucl, zion, pspdat
6 7 2 2 493 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
No XC core correction.
1.024700 amesh (Hamman grid)
pspatm : epsatm= 1.36305739
--- l ekb(1:nproj) -->
0 1.768744
1 0.900554
pspatm: atomic psp has been read and splines computed
4.08917216E+00 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 21.000 20.924
================================================================================
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -2.0706686996466 -2.071E+00 3.779E-04 1.420E-01
ETOT 2 -2.0708504705695 -1.818E-04 2.058E-11 7.651E-03
ETOT 3 -2.0708592999427 -8.829E-06 2.012E-07 1.987E-05
ETOT 4 -2.0708593160988 -1.616E-08 4.757E-10 2.112E-08
ETOT 5 -2.0708593161177 -1.889E-11 4.152E-13 8.063E-11
ETOT 6 -2.0708593161178 -1.221E-13 3.231E-15 5.844E-13
ETOT 7 -2.0708593161178 -4.441E-16 1.945E-17 7.286E-16
ETOT 8 -2.0708593161178 1.421E-14 5.362E-21 4.126E-19
ETOT 9 -2.0708593161178 7.550E-15 9.966E-23 1.711E-22
At SCF step 9 max residual= 9.97E-23 < tolwfr= 1.00E-22 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.26934445E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.26934445E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.26934445E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 11, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 7.550E-15, res2: 1.711E-22, residm: 9.966E-23, diffor: null, }
etotal : -2.07085932E+00
entropy : 0.00000000E+00
fermie : 2.68497450E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.26934445E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.26934445E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.26934445E-04, ]
pressure_GPa: -6.6766E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85348947
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 94.766E-24; max= 99.658E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t35o_DS11_EIG
Fermi (or HOMO) energy (hartree) = 0.26850 Average Vxc (hartree)= -0.34665
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.09736 0.25722 0.42393 0.54050
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 11, }
comment : Components of total free energy in Hartree
kinetic : 8.30392229137356E-01
hartree : 3.42093687948953E-03
xc : -8.03389783826549E-01
Ewald energy : -2.71472096493581E+00
psp_core : 3.72610088794390E-02
local_psp : 1.04303458053642E-01
non_local_psp : 4.78250417826752E-01
internal : -2.06448269798568E+00
'-kT*entropy' : -6.37661813212385E-03
total_energy : -2.07085931611780E+00
total_energy_eV : -5.63509477709387E+01
band_energy : 3.72765472090042E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.26934445E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.26934445E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.26934445E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.6766E+00 GPa]
- sigma(1 1)= 6.67664076E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.67664076E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.67664076E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 10 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.89263720958976E-03 -3.332E+00 2.221E-03 1.931E+00
ETOT 2 4.96778260608011E-05 -1.843E-03 9.962E-07 3.908E-02
ETOT 3 1.06698190016630E-06 -4.861E-05 8.207E-08 3.895E-05
ETOT 4 9.75321224672143E-07 -9.166E-08 9.994E-11 1.997E-07
ETOT 5 9.74675742781983E-07 -6.455E-10 7.322E-13 6.904E-10
ETOT 6 9.74674113862761E-07 -1.629E-12 1.265E-15 6.894E-13
At SCF step 6 vres2 = 6.89E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 51.366E-17; max= 12.651E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.53015565E+00 eigvalue= -3.95949939E-01 local= -1.61385526E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 6.01131282E+00 Hartree= 2.02189926E-01 xc= -2.31546053E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 4.39957499E-01 enl0= 1.40327777E+00 enl1= -1.26797719E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.33422953E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 0.00000000E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.9746741139E-06 Ha. Also 2DEtotal= 0.265222314507E-04 eV
(2DErelax= -3.3342295297E+00 Ha. 2DEnonrelax= 3.3342305043E+00 Ha)
( non-var. 2DEtotal : 9.3811940349E-07 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000009381 0.0000000000
1 1 2 1 0.0000004691 0.0000000000
1 1 3 1 0.0000004691 0.0000000000
1 1 2 3 0.0000000000 0.0000000000
1 1 3 3 0.0000000000 0.0000000000
2 1 1 1 0.0000004691 0.0000000000
2 1 2 1 0.0000009381 0.0000000000
2 1 3 1 0.0000004691 0.0000000000
2 1 1 3 0.0000000000 0.0000000000
2 1 3 3 0.0000000000 0.0000000000
3 1 1 1 0.0000004691 0.0000000000
3 1 2 1 0.0000004691 0.0000000000
3 1 3 1 0.0000009381 0.0000000000
3 1 1 3 0.0000000000 0.0000000000
3 1 2 3 0.0000000000 0.0000000000
1 3 2 1 0.0000000000 0.0000000000
1 3 3 1 0.0000000000 0.0000000000
2 3 1 1 0.0000000000 0.0000000000
2 3 3 1 0.0000000000 0.0000000000
3 3 1 1 0.0000000000 0.0000000000
3 3 2 1 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00
================================================================================
== DATASET 21 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 21, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t35o_DS11_WFK
================================================================================
prteigrs : about to open file t35o_DS21_EIG
Non-SCF case, kpt 1 ( -0.25000 0.75000 -0.25000), residuals and eigenvalues=
9.81E-23 7.43E-23 8.55E-23 8.76E-23
-6.0995E-02 4.1670E-01 6.9420E-01 6.9420E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 21, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.815E-23, diffor: 0.000E+00, }
etotal : -2.07085932E+00
entropy : 0.00000000E+00
fermie : 2.68497450E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85348947
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 93.943E-24; max= 98.151E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t35o_DS21_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.7500 -0.2500 (reduced coord)
-0.06100 0.41670 0.69420 0.69420
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 22 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 22, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 21.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.2500 -0.2500 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.01503
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.681516 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.250000 -0.250000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 16 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 22, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.48097483916304 -4.258E+00 3.548E-03 1.802E+01
ETOT 2 0.40415921019098 -7.682E-02 4.999E-05 2.170E-01
ETOT 3 0.40337630971393 -7.829E-04 5.178E-07 5.740E-04
ETOT 4 0.40337474100188 -1.569E-06 1.938E-09 6.674E-07
ETOT 5 0.40337473955361 -1.448E-09 1.548E-12 9.688E-10
ETOT 6 0.40337473955199 -1.618E-12 1.733E-15 1.622E-12
At SCF step 6 vres2 = 1.62E-12 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.243E-17; max= 17.326E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.46714154E+00 eigvalue= -4.59662068E-01 local= -1.84322440E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.45415590E+00 Hartree= 5.40942093E-01 xc= -4.32922663E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 6.04220064E-01 enl0= 1.45893705E+00 enl1= -1.01250190E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.33543146E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 1.40457569E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.4033747396E+00 Ha. Also 2DEtotal= 0.109763848774E+02 eV
(2DErelax= -4.3354314579E+00 Ha. 2DEnonrelax= 4.7388061975E+00 Ha)
( non-var. 2DEtotal : 4.0337466132E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.250000 -0.250000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 22, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 77.019812178745 6.456E+01 3.880E-02 4.824E+04
ETOT 2 18.309969612818 -5.871E+01 1.268E-02 1.115E+04
ETOT 3 0.80315201042983 -1.751E+01 8.955E-04 1.782E+00
ETOT 4 0.80000281270247 -3.149E-03 9.835E-07 4.370E-03
ETOT 5 0.79999499686248 -7.816E-06 5.396E-09 3.457E-06
ETOT 6 0.79999498960878 -7.254E-09 7.286E-12 1.763E-08
ETOT 7 0.79999498957651 -3.227E-11 2.713E-14 5.363E-11
At SCF step 7 vres2 = 5.36E-11 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 28.509E-16; max= 27.131E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.33864064E+00 eigvalue= -7.69869147E-01 local= -2.89392359E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.56366176E+01 Hartree= 5.93481338E+00 xc= -1.35308063E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.07183715E+00 enl0= 2.33416791E+00 enl1= -7.68855216E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.16625841E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 9.12834857E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7999949896E+00 Ha. Also 2DEtotal= 0.217689707474E+02 eV
(2DErelax= -1.1662584087E+01 Ha. 2DEnonrelax= 1.2462579076E+01 Ha)
( non-var. 2DEtotal : 7.9999417751E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.4033746613 -0.0000000000
1 1 2 1 0.2016873307 0.0000000000
1 1 3 1 0.2016873307 -0.0000000000
2 1 1 1 0.2016873307 0.0000000000
2 1 2 1 0.7999941452 0.0000000000
2 1 3 1 0.4876496641 -0.0000000000
3 1 1 1 0.2016873307 -0.0000000000
3 1 2 1 0.4876496641 -0.0000000000
3 1 3 1 0.7999941452 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0376023711 -0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.0177988855 0.0000000000
2 1 3 1 -0.0038316188 -0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 -0.0038316188 -0.0000000000
3 1 3 1 0.0177988855 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.25000 -0.25000
Phonon energies in Hartree :
5.328958E-04 6.631624E-04 8.743679E-04
Phonon frequencies in cm-1 :
- 1.169571E+02 1.455473E+02 1.919016E+02
================================================================================
== DATASET 31 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 31, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t35o_DS11_WFK
================================================================================
prteigrs : about to open file t35o_DS31_EIG
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.50000), residuals and eigenvalues=
9.79E-23 9.52E-23 8.18E-23 1.53E-24
9.7362E-02 2.5722E-01 4.2393E-01 5.4050E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 31, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.815E-23, diffor: 0.000E+00, }
etotal : -2.07085932E+00
entropy : 0.00000000E+00
fermie : 2.68497450E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85348947
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 93.943E-24; max= 98.151E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t35o_DS31_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.5000 (reduced coord)
0.09736 0.25722 0.42393 0.54050
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 32 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 32, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 31.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.5000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.88174
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.190257 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 3 ipert= 1
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 32, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.25681329233058 -4.436E+00 3.398E-03 7.628E+00
ETOT 2 0.22591050946803 -3.090E-02 2.192E-05 1.111E-01
ETOT 3 0.22553925711111 -3.713E-04 1.254E-07 1.258E-04
ETOT 4 0.22553904252811 -2.146E-07 2.794E-10 3.082E-07
ETOT 5 0.22553904174787 -7.802E-10 1.427E-12 1.144E-09
ETOT 6 0.22553904174442 -3.455E-12 5.478E-15 4.232E-12
At SCF step 6 vres2 = 4.23E-12 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.577E-16; max= 54.784E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.49707311E+00 eigvalue= -4.51088787E-01 local= -1.87908953E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.10490068E+00 Hartree= 5.02579685E-01 xc= -4.80324559E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 7.64289204E-01 enl0= 1.51388026E+00 enl1= -1.00395395E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.46731947E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 1.35862801E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2255390417E+00 Ha. Also 2DEtotal= 0.613722944032E+01 eV
(2DErelax= -4.4673194705E+00 Ha. 2DEnonrelax= 4.6928585123E+00 Ha)
( non-var. 2DEtotal : 2.2553908513E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 3
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 32, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 52.265622354100 3.045E+01 4.542E-02 2.521E+04
ETOT 2 2.0141961160500 -5.025E+01 1.040E-02 1.139E+02
ETOT 3 1.7782970854914 -2.359E-01 4.455E-05 1.029E-01
ETOT 4 1.7780625966848 -2.345E-04 2.439E-07 5.345E-05
ETOT 5 1.7780624721507 -1.245E-07 1.665E-10 2.658E-07
ETOT 6 1.7780624714843 -6.665E-10 8.445E-13 3.051E-09
ETOT 7 1.7780624714785 -5.819E-12 9.405E-16 1.694E-11
At SCF step 7 vres2 = 1.69E-11 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.114E-17; max= 94.046E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 8.83708362E+00 eigvalue= -1.24973209E+00 local= -4.33757314E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.47976815E+01 Hartree= 1.17272810E+01 xc= -2.25373368E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.86067202E+00 enl0= 3.45517873E+00 enl1= -5.28067278E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.00391778E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 1.84830098E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1778062471E+01 Ha. Also 2DEtotal= 0.483835404385E+02 eV
(2DErelax= -2.0039177837E+01 Ha. 2DEnonrelax= 2.1817240309E+01 Ha)
( non-var. 2DEtotal : 1.7780631620E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.2255390851 0.0000000000
1 1 2 1 0.1127695426 0.0000000000
1 1 3 1 0.1127695426 0.0000000000
2 1 1 1 0.1127695426 0.0000000000
2 1 2 1 0.2255390851 0.0000000000
2 1 3 1 0.1127695426 0.0000000000
3 1 1 1 0.1127695426 0.0000000000
3 1 2 1 0.1127695426 0.0000000000
3 1 3 1 1.7780631818 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0346884049 0.0000000000
1 1 2 1 0.0268788798 0.0000000000
1 1 3 1 -0.0268788798 -0.0000000000
2 1 1 1 0.0268788798 0.0000000000
2 1 2 1 0.0346884049 0.0000000000
2 1 3 1 -0.0268788798 -0.0000000000
3 1 1 1 -0.0268788798 -0.0000000000
3 1 2 1 -0.0268788798 -0.0000000000
3 1 3 1 0.0346884049 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.50000
Phonon energies in Hartree :
3.984730E-04 3.984730E-04 1.340992E-03
Phonon frequencies in cm-1 :
- 8.745472E+01 8.745472E+01 2.943137E+02
================================================================================
== DATASET 41 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 41, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t35o_DS11_WFK
================================================================================
prteigrs : about to open file t35o_DS41_EIG
Non-SCF case, kpt 1 ( -0.50000 0.50000 -0.25000), residuals and eigenvalues=
9.79E-23 9.52E-23 8.18E-23 4.22E-24
9.7362E-02 2.5722E-01 4.2393E-01 5.4050E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 41, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.815E-23, diffor: 0.000E+00, }
etotal : -2.07085932E+00
entropy : 0.00000000E+00
fermie : 2.68497450E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85348947
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 93.943E-24; max= 98.150E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t35o_DS41_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.5000 0.5000 -0.2500 (reduced coord)
0.09736 0.25722 0.42393 0.54050
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 42 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 42, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 41.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= -0.2500 0.0000 -0.2500 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.00936
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.660157 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) -0.250000 0.000000 -0.250000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 16 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 42, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 814.71563171627 7.977E+02 1.740E-02 9.964E+05
ETOT 2 273.17042197879 -5.415E+02 1.949E-02 3.326E+05
ETOT 3 0.21730676559089 -2.730E+02 2.595E-03 8.988E+00
ETOT 4 0.20952508547145 -7.782E-03 9.381E-07 2.013E-02
ETOT 5 0.20949799048086 -2.709E-05 2.674E-08 3.115E-04
ETOT 6 0.20949767656572 -3.139E-07 1.327E-10 9.194E-08
ETOT 7 0.20949767640848 -1.572E-10 7.866E-14 2.211E-10
ETOT 8 0.20949767640809 -3.979E-13 1.535E-16 5.280E-13
At SCF step 8 vres2 = 5.28E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.776E-18; max= 15.352E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.63652338E+00 eigvalue= -7.27342641E-01 local= -2.70736824E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.50216767E+01 Hartree= 1.17004131E+01 xc= -1.29103261E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.98894956E+00 enl0= 2.24657030E+00 enl1= -8.67174892E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.68467128E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 1.37219800E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2094976764E+00 Ha. Also 2DEtotal= 0.570072169052E+01 eV
(2DErelax= -1.6846712810E+01 Ha. 2DEnonrelax= 1.7056210486E+01 Ha)
( non-var. 2DEtotal : 2.0949767220E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) -0.250000 0.000000 -0.250000
Perturbation : displacement of atom 1 along direction 2
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 42, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.32358794429154 -5.329E+00 6.533E-03 4.335E+01
ETOT 2 0.16202773454875 -1.616E-01 1.086E-04 7.113E-01
ETOT 3 0.15939851032789 -2.629E-03 2.236E-06 2.057E-04
ETOT 4 0.15939818209601 -3.282E-07 1.051E-09 5.683E-07
ETOT 5 0.15939818080987 -1.286E-09 2.846E-12 1.640E-09
ETOT 6 0.15939818080561 -4.262E-12 2.816E-15 3.867E-12
At SCF step 6 vres2 = 3.87E-12 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 61.259E-17; max= 28.158E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.81478163E+00 eigvalue= -5.37566382E-01 local= -2.12264069E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 3.03859368E-01 Hartree= 1.04747807E+00 xc= -7.43241172E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.27825832E+00 enl0= 1.75625933E+00 enl1= -1.12905175E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.49332908E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 2.31849675E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1593981808E+00 Ha. Also 2DEtotal= 0.433744508449E+01 eV
(2DErelax= -5.4933290782E+00 Ha. 2DEnonrelax= 5.6527272590E+00 Ha)
( non-var. 2DEtotal : 1.5939817219E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.2094976623 0.0000000000
1 1 2 1 0.0796990894 0.0000000000
1 1 3 1 0.1297985729 0.0000000000
2 1 1 1 0.0796990894 0.0000000000
2 1 2 1 0.1593981788 0.0000000000
2 1 3 1 0.0796990894 0.0000000000
3 1 1 1 0.1297985729 0.0000000000
3 1 2 1 0.0796990894 0.0000000000
3 1 3 1 0.2094976623 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0055193275 0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.0089888208 0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 -0.0000000000
3 1 3 1 0.0055193275 0.0000000000
Phonon wavevector (reduced coordinates) : -0.25000 0.00000 -0.25000
Phonon energies in Hartree :
3.349883E-04 3.349883E-04 4.275018E-04
Phonon frequencies in cm-1 :
- 7.352144E+01 7.352144E+01 9.382580E+01
================================================================================
== DATASET 51 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 51, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t35o_DS11_WFK
================================================================================
prteigrs : about to open file t35o_DS51_EIG
Non-SCF case, kpt 1 ( 0.25000 0.75000 -0.25000), residuals and eigenvalues=
9.79E-23 9.52E-23 8.18E-23 6.31E-25
9.7362E-02 2.5722E-01 4.2393E-01 5.4050E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 51, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.815E-23, diffor: 0.000E+00, }
etotal : -2.07085932E+00
entropy : 0.00000000E+00
fermie : 2.68497450E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85348947
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 93.943E-24; max= 98.152E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t35o_DS51_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.7500 -0.2500 (reduced coord)
0.09736 0.25722 0.42393 0.54050
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 52 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 52, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 51.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.2500 -0.2500 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.89357
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.232975 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.250000 -0.250000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 52, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 21.484942723794 6.364E+00 2.672E-02 6.216E+03
ETOT 2 1.1871611701148 -2.030E+01 6.520E-03 3.135E+02
ETOT 3 0.10735143316577 -1.080E+00 2.014E-04 1.714E-02
ETOT 4 0.10732619805996 -2.524E-05 2.511E-08 3.305E-05
ETOT 5 0.10732612184384 -7.622E-08 9.322E-11 9.798E-08
ETOT 6 0.10732612163333 -2.105E-10 2.703E-13 2.113E-10
ETOT 7 0.10732612163303 -3.038E-13 5.387E-16 8.916E-13
At SCF step 7 vres2 = 8.92E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.881E-17; max= 53.867E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.21121644E+00 eigvalue= -8.64408171E-01 local= -3.51309741E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.76712147E+01 Hartree= 8.32328627E+00 xc= -2.45973386E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.40954787E+00 enl0= 2.90724848E+00 enl1= -2.35690430E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.50140594E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 1.17871550E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1073261216E+00 Ha. Also 2DEtotal= 0.292049229396E+01 eV
(2DErelax= -1.5014059430E+01 Ha. 2DEnonrelax= 1.5121385552E+01 Ha)
( non-var. 2DEtotal : 1.0732602585E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.250000 -0.250000
Perturbation : displacement of atom 1 along direction 2
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 16 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 52, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 14.639882358216 2.318E+00 1.122E-02 4.187E+03
ETOT 2 1.0144716474401 -1.363E+01 1.132E-02 1.693E+02
ETOT 3 0.43202565049482 -5.824E-01 3.721E-04 1.608E-01
ETOT 4 0.43149061142317 -5.350E-04 3.212E-07 2.902E-03
ETOT 5 0.43148338580983 -7.226E-06 4.390E-09 3.731E-06
ETOT 6 0.43148337731599 -8.494E-09 1.109E-11 1.420E-08
ETOT 7 0.43148337728467 -3.132E-11 2.795E-14 2.996E-10
ETOT 8 0.43148337728380 -8.740E-13 3.050E-16 8.335E-13
At SCF step 8 vres2 = 8.33E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 52.832E-18; max= 30.504E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.53550518E+00 eigvalue= -7.62132968E-01 local= -3.04182406E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.03243806E+01 Hartree= 6.03724079E+00 xc= -1.83845318E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.49662210E+00 enl0= 2.46344026E+00 enl1= -3.45641546E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.18903980E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 8.98765084E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.4314833773E+00 Ha. Also 2DEtotal= 0.117412598085E+02 eV
(2DErelax= -1.1890397962E+01 Ha. 2DEnonrelax= 1.2321881340E+01 Ha)
( non-var. 2DEtotal : 4.3148330217E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.1073260316 -0.0000000000
1 1 2 1 0.0536630158 -0.0000000000
1 1 3 1 0.0536630158 -0.0000000000
2 1 1 1 0.0536630158 -0.0000000000
2 1 2 1 0.4314832935 -0.0000000000
2 1 3 1 0.3778202777 -0.0000000000
3 1 1 1 0.0536630158 -0.0000000000
3 1 2 1 0.3778202777 -0.0000000000
3 1 3 1 0.4314832935 -0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0261648392 -0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0037162753 -0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 -0.0000000000
3 1 3 1 0.0037162753 -0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.25000 -0.25000
Phonon energies in Hartree :
2.748783E-04 2.748783E-04 7.293662E-04
Phonon frequencies in cm-1 :
- 6.032882E+01 6.032882E+01 1.600774E+02
================================================================================
== DATASET 61 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 61, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t35o_DS11_WFK
================================================================================
prteigrs : about to open file t35o_DS61_EIG
Non-SCF case, kpt 1 ( 0.25000 0.50000 0.50000), residuals and eigenvalues=
9.79E-23 9.52E-23 8.18E-23 1.60E-24
9.7362E-02 2.5722E-01 4.2393E-01 5.4050E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 61, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.815E-23, diffor: 0.000E+00, }
etotal : -2.07085932E+00
entropy : 0.00000000E+00
fermie : 2.68497450E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85348947
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 93.943E-24; max= 98.152E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t35o_DS61_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.5000 0.5000 (reduced coord)
0.09736 0.25722 0.42393 0.54050
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 62 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 62, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 61.
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.0000 0.5000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.88766
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.211616 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 16 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 62, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 14.536152123763 -1.285E+00 2.022E-02 5.210E+03
ETOT 2 1.5170939985416 -1.302E+01 1.800E-03 5.491E-01
ETOT 3 1.5155953252904 -1.499E-03 1.520E-06 1.019E-02
ETOT 4 1.5155761327941 -1.919E-05 2.651E-08 7.989E-05
ETOT 5 1.5155759381904 -1.946E-07 3.814E-10 3.616E-07
ETOT 6 1.5155759374775 -7.129E-10 1.040E-12 3.301E-10
ETOT 7 1.5155759374770 -4.832E-13 1.818E-15 1.715E-12
At SCF step 7 vres2 = 1.72E-12 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 30.464E-17; max= 18.180E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.92743085E+00 eigvalue= -9.56979047E-01 local= -3.77058872E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.49327985E+01 Hartree= 6.80636789E+00 xc= -1.99477633E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.24235655E+00 enl0= 3.05176699E+00 enl1= -3.67835779E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.43055781E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 1.24869236E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1515575937E+01 Ha. Also 2DEtotal= 0.412409186037E+02 eV
(2DErelax= -1.4305578146E+01 Ha. 2DEnonrelax= 1.5821154083E+01 Ha)
( non-var. 2DEtotal : 1.5155759208E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 2
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 62, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.7009715299598 -6.422E+00 1.220E-02 3.141E+02
ETOT 2 0.19670135340349 -1.504E+00 9.680E-04 4.887E-01
ETOT 3 0.19470673693222 -1.995E-03 1.417E-06 3.722E-03
ETOT 4 0.19470115551920 -5.581E-06 6.931E-09 1.010E-05
ETOT 5 0.19470113388695 -2.163E-08 3.383E-11 1.458E-08
ETOT 6 0.19470113386226 -2.470E-11 1.905E-14 4.988E-11
At SCF step 6 vres2 = 4.99E-11 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.675E-16; max= 19.051E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.86293938E+00 eigvalue= -6.41835265E-01 local= -2.59395680E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.14849750E+01 Hartree= 2.57731356E+00 xc= -1.36190818E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.98316922E+00 enl0= 2.10241634E+00 enl1= -4.37130220E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.92813893E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00565675E+00 fr.nonlo= 6.33988726E+00 Ewald= 4.78860956E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1947011339E+00 Ha. Also 2DEtotal= 0.529808729150E+01 eV
(2DErelax= -7.9281389304E+00 Ha. 2DEnonrelax= 8.1228400642E+00 Ha)
( non-var. 2DEtotal : 1.9470147262E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 1.5155760394 0.0000000000
1 1 2 1 0.0973506968 0.0000000000
1 1 3 1 1.4182253426 0.0000000000
2 1 1 1 0.0973506968 0.0000000000
2 1 2 1 0.1947013936 0.0000000000
2 1 3 1 0.0973506968 0.0000000000
3 1 1 1 1.4182253426 0.0000000000
3 1 2 1 0.0973506968 0.0000000000
3 1 3 1 1.5155760394 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0067417380 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.0982150514 0.0000000000
2 1 3 1 0.0000000000 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0067417380 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.00000 0.50000
Phonon energies in Hartree :
3.702308E-04 3.702308E-04 1.413109E-03
Phonon frequencies in cm-1 :
- 8.125626E+01 8.125626E+01 3.101415E+02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 2.69815390E+01
ecut 2.50000000E+00 Hartree
etotal11 -2.0708593161E+00
etotal12 9.7467411386E-07
etotal22 7.9999498958E-01
etotal32 1.7780624715E+00
etotal42 1.5939818081E-01
etotal52 4.3148337728E-01
etotal62 1.9470113386E-01
fcart11 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart22 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart32 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart42 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart52 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart62 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden11 0
getden12 11
getden21 11
getden22 11
getden31 11
getden32 11
getden41 11
getden42 11
getden51 11
getden52 11
getden61 11
getden62 11
getwfk11 0
getwfk12 11
getwfk21 11
getwfk22 11
getwfk31 11
getwfk32 11
getwfk41 11
getwfk42 11
getwfk51 11
getwfk52 11
getwfk61 11
getwfk62 11
getwfq11 0
getwfq12 0
getwfq21 0
getwfq22 -1
getwfq31 0
getwfq32 -1
getwfq41 0
getwfq42 -1
getwfq51 0
getwfq52 -1
getwfq61 0
getwfq62 -1
iscf11 7
iscf12 7
iscf21 -2
iscf22 7
iscf31 -2
iscf32 7
iscf41 -2
iscf42 7
iscf51 -2
iscf52 7
iscf61 -2
iscf62 7
ixc 7
jdtset 11 12 21 22 31 32 41 42 51 52
61 62
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 1.52000000E+01
P mkmem 32
P mkqmem 32
P mk1mem 32
natom 1
nband 4
nbdbuf 2
ndtset 12
ngfft 12 12 12
nkpt 32
nqpt11 0
nqpt12 1
nqpt21 1
nqpt22 1
nqpt31 1
nqpt32 1
nqpt41 1
nqpt42 1
nqpt51 1
nqpt52 1
nqpt61 1
nqpt62 1
nsym 48
ntypat 1
occ 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occopt 4
optdriver11 0
optdriver12 1
optdriver21 0
optdriver22 1
optdriver31 0
optdriver32 1
optdriver41 0
optdriver42 1
optdriver51 0
optdriver52 1
optdriver61 0
optdriver62 1
prtpot11 0
prtpot12 1
prtpot21 0
prtpot22 1
prtpot31 0
prtpot32 1
prtpot41 0
prtpot42 1
prtpot51 0
prtpot52 1
prtpot61 0
prtpot62 1
qpt11 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt12 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt21 0.00000000E+00 2.50000000E-01 -2.50000000E-01
qpt22 0.00000000E+00 2.50000000E-01 -2.50000000E-01
qpt31 0.00000000E+00 0.00000000E+00 5.00000000E-01
qpt32 0.00000000E+00 0.00000000E+00 5.00000000E-01
qpt41 -2.50000000E-01 0.00000000E+00 -2.50000000E-01
qpt42 -2.50000000E-01 0.00000000E+00 -2.50000000E-01
qpt51 5.00000000E-01 2.50000000E-01 -2.50000000E-01
qpt52 5.00000000E-01 2.50000000E-01 -2.50000000E-01
qpt61 5.00000000E-01 0.00000000E+00 5.00000000E-01
qpt62 5.00000000E-01 0.00000000E+00 5.00000000E-01
rfphon11 0
rfphon12 1
rfphon21 0
rfphon22 1
rfphon31 0
rfphon32 1
rfphon41 0
rfphon42 1
rfphon51 0
rfphon52 1
rfphon61 0
rfphon62 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
strten11 2.2693444491E-04 2.2693444491E-04 2.2693444491E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten22 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten32 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten42 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten52 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten62 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs11 0.00000000E+00
tolvrs12 1.00000000E-10
tolvrs21 0.00000000E+00
tolvrs22 1.00000000E-10
tolvrs31 0.00000000E+00
tolvrs32 1.00000000E-10
tolvrs41 0.00000000E+00
tolvrs42 1.00000000E-10
tolvrs51 0.00000000E+00
tolvrs52 1.00000000E-10
tolvrs61 0.00000000E+00
tolvrs62 1.00000000E-10
tolwfr11 1.00000000E-22
tolwfr12 0.00000000E+00
tolwfr21 1.00000000E-22
tolwfr22 0.00000000E+00
tolwfr31 1.00000000E-22
tolwfr32 0.00000000E+00
tolwfr41 1.00000000E-22
tolwfr42 0.00000000E+00
tolwfr51 1.00000000E-22
tolwfr52 0.00000000E+00
tolwfr61 1.00000000E-22
tolwfr62 0.00000000E+00
tsmear 4.00000000E-02 Hartree
typat 1
wtk 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
znucl 13.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.0 wall= 2.0
================================================================================
Calculation completed.
.Delivered 126 WARNINGs and 63 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.0 wall= 2.0