abinit/tests/v5/Refs/t99.abo

279 lines
12 KiB
Plaintext

.Version 10.1.4.5 of ANADDB, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ANADDB comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h11 )
================================================================================
-outvars_anaddb: echo values of input variables ----------------------
Flags :
ifcflag 1
elphflag 1
Miscellaneous information :
eivec 1
asr 2
chneut 0
Interatomic Force Constants Inputs :
dipdip 0
dipqua 1
quadqu 1
ifcana 1
ifcout 0
Description of grid 1 :
brav 1
ngqpt 2 2 2
nqshft 1
q1shft
0.00000000E+00 0.00000000E+00 0.00000000E+00
Elphon calculation will be carried out
elphsmear 0.100000E-01
a2fsmear 0.200000E-04
mustar 0.136000E+00
nqpath 7
qpath
0.000000E+00 0.000000E+00 0.000000E+00
0.500000E+00 0.500000E+00 0.000000E+00
0.100000E+01 0.100000E+01 0.100000E+01
0.500000E+00 0.500000E+00 0.500000E+00
0.500000E+00 0.500000E+00 0.000000E+00
0.500000E+00 0.750000E+00 0.250000E+00
0.500000E+00 0.500000E+00 0.500000E+00
telphint 1
Smeared weight integration for elphon
First list of wavevector (reduced coord.) :
nph1l 1
qph1l
0.00000000E+00 0.00000000E+00 0.00000000E+00 1.000E+00
================================================================================
read the DDB information and perform some checks
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.5000000 3.5000000 G(1)= -0.1428571 0.1428571 0.1428571
R(2)= 3.5000000 0.0000000 3.5000000 G(2)= 0.1428571 -0.1428571 0.1428571
R(3)= 3.5000000 3.5000000 0.0000000 G(3)= 0.1428571 0.1428571 -0.1428571
Unit cell volume ucvol= 8.5750000E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.0000000 0.0000000 0.0000000 Ni
DDB file with 3 blocks has been read.
================================================================================
Calculation of the interatomic forces
-begin at tcpu 0.029 and twall 0.029 sec
Homogeneous q point set in the B.Z.
Grid q points : 8
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00
2) 5.00000000E-01 0.00000000E+00 0.00000000E+00
3) 0.00000000E+00 5.00000000E-01 0.00000000E+00
4) 5.00000000E-01 5.00000000E-01 0.00000000E+00
5) 0.00000000E+00 0.00000000E+00 5.00000000E-01
6) 5.00000000E-01 0.00000000E+00 5.00000000E-01
7) 0.00000000E+00 5.00000000E-01 5.00000000E-01
8) 5.00000000E-01 5.00000000E-01 5.00000000E-01
The interatomic forces have been obtained
================================================================================
Properties based on electron-phonon coupling
Found 4 symmetries that leave the perturbation invariant.
Found 4 symmetries that leave the perturbation invariant.
Found 4 symmetries that leave the perturbation invariant.
Found 2 symmetries that leave the perturbation invariant.
The set of symmetries contains only one element for this perturbation.
The set of symmetries contains only one element for this perturbation.
Found 2 symmetries that leave the perturbation invariant.
Found 2 symmetries that leave the perturbation invariant.
Found 2 symmetries that leave the perturbation invariant.
Output of the linewidths for the first point of each segment. Linewidths are given in Hartree.
Q point = 0.000000E+00 0.000000E+00 0.000000E+00 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 0.000000E+00 1.102178E-14 0.000000E+00
2 0.000000E+00 1.102178E-14 0.000000E+00
3 0.000000E+00 1.102178E-14 0.000000E+00
Q point = 5.000000E-01 5.000000E-01 0.000000E+00 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.426537E-03 9.195635E-15 9.382100E-13
2 7.426537E-03 9.195635E-15 9.382100E-13
3 1.003673E-02 1.312823E-14 7.333522E-13
Q point = 0.000000E+00 0.000000E+00 0.000000E+00 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 0.000000E+00 1.102178E-14 0.000000E+00
2 0.000000E+00 1.102178E-14 0.000000E+00
3 0.000000E+00 1.102178E-14 0.000000E+00
Q point = 5.000000E-01 5.000000E-01 5.000000E-01 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.830046E-03 6.520943E-18 5.985119E-16
2 7.830046E-03 6.520943E-18 5.985119E-16
3 1.138187E-02 3.150904E-19 1.368670E-17
Q point = 5.000000E-01 5.000000E-01 0.000000E+00 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.426537E-03 9.195635E-15 9.382100E-13
2 7.426537E-03 9.195635E-15 9.382100E-13
3 1.003673E-02 1.312823E-14 7.333522E-13
Q point = 5.000000E-01 -2.500000E-01 2.500000E-01 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 8.098458E-03 5.652012E-15 4.849416E-13
2 9.400866E-03 7.618309E-15 4.850806E-13
3 9.400866E-03 7.618309E-15 4.850806E-13
Q point = 5.000000E-01 5.000000E-01 5.000000E-01 isppol = 1
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.830046E-03 6.520943E-18 5.985119E-16
2 7.830046E-03 6.520943E-18 5.985119E-16
3 1.138187E-02 3.150904E-19 1.368670E-17
Output of the linewidths for the first point of each segment. Linewidths are given in Hartree.
Q point = 0.000000E+00 0.000000E+00 0.000000E+00 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 0.000000E+00 4.695540E-15 0.000000E+00
2 0.000000E+00 4.695540E-15 0.000000E+00
3 0.000000E+00 4.695540E-15 0.000000E+00
Q point = 5.000000E-01 5.000000E-01 0.000000E+00 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.426537E-03 7.290182E-18 2.790285E-15
2 7.426537E-03 7.290182E-18 2.790285E-15
3 1.003673E-02 9.934200E-18 2.081763E-15
Q point = 0.000000E+00 0.000000E+00 0.000000E+00 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 0.000000E+00 4.695540E-15 0.000000E+00
2 0.000000E+00 4.695540E-15 0.000000E+00
3 0.000000E+00 4.695540E-15 0.000000E+00
Q point = 5.000000E-01 5.000000E-01 5.000000E-01 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.830046E-03 7.783288E-18 2.679893E-15
2 7.830046E-03 7.783288E-18 2.679893E-15
3 1.138187E-02 3.750536E-19 6.111512E-17
Q point = 5.000000E-01 5.000000E-01 0.000000E+00 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.426537E-03 7.290182E-18 2.790285E-15
2 7.426537E-03 7.290182E-18 2.790285E-15
3 1.003673E-02 9.934200E-18 2.081763E-15
Q point = 5.000000E-01 -2.500000E-01 2.500000E-01 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 8.098458E-03 -3.842764E-16 -1.236864E-13
2 9.400866E-03 -3.829544E-16 -9.147328E-14
3 9.400866E-03 -3.829544E-16 -9.147328E-14
Q point = 5.000000E-01 5.000000E-01 5.000000E-01 isppol = 2
Mode number Frequency (Ha) Linewidth (Ha) Lambda(q,n)
1 7.830046E-03 7.783288E-18 2.679893E-15
2 7.830046E-03 7.783288E-18 2.679893E-15
3 1.138187E-02 3.750536E-19 6.111512E-17
Warning : some of the following quantities should be integrated over spin
Superconductivity : isotropic evaluation of parameters from electron-phonon coupling.
mka2f: isotropic lambda for spin 1 = 4.869282E-13
mka2f: lambda <omega^2> = 3.327862E-17
mka2f: lambda <omega^3> = 2.841851E-19
mka2f: lambda <omega^4> = 2.482242E-21
mka2f: lambda <omega^5> = 2.216529E-23
mka2f: omegalog for spin 1 = 8.103082E-03 (Ha) 2.558748E+03 (Kelvin)
Warning : some of the following quantities should be integrated over spin
Superconductivity : isotropic evaluation of parameters from electron-phonon coupling.
mka2f: isotropic lambda for spin 2 = 2.735865E-15
mka2f: lambda <omega^2> = 1.782138E-19
mka2f: lambda <omega^3> = 1.468432E-21
mka2f: lambda <omega^4> = 1.229973E-23
mka2f: lambda <omega^5> = 1.049058E-25
mka2f: omegalog for spin 2 = 7.976317E-03 (Ha) 2.518719E+03 (Kelvin)
mka2f: isotropic lambda = 4.896641E-13
mka2f: omegalog = 8.102368E-03 (Ha) 2.558522E+03 (Kelvin)
mka2f: input mustar = 1.360000E-01
-mka2f: MacMillan Tc = 1.414185E+01 (Ha) 4.465637E+06 (Kelvin)
================================================================================
Treat the first list of vectors
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00
Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector - absolute values smaller than 1.0d-7 are set to zero)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 1.01145896E-06 2.91926778E-06 3.05729730E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 1.15447580E-06 -3.05729725E-03 2.91888580E-06
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 3.05729848E-03 1.15350955E-06 -1.01256078E-06
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Analysis of degeneracies and characters (maximum tolerance=1.00E-06 a.u.)
For each vibration mode, or group of modes if degenerate,
the characters are given for each symmetry operation (see the list in the log file).
Symmetry characters of vibration mode # 1
degenerate with vibration modes # 2 to 3
3.0 -3.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0
0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0 0.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0
0.0 -0.0 0.0 -0.0 -0.0 0.0 -0.0 0.0 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0
-
- Proc. 0 individual time (sec): cpu= 0.1 wall= 0.1
================================================================================
+Total cpu time 0.114 and wall time 0.114 sec
anaddb : the run completed succesfully.