abinit/tests/v5/Refs/t24.abo

3933 lines
185 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h10 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v5_t24/t24.abi
- output file -> t24.abo
- root for input files -> t24i
- root for output files -> t24o
DATASET 11 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 11.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 6 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 5 mffmem = 1 mkmem = 2
mpw = 52 nfft = 1728 nkpt = 2
================================================================================
P This job should need less than 1.480 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.010 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 12 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 12 (RF).
intxc = 0 iscf = 7 lmnmax = 6 lnmax = 6
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 6 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 5 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 52
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.360 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.018 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 13 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 13 (RF).
intxc = 0 iscf = 7 lmnmax = 6 lnmax = 6
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 6 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 5 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 52
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.360 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.018 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 21 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 21.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 2
nsppol = 1 nsym = 6 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 52 nfft = 1728 nkpt = 2
================================================================================
P This job should need less than 1.564 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.018 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 22 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 22 (RF).
intxc = 0 iscf = 7 lmnmax = 6 lnmax = 6
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 2 nsppol = 1
nsym = 6 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 52
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.521 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.034 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 23 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 23 (RF).
intxc = 0 iscf = 7 lmnmax = 6 lnmax = 6
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 2 nsppol = 1
nsym = 6 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 52
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.521 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.034 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 31 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 31.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 9
lnmax = 9 mgfft = 12 mpssoang = 5 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 2
nsppol = 1 nsym = 6 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 52 nfft = 1728 nkpt = 2
================================================================================
P This job should need less than 1.844 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.018 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 32 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 32 (RF).
intxc = 0 iscf = 7 lmnmax = 9 lnmax = 9
mgfft = 12 mpssoang = 5 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 2 nsppol = 1
nsym = 6 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 52
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.805 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.034 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 33 : space group R3 m (#160); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 33 (RF).
intxc = 0 iscf = 7 lmnmax = 9 lnmax = 9
mgfft = 12 mpssoang = 5 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 2 nsppol = 1
nsym = 6 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 52
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.805 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.034 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 8.0000000000E+00 8.0000000000E+00 8.0000000000E+00 Bohr
amu 7.26100000E+01 1.27600000E+02
asr 0
chneut 0
ecut 2.00000000E+00 Hartree
- fftalg 512
getddk11 0
getddk12 0
getddk13 -1
getddk21 0
getddk22 0
getddk23 -1
getddk31 0
getddk32 0
getddk33 -1
getwfk11 0
getwfk12 -1
getwfk13 -2
getwfk21 0
getwfk22 -1
getwfk23 -2
getwfk31 0
getwfk32 -1
getwfk33 -2
jdtset 11 12 13 21 22 23 31 32 33
kpt11 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt12 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt13 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt21 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt22 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt23 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt31 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt32 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt33 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt11 1
kptopt12 2
kptopt13 2
kptopt21 1
kptopt22 2
kptopt23 2
kptopt31 1
kptopt32 2
kptopt33 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.56578031E+01
P mkmem11 2
P mkmem12 4
P mkmem13 4
P mkmem21 2
P mkmem22 4
P mkmem23 4
P mkmem31 2
P mkmem32 4
P mkmem33 4
P mkqmem11 2
P mkqmem12 4
P mkqmem13 4
P mkqmem21 2
P mkqmem22 4
P mkqmem23 4
P mkqmem31 2
P mkqmem32 4
P mkqmem33 4
P mk1mem11 2
P mk1mem12 4
P mk1mem13 4
P mk1mem21 2
P mk1mem22 4
P mk1mem23 4
P mk1mem31 2
P mk1mem32 4
P mk1mem33 4
natom 2
nband11 5
nband12 5
nband13 5
nband21 10
nband22 10
nband23 10
nband31 10
nband32 10
nband33 10
ndtset 9
ngfft 12 12 12
nkpt11 2
nkpt12 4
nkpt13 4
nkpt21 2
nkpt22 4
nkpt23 4
nkpt31 2
nkpt32 4
nkpt33 4
nqpt11 0
nqpt12 1
nqpt13 1
nqpt21 0
nqpt22 1
nqpt23 1
nqpt31 0
nqpt32 1
nqpt33 1
nspinor11 1
nspinor12 1
nspinor13 1
nspinor21 2
nspinor22 2
nspinor23 2
nspinor31 2
nspinor32 2
nspinor33 2
nstep 20
nsym 6
ntypat 2
occ11 2.000000 2.000000 2.000000 2.000000 2.000000
occ12 2.000000 2.000000 2.000000 2.000000 2.000000
occ13 2.000000 2.000000 2.000000 2.000000 2.000000
occ21 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ22 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ23 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ31 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ32 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ33 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
optdriver11 0
optdriver12 1
optdriver13 1
optdriver21 0
optdriver22 1
optdriver23 1
optdriver31 0
optdriver32 1
optdriver33 1
prtpot11 0
prtpot12 1
prtpot13 1
prtpot21 0
prtpot22 1
prtpot23 1
prtpot31 0
prtpot32 1
prtpot33 1
rfelfd11 0
rfelfd12 2
rfelfd13 3
rfelfd21 0
rfelfd22 2
rfelfd23 3
rfelfd31 0
rfelfd32 2
rfelfd33 3
rfphon11 0
rfphon12 0
rfphon13 1
rfphon21 0
rfphon22 0
rfphon23 1
rfphon31 0
rfphon32 0
rfphon33 1
rprim 5.6500230287E-01 0.0000000000E+00 8.2508932713E-01
-2.8250115144E-01 4.8930634748E-01 8.2508932713E-01
-2.8250115144E-01 -4.8930634748E-01 8.2508932713E-01
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
so_psp11 1 1
so_psp12 1 1
so_psp13 1 1
so_psp21 0 0
so_psp22 0 0
so_psp23 0 0
so_psp31 1 1
so_psp32 1 1
so_psp33 1 1
spgroup 160
symrel 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0
tolwfr 1.00000000E-16
typat 1 2
wtk11 0.25000 0.75000
wtk12 0.25000 0.25000 0.25000 0.25000
wtk13 0.25000 0.25000 0.25000 0.25000
wtk21 0.25000 0.75000
wtk22 0.25000 0.25000 0.25000 0.25000
wtk23 0.25000 0.25000 0.25000 0.25000
wtk31 0.25000 0.75000
wtk32 0.25000 0.25000 0.25000 0.25000
wtk33 0.25000 0.25000 0.25000 0.25000
xangst -3.1608457528E-18 -2.7546839193E-17 2.4625281537E+00
3.1608457528E-18 2.7546839193E-17 -2.4625281537E+00
xcart -5.9731328210E-18 -5.2055981901E-17 4.6535038050E+00
5.9731328210E-18 5.2055981901E-17 -4.6535038050E+00
xred 2.3500000000E-01 2.3500000000E-01 2.3500000000E-01
-2.3500000000E-01 -2.3500000000E-01 -2.3500000000E-01
znucl 32.00000 52.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 11.
chkinp: Checking input parameters for consistency, jdtset= 12.
chkinp: Checking input parameters for consistency, jdtset= 13.
chkinp: Checking input parameters for consistency, jdtset= 21.
chkinp: Checking input parameters for consistency, jdtset= 22.
chkinp: Checking input parameters for consistency, jdtset= 23.
chkinp: Checking input parameters for consistency, jdtset= 31.
chkinp: Checking input parameters for consistency, jdtset= 32.
chkinp: Checking input parameters for consistency, jdtset= 33.
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 2, nkpt: 2, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/32ge.4.hgh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/32ge.4.hgh
- Hartwigsen-Goedecker-Hutter psp for Ge, from PRB58, 3641 (1998)
- 32.00000 4.00000 10605 znucl, zion, pspdat
3 1 2 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.5400000
cc1 = 0.0000000; cc2 = 0.0000000; cc3 = 0.0000000; cc4 = 0.0000000
rrs = 0.4937430; h11s= 3.8268910; h22s= 1.1002310; h33s= -1.3442180
rrp = 0.6010640; h11p= 1.3625180; h22p= -0.6273700; h33p= 0.0000000
k11p= 0.0439810; k22p= 0.0098020; k33p= 0.0000000
rrd = 0.7883690; h11d= 0.1912050; h22d= 0.0000000; h33d= 0.0000000
k11d= 0.0029180; k22d= 0.0000000; k33d= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 7.32870734
--- l ekb(1:nproj) -->
0 -0.689243 0.540168 1.677848
1 -0.368258 0.777155
2 0.513181
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/52te.6.hgh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/52te.6.hgh
- Hartwigsen-Goedecker-Hutter psp for Te, from PRB58, 3641 (1998)
- 52.00000 6.00000 10605 znucl, zion, pspdat
3 1 2 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.5750000
cc1 = 9.3870850; cc2 = 0.0000000; cc3 = 0.0000000; cc4 = 0.0000000
rrs = 0.5564560; h11s= 2.0468900; h22s= -0.0293330; h33s= -0.8811190
rrp = 0.6152620; h11p= 1.0334780; h22p= -0.4811720; h33p= 0.0000000
k11p= 0.1729970; k22p= 0.0506410; k33p= 0.0000000
rrd = 0.8051010; h11d= 0.3174110; h22d= 0.0000000; h33d= 0.0000000
k11d= 0.0108090; k22d= 0.0000000; k33d= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 40.57059536
--- l ekb(1:nproj) -->
0 -0.712827 0.146876 1.260085
1 -0.317536 0.662771
2 0.986823
pspatm: atomic psp has been read and splines computed
4.78993027E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 47.500 47.432
================================================================================
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.581540213421 -1.158E+01 2.383E-04 2.918E+00
ETOT 2 -11.595166387997 -1.363E-02 4.448E-05 1.515E-01
ETOT 3 -11.595810966038 -6.446E-04 1.933E-05 3.838E-03
ETOT 4 -11.595847658632 -3.669E-05 4.726E-06 1.929E-04
ETOT 5 -11.595851226858 -3.568E-06 2.150E-07 4.969E-05
ETOT 6 -11.595851921301 -6.944E-07 8.216E-08 2.277E-06
ETOT 7 -11.595851983893 -6.259E-08 6.023E-09 1.091E-06
ETOT 8 -11.595852001262 -1.737E-08 1.496E-09 4.972E-09
ETOT 9 -11.595852003316 -2.054E-09 2.858E-10 8.302E-09
ETOT 10 -11.595852003752 -4.366E-10 4.097E-11 2.698E-10
ETOT 11 -11.595852003822 -6.941E-11 9.489E-12 2.268E-10
ETOT 12 -11.595852003836 -1.442E-11 1.222E-12 1.330E-11
ETOT 13 -11.595852003839 -2.192E-12 3.031E-13 1.508E-11
ETOT 14 -11.595852003839 -4.956E-13 3.511E-14 5.959E-12
ETOT 15 -11.595852003839 -5.684E-14 1.054E-14 7.169E-12
ETOT 16 -11.595852003839 -2.132E-14 1.111E-15 5.978E-12
ETOT 17 -11.595852003839 -3.553E-14 3.240E-16 9.696E-13
ETOT 18 -11.595852003839 8.882E-15 9.028E-17 4.791E-13
At SCF step 18 max residual= 9.03E-17 < tolwfr= 1.00E-16 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.31554342E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.31554342E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.49433771E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 11, }
comment : Summary of ground state results
lattice_vectors:
- [ 4.5200184, 0.0000000, 6.6007146, ]
- [ -2.2600092, 3.9144508, 6.6007146, ]
- [ -2.2600092, -3.9144508, 6.6007146, ]
lattice_lengths: [ 8.00000, 8.00000, 8.00000, ]
lattice_angles: [ 58.590, 58.590, 58.590, ] # degrees, (23, 13, 12)
lattice_volume: 3.5036705E+02
convergence: {deltae: 8.882E-15, res2: 4.791E-13, residm: 9.028E-17, diffor: null, }
etotal : -1.15958520E+01
entropy : 0.00000000E+00
fermie : 1.64589427E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 5.31554342E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.31554342E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.49433771E-03, ]
pressure_GPa: -2.5081E+01
xred :
- [ 2.3500E-01, 2.3500E-01, 2.3500E-01, Ge]
- [ -2.3500E-01, -2.3500E-01, -2.3500E-01, Te]
cartesian_forces: # hartree/bohr
- [ 1.80767366E-19, 2.24997702E-19, 4.22137312E-03, ]
- [ -1.80767366E-19, -2.24997702E-19, -4.22137312E-03, ]
force_length_stats: {min: 4.22137312E-03, max: 4.22137312E-03, mean: 4.22137312E-03, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.28046418
2 2.00000 1.65151741
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 58.822E-18; max= 90.277E-18
reduced coordinates (array xred) for 2 atoms
0.235000000000 0.235000000000 0.235000000000
-0.235000000000 -0.235000000000 -0.235000000000
rms dE/dt= 2.7864E-02; max dE/dt= 2.7866E-02; dE/dt below (all hartree)
1 -0.027862188229 -0.027862188229 -0.027862188229
2 0.027865970345 0.027865970345 0.027865970345
cartesian coordinates (angstrom) at end:
1 -0.00000000000000 -0.00000000000000 2.46252815370717
2 0.00000000000000 0.00000000000000 -2.46252815370717
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 0.00422137312454
2 -0.00000000000000 -0.00000000000000 -0.00422137312454
frms,max,avg= 2.4372109E-03 4.2213731E-03 0.000E+00 0.000E+00 -2.865E-07 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 0.21707171556796
2 -0.00000000000000 -0.00000000000000 -0.21707171556796
frms,max,avg= 1.2532641E-01 2.1707172E-01 0.000E+00 0.000E+00 -1.473E-05 e/A
length scales= 8.000000000000 8.000000000000 8.000000000000 bohr
= 4.233417668720 4.233417668720 4.233417668720 angstroms
prteigrs : about to open file t24o_DS11_EIG
Fermi (or HOMO) energy (hartree) = 0.16459 Average Vxc (hartree)= -0.33938
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 5, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.28696 -0.07407 0.05042 0.05042 0.16459
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 11, }
comment : Components of total free energy in Hartree
kinetic : 3.35002741140999E+00
hartree : 3.73030698108473E-01
xc : -2.85520109144085E+00
Ewald energy : -1.29364129740319E+01
psp_core : 1.36711780186477E+00
local_psp : -2.00989052404032E+00
non_local_psp : 1.11547667429070E+00
total_energy : -1.15958520038391E+01
total_energy_eV : -3.15539180060216E+02
band_energy : -5.20415725517268E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.31554342E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.31554342E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.49433771E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.5081E+01 GPa]
- sigma(1 1)= 1.56388661E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.56388661E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.39649258E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 2, nkpt: 4, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -7.9880231385030 -7.988E+00 2.022E-01 0.000E+00
ETOT 2 -8.1040780258488 -1.161E-01 5.253E-03 0.000E+00
ETOT 3 -8.1118445190395 -7.766E-03 4.897E-04 0.000E+00
ETOT 4 -8.1130985864819 -1.254E-03 5.607E-05 0.000E+00
ETOT 5 -8.1133042472644 -2.057E-04 1.320E-05 0.000E+00
ETOT 6 -8.1133390408633 -3.479E-05 1.507E-06 0.000E+00
ETOT 7 -8.1133449477924 -5.907E-06 3.839E-07 0.000E+00
ETOT 8 -8.1133459631507 -1.015E-06 4.346E-08 0.000E+00
ETOT 9 -8.1133461380255 -1.749E-07 1.144E-08 0.000E+00
ETOT 10 -8.1133461684217 -3.040E-08 1.289E-09 0.000E+00
ETOT 11 -8.1133461737117 -5.290E-09 3.475E-10 0.000E+00
ETOT 12 -8.1133461746387 -9.270E-10 3.905E-11 0.000E+00
ETOT 13 -8.1133461748012 -1.625E-10 1.072E-11 0.000E+00
ETOT 14 -8.1133461748297 -2.858E-11 1.202E-12 0.000E+00
ETOT 15 -8.1133461748347 -4.984E-12 3.337E-13 0.000E+00
ETOT 16 -8.1133461748358 -1.032E-12 3.736E-14 0.000E+00
ETOT 17 -8.1133461748359 -1.243E-13 1.045E-14 0.000E+00
ETOT 18 -8.1133461748359 -3.553E-15 1.168E-15 0.000E+00
ETOT 19 -8.1133461748359 -4.263E-14 3.282E-16 0.000E+00
ETOT 20 -8.1133461748360 -2.842E-14 7.045E-17 0.000E+00
At SCF step 20 max residual= 7.04E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.387E-18; max= 70.447E-18
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 7.9826996976E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 5, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06348 -0.18549 0.00977 0.00977 0.05200
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.51350413E+01 eigvalue= -1.58551634E+01 local= -5.03050854E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.53186029E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.13855360E+00 enl1= -9.08089397E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.11334617E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8113346175E+01 Ha. Also 2DEtotal= -0.220775377153E+03 eV
( non-var. 2DEtotal : -8.1133461430E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -7.9879158594121 -7.988E+00 2.022E-01 0.000E+00
ETOT 2 -8.1040773222852 -1.162E-01 5.253E-03 0.000E+00
ETOT 3 -8.1118438083591 -7.766E-03 4.897E-04 0.000E+00
ETOT 4 -8.1130978750460 -1.254E-03 5.607E-05 0.000E+00
ETOT 5 -8.1133035356329 -2.057E-04 1.320E-05 0.000E+00
ETOT 6 -8.1133383291817 -3.479E-05 1.507E-06 0.000E+00
ETOT 7 -8.1133442360994 -5.907E-06 3.839E-07 0.000E+00
ETOT 8 -8.1133452514552 -1.015E-06 4.346E-08 0.000E+00
ETOT 9 -8.1133454263294 -1.749E-07 1.144E-08 0.000E+00
ETOT 10 -8.1133454567256 -3.040E-08 1.289E-09 0.000E+00
ETOT 11 -8.1133454620156 -5.290E-09 3.475E-10 0.000E+00
ETOT 12 -8.1133454629426 -9.270E-10 3.905E-11 0.000E+00
ETOT 13 -8.1133454631050 -1.625E-10 1.072E-11 0.000E+00
ETOT 14 -8.1133454631337 -2.872E-11 1.202E-12 0.000E+00
ETOT 15 -8.1133454631387 -4.913E-12 3.337E-13 0.000E+00
ETOT 16 -8.1133454631395 -8.491E-13 3.736E-14 0.000E+00
ETOT 17 -8.1133454631397 -2.007E-13 1.045E-14 0.000E+00
ETOT 18 -8.1133454631397 4.263E-14 1.168E-15 0.000E+00
ETOT 19 -8.1133454631397 -1.599E-14 3.282E-16 0.000E+00
ETOT 20 -8.1133454631398 -8.704E-14 9.018E-17 0.000E+00
At SCF step 20 max residual= 9.02E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.478E-18; max= 90.182E-18
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 7.9826989785E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 5, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06348 -0.18549 0.00977 0.00977 0.05200
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.51350249E+01 eigvalue= -1.58551586E+01 local= -5.03050724E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.53186015E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.13855145E+00 enl1= -9.08089359E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.11334546E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8113345463E+01 Ha. Also 2DEtotal= -0.220775357786E+03 eV
( non-var. 2DEtotal : -8.1133454340E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 12, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -7.9880227966822 -7.988E+00 2.022E-01 0.000E+00
ETOT 2 -8.1040776375059 -1.161E-01 5.253E-03 0.000E+00
ETOT 3 -8.1118441252138 -7.766E-03 4.897E-04 0.000E+00
ETOT 4 -8.1130981918434 -1.254E-03 5.607E-05 0.000E+00
ETOT 5 -8.1133038525067 -2.057E-04 1.320E-05 0.000E+00
ETOT 6 -8.1133386460886 -3.479E-05 1.507E-06 0.000E+00
ETOT 7 -8.1133445530155 -5.907E-06 3.839E-07 0.000E+00
ETOT 8 -8.1133455683734 -1.015E-06 4.346E-08 0.000E+00
ETOT 9 -8.1133457432482 -1.749E-07 1.144E-08 0.000E+00
ETOT 10 -8.1133457736445 -3.040E-08 1.289E-09 0.000E+00
ETOT 11 -8.1133457789345 -5.290E-09 3.475E-10 0.000E+00
ETOT 12 -8.1133457798614 -9.269E-10 3.905E-11 0.000E+00
ETOT 13 -8.1133457800239 -1.625E-10 1.072E-11 0.000E+00
ETOT 14 -8.1133457800525 -2.857E-11 1.202E-12 0.000E+00
ETOT 15 -8.1133457800576 -5.132E-12 3.337E-13 0.000E+00
ETOT 16 -8.1133457800586 -9.148E-13 3.736E-14 0.000E+00
ETOT 17 -8.1133457800587 -1.101E-13 1.045E-14 0.000E+00
ETOT 18 -8.1133457800587 -6.217E-14 1.168E-15 0.000E+00
ETOT 19 -8.1133457800587 3.908E-14 3.282E-16 0.000E+00
ETOT 20 -8.1133457800586 4.086E-14 7.045E-17 0.000E+00
At SCF step 20 max residual= 7.04E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.386E-18; max= 70.447E-18
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 7.9826993055E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 5, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06348 -0.18549 0.00977 0.00977 0.05200
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.51350354E+01 eigvalue= -1.58551618E+01 local= -5.03050806E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.53186021E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.13855274E+00 enl1= -9.08089360E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.11334578E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8113345780E+01 Ha. Also 2DEtotal= -0.220775366410E+03 eV
( non-var. 2DEtotal : -8.1133457482E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 4.4876414717 0.0000000000
1 2 0.0000002176 0.0000000000
1 3 0.0000007765 0.0000000000
2 1 0.0000002176 0.0000000000
2 2 4.4876409400 0.0000000000
2 3 -0.0000006354 0.0000000000
3 1 0.0000007765 0.0000000000
3 2 -0.0000006354 0.0000000000
3 3 19.1403390082 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 13 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 13, }
dimensions: {natom: 2, nkpt: 4, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getddk/=0, take file _1WF from output of DATASET 12.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 17.918111769835 -2.493E+01 3.400E-01 1.527E+03
ETOT 2 1.4472964630126 -1.647E+01 7.353E-02 4.626E+01
ETOT 3 0.75930929384542 -6.880E-01 9.740E-03 2.105E+00
ETOT 4 0.71633452548830 -4.297E-02 1.098E-03 3.829E-01
ETOT 5 0.71259172291909 -3.743E-03 1.539E-04 2.518E-01
ETOT 6 0.70935732130566 -3.234E-03 1.855E-05 5.348E-03
ETOT 7 0.70927104382144 -8.628E-05 1.202E-05 1.276E-03
ETOT 8 0.70926064624680 -1.040E-05 2.581E-07 7.657E-04
ETOT 9 0.70925239916071 -8.247E-06 2.187E-08 7.702E-07
ETOT 10 0.70925237696494 -2.220E-08 2.392E-09 4.654E-07
ETOT 11 0.70925237234839 -4.617E-09 7.590E-12 1.356E-07
ETOT 12 0.70925237087357 -1.475E-09 1.667E-11 2.469E-09
ETOT 13 0.70925237083602 -3.755E-11 5.740E-13 7.469E-10
ETOT 14 0.70925237082706 -8.960E-12 5.663E-14 3.654E-12
ETOT 15 0.70925237082684 -2.203E-13 8.412E-15 1.579E-12
ETOT 16 0.70925237082678 -5.684E-14 1.102E-15 1.225E-13
ETOT 17 0.70925237082678 0.000E+00 2.331E-16 1.825E-14
ETOT 18 0.70925237082679 1.421E-14 7.311E-17 5.152E-15
At SCF step 18 max residual= 7.31E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t24o_DS12_1WF7
-open ddk wf file :t24o_DS12_1WF8
-open ddk wf file :t24o_DS12_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.686E-18; max= 73.113E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.74090048E+01 eigvalue= -5.51154812E+00 local= -4.37753739E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.25981983E+01 Hartree= 1.22429596E+01 xc= -4.92458119E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.66962587E+01 enl1= -5.16752414E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.21367198E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 6.30688328E+00 fr.nonlo= 1.87677024E+01 Ewald= 1.77713865E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7092523708E+00 Ha. Also 2DEtotal= 0.192997385162E+02 eV
(2DErelax= -4.2136719760E+01 Ha. 2DEnonrelax= 4.2845972131E+01 Ha)
( non-var. 2DEtotal : 7.0925230170E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 36.207278626262 -6.624E+01 2.970E-01 3.282E+03
ETOT 2 2.0926640572419 -3.411E+01 2.146E-01 9.627E+01
ETOT 3 0.77989518812367 -1.313E+00 2.050E-02 3.042E+00
ETOT 4 0.71895674361056 -6.094E-02 3.436E-03 4.476E-01
ETOT 5 0.71185497650629 -7.102E-03 3.196E-04 2.118E-01
ETOT 6 0.70882748456273 -3.027E-03 6.250E-05 8.620E-03
ETOT 7 0.70866052324538 -1.670E-04 7.332E-06 5.327E-04
ETOT 8 0.70863771371872 -2.281E-05 5.638E-07 3.329E-05
ETOT 9 0.70863512592767 -2.588E-06 1.672E-07 5.913E-06
ETOT 10 0.70863468243506 -4.435E-07 2.132E-08 1.975E-06
ETOT 11 0.70863461092725 -7.151E-08 3.340E-09 5.254E-07
ETOT 12 0.70863459975342 -1.117E-08 3.384E-10 3.198E-08
ETOT 13 0.70863459847382 -1.280E-09 8.024E-11 1.378E-08
ETOT 14 0.70863459824301 -2.308E-10 1.325E-12 1.771E-09
ETOT 15 0.70863459820646 -3.655E-11 2.776E-12 2.670E-10
ETOT 16 0.70863459820376 -2.700E-12 3.224E-14 5.714E-11
ETOT 17 0.70863459820309 -6.679E-13 1.748E-15 7.173E-12
ETOT 18 0.70863459820320 1.137E-13 9.978E-17 1.564E-12
At SCF step 18 max residual= 9.98E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t24o_DS12_1WF7
-open ddk wf file :t24o_DS12_1WF8
-open ddk wf file :t24o_DS12_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.698E-18; max= 99.781E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.33917320E+02 eigvalue= -7.19879195E+00 local= -7.15554981E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.47223207E+02 Hartree= 2.72232518E+01 xc= -1.12365535E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.05918311E+01 enl1= -5.62599123E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.01741559E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 5.76149287E+01 fr.nonlo= 2.70638790E+01 Ewald= 1.77713865E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7086345982E+00 Ha. Also 2DEtotal= 0.192829280682E+02 eV
(2DErelax= -1.0174155947E+02 Ha. 2DEnonrelax= 1.0245019407E+02 Ha)
( non-var. 2DEtotal : 7.0863447259E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t24o_DS12_1WF7
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3224.4614468591 -3.224E+03 5.060E+01 5.028E+04
ETOT 2 -3817.0755362418 -5.926E+02 1.212E+01 3.321E+02
ETOT 3 -3834.7952989815 -1.772E+01 7.314E-01 7.089E+01
ETOT 4 -3836.5048916882 -1.710E+00 1.198E-01 1.646E+01
ETOT 5 -3836.7839598329 -2.791E-01 5.640E-03 4.836E-01
ETOT 6 -3836.7970694419 -1.311E-02 4.422E-04 3.769E-02
ETOT 7 -3836.7987278898 -1.658E-03 7.248E-05 4.844E-03
ETOT 8 -3836.7990167254 -2.888E-04 1.086E-05 5.203E-04
ETOT 9 -3836.7990553033 -3.858E-05 1.521E-06 3.714E-05
ETOT 10 -3836.7990614937 -6.190E-06 3.387E-07 1.420E-05
ETOT 11 -3836.7990624965 -1.003E-06 2.110E-08 1.193E-06
ETOT 12 -3836.7990626153 -1.188E-07 2.087E-08 3.128E-06
ETOT 13 -3836.7990626497 -3.443E-08 1.317E-10 1.247E-06
ETOT 14 -3836.7990626617 -1.196E-08 2.228E-10 4.835E-08
ETOT 15 -3836.7990626622 -5.648E-10 2.394E-12 1.416E-08
ETOT 16 -3836.7990626624 -1.287E-10 2.554E-13 3.044E-09
ETOT 17 -3836.7990626623 9.686E-11 8.736E-14 4.682E-11
ETOT 18 -3836.7990626624 -1.369E-10 4.026E-15 5.238E-12
ETOT 19 -3836.7990626624 9.550E-12 5.240E-15 6.074E-12
ETOT 20 -3836.7990626622 1.464E-10 6.590E-16 1.274E-14
-open ddk wf file :t24o_DS12_1WF7
-open ddk wf file :t24o_DS12_1WF8
-open ddk wf file :t24o_DS12_1WF9
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 6.590E-16 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 72.616E-18; max= 65.904E-17
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 8.66202422E+04 eigvalue= -2.51907735E+04 local= -7.06249543E+04
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -7.67359812E+03 Hartree= 1.15959226E+03 xc= -7.61490931E+02
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.26341834E+04 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.83679906E+03
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3836799063E+04 Ha. Also 2DEtotal= -0.104404612088E+06 eV
( non-var. 2DEtotal : -3.8367990606E+03 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.7092523017 0.0000000000
1 1 2 1 0.7203940181 0.0000000000
1 1 3 1 0.7203940181 0.0000000000
1 1 1 2 -0.7092541493 0.0000000000
1 1 2 2 -0.7203949489 0.0000000000
1 1 3 2 -0.7203949489 -0.0000000000
1 1 1 4 42.9395916336 0.0000000000
1 1 2 4 -25.5431999185 0.0000000000
1 1 3 4 -25.5431999185 0.0000000000
2 1 1 1 0.7203940181 0.0000000000
2 1 2 1 0.7092523017 0.0000000000
2 1 3 1 0.7203940181 0.0000000000
2 1 1 2 -0.7203949489 0.0000000000
2 1 2 2 -0.7092541493 0.0000000000
2 1 3 2 -0.7203949489 -0.0000000000
2 1 1 4 -25.5431999185 0.0000000000
2 1 2 4 42.9395916336 0.0000000000
2 1 3 4 -25.5431999185 0.0000000000
3 1 1 1 0.7203940181 0.0000000000
3 1 2 1 0.7203940181 0.0000000000
3 1 3 1 0.7092523017 0.0000000000
3 1 1 2 -0.7203949489 -0.0000000000
3 1 2 2 -0.7203949489 -0.0000000000
3 1 3 2 -0.7092541493 -0.0000000000
3 1 1 4 -25.5431999185 0.0000000000
3 1 2 4 -25.5431999185 0.0000000000
3 1 3 4 42.9395916336 0.0000000000
1 2 1 1 -0.7092542922 -0.0000000000
1 2 2 1 -0.7203949489 -0.0000000000
1 2 3 1 -0.7203949489 0.0000000000
1 2 1 2 0.7086344726 0.0000000000
1 2 2 2 0.7196440047 0.0000000000
1 2 3 2 0.7196440047 0.0000000000
1 2 1 4 -90.0356418776 0.0000000000
1 2 2 4 30.0103540465 0.0000000000
1 2 3 4 30.0103540465 0.0000000000
2 2 1 1 -0.7203949489 -0.0000000000
2 2 2 1 -0.7092542922 -0.0000000000
2 2 3 1 -0.7203949489 0.0000000000
2 2 1 2 0.7196440047 0.0000000000
2 2 2 2 0.7086344726 0.0000000000
2 2 3 2 0.7196440047 0.0000000000
2 2 1 4 30.0103540465 0.0000000000
2 2 2 4 -90.0356418776 0.0000000000
2 2 3 4 30.0103540465 0.0000000000
3 2 1 1 -0.7203949489 0.0000000000
3 2 2 1 -0.7203949489 0.0000000000
3 2 3 1 -0.7092542922 0.0000000000
3 2 1 2 0.7196440047 0.0000000000
3 2 2 2 0.7196440047 0.0000000000
3 2 3 2 0.7086344726 0.0000000000
3 2 1 4 30.0103540465 0.0000000000
3 2 2 4 30.0103540465 0.0000000000
3 2 3 4 -90.0356418776 0.0000000000
1 4 1 1 42.9395923105 0.0000000000
1 4 2 1 -25.5431999185 0.0000000000
1 4 3 1 -25.5431999185 0.0000000000
1 4 1 2 -90.0356380842 0.0000000000
1 4 2 2 30.0103540465 0.0000000000
1 4 3 2 30.0103540465 0.0000000000
1 4 1 4 -3836.7990606285 0.0000000000
1 4 2 4 1890.5496041884 0.0000000000
1 4 3 4 1890.5496041884 0.0000000000
2 4 1 1 -25.5431999185 0.0000000000
2 4 2 1 42.9395923105 0.0000000000
2 4 3 1 -25.5431999185 0.0000000000
2 4 1 2 30.0103540465 0.0000000000
2 4 2 2 -90.0356380842 0.0000000000
2 4 3 2 30.0103540465 0.0000000000
2 4 1 4 1890.5496041884 0.0000000000
2 4 2 4 -3836.7990606285 0.0000000000
2 4 3 4 1890.5496041884 0.0000000000
3 4 1 1 -25.5431999185 0.0000000000
3 4 2 1 -25.5431999185 0.0000000000
3 4 3 1 42.9395923105 0.0000000000
3 4 1 2 30.0103540465 0.0000000000
3 4 2 2 30.0103540465 0.0000000000
3 4 3 2 -90.0356380842 0.0000000000
3 4 1 4 1890.5496041884 0.0000000000
3 4 2 4 1890.5496041884 0.0000000000
3 4 3 4 -3836.7990606285 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0003635636 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0003635337 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 -0.0003635636 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 2 2 0.0003635337 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0164491492 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 -0.0164491776 0.0000000000
1 2 1 1 0.0003635291 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
1 2 1 2 -0.0003592503 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 0.0003635291 -0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 -0.0003592503 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.0164491787 -0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 0.0164329463 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 160.4601492040 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 160.4601492040 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 7.6143029891 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 14.8993747922 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 -13.1059136497 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 14.8993747922 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -13.1059136497 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 3 4 2.7033952040 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 1.2229749216 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 14.8993749000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 14.8993749000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 2.7033953117 0.0000000000
1 4 1 2 -13.1059130460 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -13.1059130460 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
3 4 3 2 1.2229755253 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.559676E-05 -6.559676E-05 -6.675372E-06 3.414735E-06 3.414736E-06
4.415532E-04
Phonon frequencies in cm-1 :
- -1.439683E+01 -1.439683E+01 -1.465075E+00 7.494478E-01 7.494480E-01
- 9.690973E+01
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.559676E-05 -6.675372E-06 -1.770963E-06 3.414735E-06 4.415532E-04
7.318867E-04
Phonon frequencies in cm-1 :
- -1.439683E+01 -1.465075E+00 -3.886814E-01 7.494478E-01 9.690973E+01
- 1.606306E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
-6.559676E-05 -6.675372E-06 -1.770964E-06 3.414736E-06 4.415532E-04
7.318867E-04
Phonon frequencies in cm-1 :
- -1.439683E+01 -1.465075E+00 -3.886817E-01 7.494480E-01 9.690973E+01
- 1.606306E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
-6.559676E-05 -6.559676E-05 3.414735E-06 3.414736E-06 3.175683E-04
6.200411E-04
Phonon frequencies in cm-1 :
- -1.439683E+01 -1.439683E+01 7.494478E-01 7.494480E-01 6.969818E+01
- 1.360833E+02
================================================================================
== DATASET 21 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 21, }
dimensions: {natom: 2, nkpt: 2, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 47.500 47.432
================================================================================
--- !BeginCycle
iteration_state: {dtset: 21, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.580048327798 -1.158E+01 6.810E-04 2.961E+00
ETOT 2 -11.595167609216 -1.512E-02 7.143E-05 1.460E-01
ETOT 3 -11.595809837243 -6.422E-04 2.489E-05 4.262E-03
ETOT 4 -11.595848113142 -3.828E-05 4.472E-06 1.498E-04
ETOT 5 -11.595851507023 -3.394E-06 1.195E-07 4.903E-06
ETOT 6 -11.595851928874 -4.219E-07 9.209E-08 2.077E-07
ETOT 7 -11.595851992197 -6.332E-08 2.492E-09 6.632E-08
ETOT 8 -11.595852002209 -1.001E-08 1.478E-09 2.361E-09
ETOT 9 -11.595852003576 -1.367E-09 7.041E-11 2.821E-09
ETOT 10 -11.595852003802 -2.256E-10 4.077E-11 1.130E-11
ETOT 11 -11.595852003833 -3.092E-11 1.593E-12 9.095E-11
ETOT 12 -11.595852003838 -5.622E-12 7.534E-13 7.530E-12
ETOT 13 -11.595852003839 -7.372E-13 6.277E-14 5.377E-12
ETOT 14 -11.595852003839 -1.634E-13 2.753E-14 2.133E-12
ETOT 15 -11.595852003839 -2.665E-14 2.479E-15 1.069E-12
ETOT 16 -11.595852003839 -1.599E-14 9.091E-16 5.631E-14
ETOT 17 -11.595852003839 7.105E-15 1.274E-16 6.010E-14
ETOT 18 -11.595852003839 -1.421E-14 6.708E-17 8.470E-15
At SCF step 18 max residual= 6.71E-17 < tolwfr= 1.00E-16 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.31554310E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.31554310E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.49433773E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 21, }
comment : Summary of ground state results
lattice_vectors:
- [ 4.5200184, 0.0000000, 6.6007146, ]
- [ -2.2600092, 3.9144508, 6.6007146, ]
- [ -2.2600092, -3.9144508, 6.6007146, ]
lattice_lengths: [ 8.00000, 8.00000, 8.00000, ]
lattice_angles: [ 58.590, 58.590, 58.590, ] # degrees, (23, 13, 12)
lattice_volume: 3.5036705E+02
convergence: {deltae: -1.421E-14, res2: 8.470E-15, residm: 6.708E-17, diffor: null, }
etotal : -1.15958520E+01
entropy : 0.00000000E+00
fermie : 1.64589428E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 5.31554310E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.31554310E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.49433773E-03, ]
pressure_GPa: -2.5081E+01
xred :
- [ 2.3500E-01, 2.3500E-01, 2.3500E-01, Ge]
- [ -2.3500E-01, -2.3500E-01, -2.3500E-01, Te]
cartesian_forces: # hartree/bohr
- [ -7.36362422E-20, -2.51244320E-19, 4.22138863E-03, ]
- [ 7.36362422E-20, 2.51244320E-19, -4.22138863E-03, ]
force_length_stats: {min: 4.22138863E-03, max: 4.22138863E-03, mean: 4.22138863E-03, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.28046419
2 2.00000 1.65151742
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.890E-18; max= 67.079E-18
reduced coordinates (array xred) for 2 atoms
0.235000000000 0.235000000000 0.235000000000
-0.235000000000 -0.235000000000 -0.235000000000
rms dE/dt= 2.7864E-02; max dE/dt= 2.7866E-02; dE/dt below (all hartree)
1 -0.027862288854 -0.027862288854 -0.027862288854
2 0.027866074470 0.027866074470 0.027866074470
cartesian coordinates (angstrom) at end:
1 -0.00000000000000 -0.00000000000000 2.46252815370717
2 0.00000000000000 0.00000000000000 -2.46252815370717
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 0.00422138863424
2 0.00000000000000 0.00000000000000 -0.00422138863424
frms,max,avg= 2.4372199E-03 4.2213886E-03 0.000E+00 0.000E+00 -2.868E-07 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 0.21707251310886
2 0.00000000000000 0.00000000000000 -0.21707251310886
frms,max,avg= 1.2532687E-01 2.1707251E-01 0.000E+00 0.000E+00 -1.475E-05 e/A
length scales= 8.000000000000 8.000000000000 8.000000000000 bohr
= 4.233417668720 4.233417668720 4.233417668720 angstroms
prteigrs : about to open file t24o_DS21_EIG
Fermi (or HOMO) energy (hartree) = 0.16459 Average Vxc (hartree)= -0.33938
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.28696 -0.28696 -0.07407 -0.07407 0.05042 0.05042 0.05042 0.05042
0.16459 0.16459
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 21, }
comment : Components of total free energy in Hartree
kinetic : 3.35002741369485E+00
hartree : 3.73030690358271E-01
xc : -2.85520109105767E+00
Ewald energy : -1.29364129740319E+01
psp_core : 1.36711780186477E+00
local_psp : -2.00989051904446E+00
non_local_psp : 1.11547667437698E+00
total_energy : -1.15958520038391E+01
total_energy_eV : -3.15539180060217E+02
band_energy : -5.20415727136958E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.31554310E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.31554310E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.49433773E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.5081E+01 GPa]
- sigma(1 1)= 1.56388651E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.56388651E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.39649266E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 22 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 22, }
dimensions: {natom: 2, nkpt: 4, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 21.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 22, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -7.9880230882575 -7.988E+00 2.022E-01 0.000E+00
ETOT 2 -8.1040779665080 -1.161E-01 5.253E-03 0.000E+00
ETOT 3 -8.1118444582612 -7.766E-03 4.897E-04 0.000E+00
ETOT 4 -8.1130985253556 -1.254E-03 5.607E-05 0.000E+00
ETOT 5 -8.1133041860588 -2.057E-04 1.320E-05 0.000E+00
ETOT 6 -8.1133389796404 -3.479E-05 1.507E-06 0.000E+00
ETOT 7 -8.1133448865659 -5.907E-06 3.839E-07 0.000E+00
ETOT 8 -8.1133459019234 -1.015E-06 4.346E-08 0.000E+00
ETOT 9 -8.1133460767980 -1.749E-07 1.144E-08 0.000E+00
ETOT 10 -8.1133461071943 -3.040E-08 1.289E-09 0.000E+00
ETOT 11 -8.1133461124843 -5.290E-09 3.475E-10 0.000E+00
ETOT 12 -8.1133461134112 -9.269E-10 3.905E-11 0.000E+00
ETOT 13 -8.1133461135737 -1.625E-10 1.072E-11 0.000E+00
ETOT 14 -8.1133461136024 -2.867E-11 1.202E-12 0.000E+00
ETOT 15 -8.1133461136074 -5.016E-12 3.337E-13 0.000E+00
ETOT 16 -8.1133461136082 -8.029E-13 3.736E-14 0.000E+00
ETOT 17 -8.1133461136084 -2.380E-13 1.045E-14 0.000E+00
ETOT 18 -8.1133461136085 -3.908E-14 1.168E-15 0.000E+00
ETOT 19 -8.1133461136085 2.665E-14 3.282E-16 0.000E+00
ETOT 20 -8.1133461136085 -2.842E-14 7.045E-17 0.000E+00
At SCF step 20 max residual= 7.04E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.328E-18; max= 70.447E-18
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 7.9826996377E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06348 0.06348 -0.18549 -0.18549 0.00977 0.00977 0.00977 0.00977
0.05200 0.05200
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.51350411E+01 eigvalue= -1.58551633E+01 local= -5.03050854E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.53186028E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.13855370E+00 enl1= -9.08089390E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.11334611E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8113346114E+01 Ha. Also 2DEtotal= -0.220775375486E+03 eV
( non-var. 2DEtotal : -8.1133460818E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 22, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -7.9879166090899 -7.988E+00 2.022E-01 0.000E+00
ETOT 2 -8.1040780877876 -1.162E-01 5.253E-03 0.000E+00
ETOT 3 -8.1118445745489 -7.766E-03 4.897E-04 0.000E+00
ETOT 4 -8.1130986416980 -1.254E-03 5.607E-05 0.000E+00
ETOT 5 -8.1133043024274 -2.057E-04 1.320E-05 0.000E+00
ETOT 6 -8.1133390960129 -3.479E-05 1.507E-06 0.000E+00
ETOT 7 -8.1133450029389 -5.907E-06 3.839E-07 0.000E+00
ETOT 8 -8.1133460182965 -1.015E-06 4.346E-08 0.000E+00
ETOT 9 -8.1133461931712 -1.749E-07 1.144E-08 0.000E+00
ETOT 10 -8.1133462235673 -3.040E-08 1.289E-09 0.000E+00
ETOT 11 -8.1133462288574 -5.290E-09 3.475E-10 0.000E+00
ETOT 12 -8.1133462297843 -9.269E-10 3.905E-11 0.000E+00
ETOT 13 -8.1133462299468 -1.626E-10 1.072E-11 0.000E+00
ETOT 14 -8.1133462299754 -2.860E-11 1.202E-12 0.000E+00
ETOT 15 -8.1133462299805 -5.041E-12 3.337E-13 0.000E+00
ETOT 16 -8.1133462299813 -8.509E-13 3.736E-14 0.000E+00
ETOT 17 -8.1133462299816 -2.682E-13 1.045E-14 0.000E+00
ETOT 18 -8.1133462299816 3.375E-14 1.168E-15 0.000E+00
ETOT 19 -8.1133462299815 1.776E-14 3.282E-16 0.000E+00
ETOT 20 -8.1133462299816 -8.349E-14 9.018E-17 0.000E+00
At SCF step 20 max residual= 9.02E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.420E-18; max= 90.184E-18
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 7.9826997570E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06348 0.06348 -0.18549 -0.18549 0.00977 0.00977 0.00977 0.00977
0.05200 0.05200
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.51350432E+01 eigvalue= -1.58551639E+01 local= -5.03050871E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.53186030E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.13855400E+00 enl1= -9.08089399E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.11334623E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8113346230E+01 Ha. Also 2DEtotal= -0.220775378653E+03 eV
( non-var. 2DEtotal : -8.1133462008E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 22, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -7.9880233238079 -7.988E+00 2.022E-01 0.000E+00
ETOT 2 -8.1040782079651 -1.161E-01 5.253E-03 0.000E+00
ETOT 3 -8.1118446995084 -7.766E-03 4.897E-04 0.000E+00
ETOT 4 -8.1130987667240 -1.254E-03 5.607E-05 0.000E+00
ETOT 5 -8.1133044274765 -2.057E-04 1.320E-05 0.000E+00
ETOT 6 -8.1133392210721 -3.479E-05 1.507E-06 0.000E+00
ETOT 7 -8.1133451280009 -5.907E-06 3.839E-07 0.000E+00
ETOT 8 -8.1133461433591 -1.015E-06 4.346E-08 0.000E+00
ETOT 9 -8.1133463182339 -1.749E-07 1.144E-08 0.000E+00
ETOT 10 -8.1133463486302 -3.040E-08 1.289E-09 0.000E+00
ETOT 11 -8.1133463539203 -5.290E-09 3.475E-10 0.000E+00
ETOT 12 -8.1133463548471 -9.268E-10 3.905E-11 0.000E+00
ETOT 13 -8.1133463550096 -1.625E-10 1.072E-11 0.000E+00
ETOT 14 -8.1133463550384 -2.872E-11 1.202E-12 0.000E+00
ETOT 15 -8.1133463550434 -5.032E-12 3.337E-13 0.000E+00
ETOT 16 -8.1133463550442 -8.278E-13 3.736E-14 0.000E+00
ETOT 17 -8.1133463550444 -1.457E-13 1.045E-14 0.000E+00
ETOT 18 -8.1133463550444 -8.704E-14 1.168E-15 0.000E+00
ETOT 19 -8.1133463550444 3.020E-14 3.282E-16 0.000E+00
ETOT 20 -8.1133463550444 1.243E-14 7.045E-17 0.000E+00
At SCF step 20 max residual= 7.04E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.328E-18; max= 70.447E-18
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 7.9826998844E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06348 0.06348 -0.18549 -0.18549 0.00977 0.00977 0.00977 0.00977
0.05200 0.05200
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.51350471E+01 eigvalue= -1.58551651E+01 local= -5.03050902E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.53186032E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.13855450E+00 enl1= -9.08089399E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.11334636E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8113346355E+01 Ha. Also 2DEtotal= -0.220775382056E+03 eV
( non-var. 2DEtotal : -8.1133463232E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 2.2438208937 0.0000000000
1 2 0.0000000401 0.0000000000
1 3 -0.0000001374 0.0000000000
2 1 0.0000000401 0.0000000000
2 2 2.2438209878 0.0000000000
2 3 -0.0000001171 0.0000000000
3 1 -0.0000001374 0.0000000000
3 2 -0.0000001171 0.0000000000
3 3 9.5701709449 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 23 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 23, }
dimensions: {natom: 2, nkpt: 4, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 21.
mkfilename : getddk/=0, take file _1WF from output of DATASET 22.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 17.918112223695 -2.493E+01 3.400E-01 1.527E+03
ETOT 2 1.4472968226933 -1.647E+01 7.353E-02 4.626E+01
ETOT 3 0.75930957966297 -6.880E-01 9.740E-03 2.105E+00
ETOT 4 0.71633479919137 -4.297E-02 1.098E-03 3.829E-01
ETOT 5 0.71259199556270 -3.743E-03 1.539E-04 2.518E-01
ETOT 6 0.70935759280736 -3.234E-03 1.855E-05 5.348E-03
ETOT 7 0.70927131529515 -8.628E-05 1.202E-05 1.276E-03
ETOT 8 0.70926091771049 -1.040E-05 2.581E-07 7.657E-04
ETOT 9 0.70925267062570 -8.247E-06 2.187E-08 7.702E-07
ETOT 10 0.70925264843000 -2.220E-08 2.392E-09 4.654E-07
ETOT 11 0.70925264381437 -4.616E-09 7.591E-12 1.357E-07
ETOT 12 0.70925264233889 -1.475E-09 1.669E-11 2.483E-09
ETOT 13 0.70925264230127 -3.762E-11 5.744E-13 7.471E-10
ETOT 14 0.70925264229209 -9.187E-12 5.659E-14 3.659E-12
ETOT 15 0.70925264229211 2.132E-14 8.356E-15 1.590E-12
ETOT 16 0.70925264229198 -1.279E-13 1.105E-15 1.229E-13
ETOT 17 0.70925264229193 -4.974E-14 2.329E-16 1.822E-14
ETOT 18 0.70925264229193 0.000E+00 7.367E-17 5.142E-15
At SCF step 18 max residual= 7.37E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t24o_DS22_1WF7
-open ddk wf file :t24o_DS22_1WF8
-open ddk wf file :t24o_DS22_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.750E-18; max= 73.667E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.74090075E+01 eigvalue= -5.51154874E+00 local= -4.37753759E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.25981971E+01 Hartree= 1.22429595E+01 xc= -4.92458120E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.66962587E+01 enl1= -5.16752423E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.21367197E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 6.30688315E+00 fr.nonlo= 1.87677027E+01 Ewald= 1.77713865E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7092526423E+00 Ha. Also 2DEtotal= 0.192997459031E+02 eV
(2DErelax= -4.2136719650E+01 Ha. 2DEnonrelax= 4.2845972292E+01 Ha)
( non-var. 2DEtotal : 7.0925257332E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 36.207279069884 -6.624E+01 2.970E-01 3.282E+03
ETOT 2 2.0926634980690 -3.411E+01 2.146E-01 9.627E+01
ETOT 3 0.77989447841586 -1.313E+00 2.050E-02 3.042E+00
ETOT 4 0.71895602897608 -6.094E-02 3.436E-03 4.476E-01
ETOT 5 0.71185425998840 -7.102E-03 3.196E-04 2.118E-01
ETOT 6 0.70882676759101 -3.027E-03 6.250E-05 8.620E-03
ETOT 7 0.70865980623722 -1.670E-04 7.332E-06 5.327E-04
ETOT 8 0.70863699669849 -2.281E-05 5.638E-07 3.329E-05
ETOT 9 0.70863440890898 -2.588E-06 1.672E-07 5.913E-06
ETOT 10 0.70863396541307 -4.435E-07 2.132E-08 1.975E-06
ETOT 11 0.70863389390519 -7.151E-08 3.340E-09 5.253E-07
ETOT 12 0.70863388273150 -1.117E-08 3.384E-10 3.197E-08
ETOT 13 0.70863388145233 -1.279E-09 8.027E-11 1.379E-08
ETOT 14 0.70863388122085 -2.315E-10 1.325E-12 1.768E-09
ETOT 15 0.70863388118471 -3.614E-11 2.772E-12 2.662E-10
ETOT 16 0.70863388118207 -2.643E-12 3.230E-14 5.802E-11
ETOT 17 0.70863388118174 -3.268E-13 1.694E-15 7.134E-12
ETOT 18 0.70863388118138 -3.553E-13 9.881E-17 1.589E-12
At SCF step 18 max residual= 9.88E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t24o_DS22_1WF7
-open ddk wf file :t24o_DS22_1WF8
-open ddk wf file :t24o_DS22_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.778E-18; max= 98.807E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.33917323E+02 eigvalue= -7.19879238E+00 local= -7.15554999E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.47223208E+02 Hartree= 2.72232519E+01 xc= -1.12365536E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.05918321E+01 enl1= -5.62599132E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.01741560E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 5.76149287E+01 fr.nonlo= 2.70638791E+01 Ewald= 1.77713865E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7086338812E+00 Ha. Also 2DEtotal= 0.192829085570E+02 eV
(2DErelax= -1.0174156032E+02 Ha. 2DEnonrelax= 1.0245019420E+02 Ha)
( non-var. 2DEtotal : 7.0863375616E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t24o_DS22_1WF7
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -3224.4615511290 -3.224E+03 5.060E+01 5.028E+04
ETOT 2 -3817.0756363094 -5.926E+02 1.212E+01 3.321E+02
ETOT 3 -3834.7954057750 -1.772E+01 7.314E-01 7.089E+01
ETOT 4 -3836.5050017995 -1.710E+00 1.198E-01 1.646E+01
ETOT 5 -3836.7840702050 -2.791E-01 5.640E-03 4.836E-01
ETOT 6 -3836.7971798572 -1.311E-02 4.422E-04 3.769E-02
ETOT 7 -3836.7988383101 -1.658E-03 7.248E-05 4.844E-03
ETOT 8 -3836.7991271465 -2.888E-04 1.086E-05 5.203E-04
ETOT 9 -3836.7991657248 -3.858E-05 1.521E-06 3.714E-05
ETOT 10 -3836.7991719152 -6.190E-06 3.387E-07 1.420E-05
ETOT 11 -3836.7991729179 -1.003E-06 2.110E-08 1.193E-06
ETOT 12 -3836.7991730369 -1.190E-07 2.087E-08 3.128E-06
ETOT 13 -3836.7991730713 -3.441E-08 1.317E-10 1.247E-06
ETOT 14 -3836.7991730830 -1.176E-08 2.228E-10 4.835E-08
ETOT 15 -3836.7991730835 -4.843E-10 2.394E-12 1.416E-08
ETOT 16 -3836.7991730838 -2.333E-10 2.554E-13 3.044E-09
ETOT 17 -3836.7991730839 -9.732E-11 8.737E-14 4.682E-11
ETOT 18 -3836.7991730838 1.050E-10 4.027E-15 5.238E-12
ETOT 19 -3836.7991730837 2.183E-11 5.243E-15 6.075E-12
ETOT 20 -3836.7991730838 -1.010E-10 6.594E-16 1.274E-14
-open ddk wf file :t24o_DS22_1WF7
-open ddk wf file :t24o_DS22_1WF8
-open ddk wf file :t24o_DS22_1WF9
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 6.594E-16 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 72.639E-18; max= 65.935E-17
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 8.66202486E+04 eigvalue= -2.51907754E+04 local= -7.06249597E+04
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -7.67359834E+03 Hartree= 1.15959231E+03 xc= -7.61490974E+02
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.26341844E+04 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.83679917E+03
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3836799173E+04 Ha. Also 2DEtotal= -0.104404615093E+06 eV
( non-var. 2DEtotal : -3.8367991710E+03 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.7092525733 0.0000000000
1 1 2 1 0.7203942150 0.0000000000
1 1 3 1 0.7203942150 0.0000000000
1 1 1 2 -0.7092542137 0.0000000000
1 1 2 2 -0.7203951418 0.0000000000
1 1 3 2 -0.7203951418 -0.0000000000
1 1 1 4 42.9395950128 0.0000000000
1 1 2 4 -25.5431973715 0.0000000000
1 1 3 4 -25.5431973715 0.0000000000
2 1 1 1 0.7203942150 0.0000000000
2 1 2 1 0.7092525733 0.0000000000
2 1 3 1 0.7203942150 0.0000000000
2 1 1 2 -0.7203951418 0.0000000000
2 1 2 2 -0.7092542137 0.0000000000
2 1 3 2 -0.7203951418 -0.0000000000
2 1 1 4 -25.5431973715 0.0000000000
2 1 2 4 42.9395950128 0.0000000000
2 1 3 4 -25.5431973715 0.0000000000
3 1 1 1 0.7203942150 0.0000000000
3 1 2 1 0.7203942150 0.0000000000
3 1 3 1 0.7092525733 0.0000000000
3 1 1 2 -0.7203951418 -0.0000000000
3 1 2 2 -0.7203951418 -0.0000000000
3 1 3 2 -0.7092542137 -0.0000000000
3 1 1 4 -25.5431973715 0.0000000000
3 1 2 4 -25.5431973715 0.0000000000
3 1 3 4 42.9395950128 0.0000000000
1 2 1 1 -0.7092543568 -0.0000000000
1 2 2 1 -0.7203951418 -0.0000000000
1 2 3 1 -0.7203951418 0.0000000000
1 2 1 2 0.7086337562 0.0000000000
1 2 2 2 0.7196436228 0.0000000000
1 2 3 2 0.7196436228 0.0000000000
1 2 1 4 -90.0356427726 0.0000000000
1 2 2 4 30.0103478602 0.0000000000
1 2 3 4 30.0103478602 0.0000000000
2 2 1 1 -0.7203951418 -0.0000000000
2 2 2 1 -0.7092543568 -0.0000000000
2 2 3 1 -0.7203951418 0.0000000000
2 2 1 2 0.7196436228 0.0000000000
2 2 2 2 0.7086337562 0.0000000000
2 2 3 2 0.7196436228 0.0000000000
2 2 1 4 30.0103478602 0.0000000000
2 2 2 4 -90.0356427726 0.0000000000
2 2 3 4 30.0103478602 0.0000000000
3 2 1 1 -0.7203951418 0.0000000000
3 2 2 1 -0.7203951418 0.0000000000
3 2 3 1 -0.7092543568 0.0000000000
3 2 1 2 0.7196436228 0.0000000000
3 2 2 2 0.7196436228 0.0000000000
3 2 3 2 0.7086337562 0.0000000000
3 2 1 4 30.0103478602 0.0000000000
3 2 2 4 30.0103478602 0.0000000000
3 2 3 4 -90.0356427726 0.0000000000
1 4 1 1 42.9395956923 0.0000000000
1 4 2 1 -25.5431973715 0.0000000000
1 4 3 1 -25.5431973715 0.0000000000
1 4 1 2 -90.0356389235 0.0000000000
1 4 2 2 30.0103478602 0.0000000000
1 4 3 2 30.0103478602 0.0000000000
1 4 1 4 -3836.7991710497 0.0000000000
1 4 2 4 1890.5488212034 0.0000000000
1 4 3 4 1890.5488212034 0.0000000000
2 4 1 1 -25.5431973715 0.0000000000
2 4 2 1 42.9395956923 0.0000000000
2 4 3 1 -25.5431973715 0.0000000000
2 4 1 2 30.0103478602 0.0000000000
2 4 2 2 -90.0356389235 0.0000000000
2 4 3 2 30.0103478602 0.0000000000
2 4 1 4 1890.5488212034 0.0000000000
2 4 2 4 -3836.7991710497 0.0000000000
2 4 3 4 1890.5488212034 0.0000000000
3 4 1 1 -25.5431973715 0.0000000000
3 4 2 1 -25.5431973715 0.0000000000
3 4 3 1 42.9395956923 0.0000000000
3 4 1 2 30.0103478602 0.0000000000
3 4 2 2 30.0103478602 0.0000000000
3 4 3 2 -90.0356389235 0.0000000000
3 4 1 4 1890.5488212034 0.0000000000
3 4 2 4 1890.5488212034 0.0000000000
3 4 3 4 -3836.7991710497 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0003635612 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0003635379 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 -0.0003635612 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 2 2 0.0003635379 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0164491543 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 -0.0164491810 0.0000000000
1 2 1 1 0.0003635332 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
1 2 1 2 -0.0003592613 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 0.0003635332 -0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 -0.0003592613 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.0164491821 -0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0164329350 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 160.4601304786 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 160.4601304786 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 7.6145020590 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 14.8993749247 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
1 2 1 4 -13.1059128076 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 14.8993749247 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -13.1059128076 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 3 4 2.7033965526 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 1.2229728100 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 14.8993750328 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 14.8993750328 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 2.7033966607 0.0000000000
1 4 1 2 -13.1059121950 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -13.1059121950 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
3 4 3 2 1.2229734226 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.559698E-05 -6.559698E-05 -6.678067E-06 3.414674E-06 3.414675E-06
4.415532E-04
Phonon frequencies in cm-1 :
- -1.439687E+01 -1.439687E+01 -1.465666E+00 7.494343E-01 7.494345E-01
- 9.690973E+01
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.559698E-05 -6.678067E-06 -1.772373E-06 3.414674E-06 4.415532E-04
7.318867E-04
Phonon frequencies in cm-1 :
- -1.439687E+01 -1.465666E+00 -3.889910E-01 7.494343E-01 9.690973E+01
- 1.606306E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
-6.559698E-05 -6.678067E-06 -1.772375E-06 3.414675E-06 4.415532E-04
7.318867E-04
Phonon frequencies in cm-1 :
- -1.439687E+01 -1.465666E+00 -3.889913E-01 7.494345E-01 9.690973E+01
- 1.606306E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
-6.559698E-05 -6.559698E-05 3.414674E-06 3.414675E-06 3.175667E-04
6.200359E-04
Phonon frequencies in cm-1 :
- -1.439687E+01 -1.439687E+01 7.494343E-01 7.494345E-01 6.969783E+01
- 1.360822E+02
================================================================================
== DATASET 31 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 31, }
dimensions: {natom: 2, nkpt: 2, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/32ge.4.hgh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/32ge.4.hgh
- Hartwigsen-Goedecker-Hutter psp for Ge, from PRB58, 3641 (1998)
- 32.00000 4.00000 10605 znucl, zion, pspdat
3 1 2 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.5400000
cc1 = 0.0000000; cc2 = 0.0000000; cc3 = 0.0000000; cc4 = 0.0000000
rrs = 0.4937430; h11s= 3.8268910; h22s= 1.1002310; h33s= -1.3442180
rrp = 0.6010640; h11p= 1.3625180; h22p= -0.6273700; h33p= 0.0000000
k11p= 0.0439810; k22p= 0.0098020; k33p= 0.0000000
rrd = 0.7883690; h11d= 0.1912050; h22d= 0.0000000; h33d= 0.0000000
k11d= 0.0029180; k22d= 0.0000000; k33d= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 7.32870734
--- l ekb(1:nproj) -->
0 -0.689243 0.540168 1.677848
1 -0.368258 0.777155
2 0.513181
spin-orbit 1 0.005177 0.024738
spin-orbit 2 0.007832
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/52te.6.hgh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/52te.6.hgh
- Hartwigsen-Goedecker-Hutter psp for Te, from PRB58, 3641 (1998)
- 52.00000 6.00000 10605 znucl, zion, pspdat
3 1 2 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.5750000
cc1 = 9.3870850; cc2 = 0.0000000; cc3 = 0.0000000; cc4 = 0.0000000
rrs = 0.5564560; h11s= 2.0468900; h22s= -0.0293330; h33s= -0.8811190
rrp = 0.6152620; h11p= 1.0334780; h22p= -0.4811720; h33p= 0.0000000
k11p= 0.1729970; k22p= 0.0506410; k33p= 0.0000000
rrd = 0.8051010; h11d= 0.3174110; h22d= 0.0000000; h33d= 0.0000000
k11d= 0.0108090; k22d= 0.0000000; k33d= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 40.57059536
--- l ekb(1:nproj) -->
0 -0.712827 0.146876 1.260085
1 -0.317536 0.662771
2 0.986823
spin-orbit 1 0.029383 0.110409
spin-orbit 2 0.033605
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 47.500 47.432
================================================================================
--- !BeginCycle
iteration_state: {dtset: 31, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.585521354319 -1.159E+01 8.305E-04 2.919E+00
ETOT 2 -11.599527236295 -1.401E-02 5.502E-05 1.468E-01
ETOT 3 -11.600179465887 -6.522E-04 2.923E-05 3.216E-03
ETOT 4 -11.600222758839 -4.329E-05 7.016E-06 1.672E-04
ETOT 5 -11.600230532187 -7.773E-06 8.022E-07 9.831E-06
ETOT 6 -11.600232265581 -1.733E-06 4.388E-07 8.083E-07
ETOT 7 -11.600232678023 -4.124E-07 4.811E-08 3.566E-07
ETOT 8 -11.600232777499 -9.948E-08 2.518E-08 5.263E-08
ETOT 9 -11.600232802814 -2.532E-08 3.163E-09 5.548E-09
ETOT 10 -11.600232809001 -6.187E-09 1.590E-09 2.730E-09
ETOT 11 -11.600232810535 -1.535E-09 2.115E-10 1.146E-08
ETOT 12 -11.600232810968 -4.327E-10 9.645E-11 2.126E-09
ETOT 13 -11.600232811045 -7.659E-11 1.110E-11 2.642E-09
ETOT 14 -11.600232811074 -2.927E-11 5.571E-12 1.458E-09
ETOT 15 -11.600232811083 -9.221E-12 6.471E-13 2.100E-10
ETOT 16 -11.600232811084 -6.644E-13 2.872E-13 3.219E-10
ETOT 17 -11.600232811086 -1.688E-12 7.616E-14 4.046E-11
ETOT 18 -11.600232811086 -1.528E-13 2.364E-14 2.255E-11
ETOT 19 -11.600232811086 -1.386E-13 4.583E-15 5.380E-13
ETOT 20 -11.600232811086 -1.066E-14 2.215E-15 4.768E-14
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.57153422E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.57153422E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.50333000E-03 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 2.215E-15 exceeds tolwfr= 1.000E-16
--- !ResultsGS
iteration_state: {dtset: 31, }
comment : Summary of ground state results
lattice_vectors:
- [ 4.5200184, 0.0000000, 6.6007146, ]
- [ -2.2600092, 3.9144508, 6.6007146, ]
- [ -2.2600092, -3.9144508, 6.6007146, ]
lattice_lengths: [ 8.00000, 8.00000, 8.00000, ]
lattice_angles: [ 58.590, 58.590, 58.590, ] # degrees, (23, 13, 12)
lattice_volume: 3.5036705E+02
convergence: {deltae: -1.066E-14, res2: 4.768E-14, residm: 2.215E-15, diffor: null, }
etotal : -1.16002328E+01
entropy : 0.00000000E+00
fermie : 1.64061323E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 5.57153422E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.57153422E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.50333000E-03, ]
pressure_GPa: -2.5671E+01
xred :
- [ 2.3500E-01, 2.3500E-01, 2.3500E-01, Ge]
- [ -2.3500E-01, -2.3500E-01, -2.3500E-01, Te]
cartesian_forces: # hartree/bohr
- [ -2.46269464E-19, 9.51582187E-20, 3.94402975E-03, ]
- [ 2.46269464E-19, -9.51582187E-20, -3.94402975E-03, ]
force_length_stats: {min: 3.94402975E-03, max: 3.94402975E-03, mean: 3.94402975E-03, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.28044559
2 2.00000 1.65193286
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.144E-17; max= 22.146E-16
reduced coordinates (array xred) for 2 atoms
0.235000000000 0.235000000000 0.235000000000
-0.235000000000 -0.235000000000 -0.235000000000
rms dE/dt= 2.6033E-02; max dE/dt= 2.6035E-02; dE/dt below (all hartree)
1 -0.026031396921 -0.026031396921 -0.026031396921
2 0.026035432742 0.026035432742 0.026035432742
cartesian coordinates (angstrom) at end:
1 -0.00000000000000 -0.00000000000000 2.46252815370717
2 0.00000000000000 0.00000000000000 -2.46252815370717
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 0.00000000000000 0.00394402975161
2 0.00000000000000 -0.00000000000000 -0.00394402975161
frms,max,avg= 2.2770866E-03 3.9440298E-03 0.000E+00 0.000E+00 -3.057E-07 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 0.00000000000000 0.20281014711906
2 0.00000000000000 -0.00000000000000 -0.20281014711906
frms,max,avg= 1.1709249E-01 2.0281015E-01 0.000E+00 0.000E+00 -1.572E-05 e/A
length scales= 8.000000000000 8.000000000000 8.000000000000 bohr
= 4.233417668720 4.233417668720 4.233417668720 angstroms
prteigrs : about to open file t24o_DS31_EIG
Fermi (or HOMO) energy (hartree) = 0.16406 Average Vxc (hartree)= -0.33935
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.28694 -0.28694 -0.07506 -0.07506 0.03818 0.03818 0.06110 0.06112
0.16406 0.16406
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 31, }
comment : Components of total free energy in Hartree
kinetic : 3.35738952816580E+00
hartree : 3.73408033353187E-01
xc : -2.85539296388996E+00
Ewald energy : -1.29364129740319E+01
psp_core : 1.36711780186477E+00
local_psp : -2.00984357429264E+00
non_local_psp : 1.10350133774483E+00
total_energy : -1.16002328110859E+01
total_energy_eV : -3.15658387887825E+02
band_energy : -5.24479314083286E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.57153422E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.57153422E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.50333000E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.5671E+01 GPa]
- sigma(1 1)= 1.63920168E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.63920168E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.42294882E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 32 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 32, }
dimensions: {natom: 2, nkpt: 4, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 31.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 32, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3524459338398 -8.352E+00 2.295E-01 0.000E+00
ETOT 2 -8.5802461492553 -2.278E-01 2.050E-02 0.000E+00
ETOT 3 -8.6209342600334 -4.069E-02 3.690E-03 0.000E+00
ETOT 4 -8.6292486381118 -8.314E-03 7.994E-04 0.000E+00
ETOT 5 -8.6310170109092 -1.768E-03 1.666E-04 0.000E+00
ETOT 6 -8.6314078005157 -3.908E-04 3.050E-05 0.000E+00
ETOT 7 -8.6314949329042 -8.713E-05 7.196E-06 0.000E+00
ETOT 8 -8.6315149281734 -2.000E-05 1.251E-06 0.000E+00
ETOT 9 -8.6315195437868 -4.616E-06 3.655E-07 0.000E+00
ETOT 10 -8.6315206258357 -1.082E-06 6.368E-08 0.000E+00
ETOT 11 -8.6315208804232 -2.546E-07 2.070E-08 0.000E+00
ETOT 12 -8.6315209407535 -6.033E-08 3.642E-09 0.000E+00
ETOT 13 -8.6315209550850 -1.433E-08 1.217E-09 0.000E+00
ETOT 14 -8.6315209585031 -3.418E-09 2.154E-10 0.000E+00
ETOT 15 -8.6315209593197 -8.166E-10 7.242E-11 0.000E+00
ETOT 16 -8.6315209595153 -1.956E-10 1.286E-11 0.000E+00
ETOT 17 -8.6315209595623 -4.693E-11 4.335E-12 0.000E+00
ETOT 18 -8.6315209595736 -1.139E-11 7.713E-13 0.000E+00
ETOT 19 -8.6315209595763 -2.672E-12 2.603E-13 0.000E+00
ETOT 20 -8.6315209595769 -6.217E-13 4.634E-14 0.000E+00
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 4.634E-14 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.930E-16; max= 46.340E-15
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 8.4848097893E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06347 0.06347 -0.18355 -0.18355 0.00766 0.00766 0.01002 0.01008
0.04117 0.04117
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.99849138E+01 eigvalue= -2.00314151E+01 local= -6.35000440E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.62821397E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.21780653E+01 enl1= -9.80901230E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63152096E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8631520960E+01 Ha. Also 2DEtotal= -0.234875630127E+03 eV
( non-var. 2DEtotal : -8.6315204706E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 32, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3317874674586 -8.332E+00 2.268E-01 0.000E+00
ETOT 2 -8.5727072241369 -2.409E-01 2.251E-02 0.000E+00
ETOT 3 -8.6189768521952 -4.627E-02 3.679E-03 0.000E+00
ETOT 4 -8.6287120701166 -9.735E-03 8.423E-04 0.000E+00
ETOT 5 -8.6308074269036 -2.095E-03 1.675E-04 0.000E+00
ETOT 6 -8.6312775204987 -4.701E-04 3.258E-05 0.000E+00
ETOT 7 -8.6313840114800 -1.065E-04 7.633E-06 0.000E+00
ETOT 8 -8.6314088624074 -2.485E-05 1.441E-06 0.000E+00
ETOT 9 -8.6314146900007 -5.828E-06 3.975E-07 0.000E+00
ETOT 10 -8.6314160745751 -1.385E-06 7.533E-08 0.000E+00
ETOT 11 -8.6314164042683 -3.297E-07 2.210E-08 0.000E+00
ETOT 12 -8.6314164831943 -7.893E-08 4.223E-09 0.000E+00
ETOT 13 -8.6314165021098 -1.892E-08 1.258E-09 0.000E+00
ETOT 14 -8.6314165066552 -4.545E-09 2.420E-10 0.000E+00
ETOT 15 -8.6314165077480 -1.093E-09 7.239E-11 0.000E+00
ETOT 16 -8.6314165080110 -2.630E-10 1.399E-11 0.000E+00
ETOT 17 -8.6314165080744 -6.332E-11 4.189E-12 0.000E+00
ETOT 18 -8.6314165080897 -1.532E-11 8.120E-13 0.000E+00
ETOT 19 -8.6314165080935 -3.766E-12 2.432E-13 0.000E+00
ETOT 20 -8.6314165080943 -8.651E-13 4.725E-14 0.000E+00
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 4.725E-14 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.693E-16; max= 47.245E-15
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 8.4847632696E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06347 0.06347 -0.18355 -0.18355 0.00766 0.00766 0.01002 0.01008
0.04117 0.04117
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.99841090E+01 eigvalue= -2.00313098E+01 local= -6.34993186E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.62820504E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.21779346E+01 enl1= -9.80781327E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63141651E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8631416508E+01 Ha. Also 2DEtotal= -0.234872787857E+03 eV
( non-var. 2DEtotal : -8.6314158842E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 32, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3538761218874 -8.354E+00 2.293E-01 0.000E+00
ETOT 2 -8.5806439365010 -2.268E-01 2.053E-02 0.000E+00
ETOT 3 -8.6209827770808 -4.034E-02 3.699E-03 0.000E+00
ETOT 4 -8.6292175428485 -8.235E-03 8.001E-04 0.000E+00
ETOT 5 -8.6309700605792 -1.753E-03 1.672E-04 0.000E+00
ETOT 6 -8.6313573268490 -3.873E-04 3.055E-05 0.000E+00
ETOT 7 -8.6314436715207 -8.634E-05 7.223E-06 0.000E+00
ETOT 8 -8.6314634841469 -1.981E-05 1.253E-06 0.000E+00
ETOT 9 -8.6314680574950 -4.573E-06 3.671E-07 0.000E+00
ETOT 10 -8.6314691297338 -1.072E-06 6.376E-08 0.000E+00
ETOT 11 -8.6314693820529 -2.523E-07 2.080E-08 0.000E+00
ETOT 12 -8.6314694418591 -5.981E-08 3.650E-09 0.000E+00
ETOT 13 -8.6314694560701 -1.421E-08 1.224E-09 0.000E+00
ETOT 14 -8.6314694594606 -3.391E-09 2.160E-10 0.000E+00
ETOT 15 -8.6314694602709 -8.103E-10 7.291E-11 0.000E+00
ETOT 16 -8.6314694604652 -1.943E-10 1.291E-11 0.000E+00
ETOT 17 -8.6314694605118 -4.657E-11 4.368E-12 0.000E+00
ETOT 18 -8.6314694605230 -1.125E-11 7.747E-13 0.000E+00
ETOT 19 -8.6314694605256 -2.611E-12 2.624E-13 0.000E+00
ETOT 20 -8.6314694605263 -7.052E-13 4.658E-14 0.000E+00
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 4.658E-14 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.789E-16; max= 46.584E-15
dfpt_looppert : ek2= 1.9189752175E+01
f-sum rule ratio= 8.4847873256E-01
prteigrs : about to open file t24t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 4 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
0.06347 0.06347 -0.18355 -0.18355 0.00766 0.00766 0.01002 0.01008
0.04117 0.04117
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.99845197E+01 eigvalue= -2.00313646E+01 local= -6.34996871E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.62820966E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.21780005E+01 enl1= -9.80841347E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.63146946E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8631469461E+01 Ha. Also 2DEtotal= -0.234874228766E+03 eV
( non-var. 2DEtotal : -8.6314689756E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 2.7570004008 0.0000000000
1 2 0.0000037492 0.0000000000
1 3 0.0000183934 0.0000000000
2 1 0.0000037492 0.0000000000
2 2 2.7569878054 0.0000000000
2 3 -0.0000109503 0.0000000000
3 1 0.0000183934 0.0000000000
3 2 -0.0000109503 0.0000000000
3 3 11.7589172922 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 33 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 33, }
dimensions: {natom: 2, nkpt: 4, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 31.
mkfilename : getddk/=0, take file _1WF from output of DATASET 32.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.5200184 0.0000000 6.6007146 G(1)= 0.1474920 0.0000000 0.0504996
R(2)= -2.2600092 3.9144508 6.6007146 G(2)= -0.0737460 0.1277318 0.0504996
R(3)= -2.2600092 -3.9144508 6.6007146 G(3)= -0.0737460 -0.1277318 0.0504996
Unit cell volume ucvol= 3.5036705E+02 bohr^3
Angles (23,13,12)= 5.85900000E+01 5.85900000E+01 5.85900000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.35727
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.778368 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 17.337919797360 -2.558E+01 4.037E-01 1.485E+03
ETOT 2 1.3229007533933 -1.602E+01 9.774E-02 3.330E+01
ETOT 3 0.80298317582181 -5.199E-01 1.148E-02 1.708E+00
ETOT 4 0.75673110887053 -4.625E-02 1.849E-03 3.773E-01
ETOT 5 0.75013881228922 -6.592E-03 3.105E-04 3.022E-01
ETOT 6 0.74482719424757 -5.312E-03 7.630E-05 2.338E-03
ETOT 7 0.74454418689089 -2.830E-04 4.454E-05 5.395E-03
ETOT 8 0.74439017577263 -1.540E-04 2.614E-06 8.926E-04
ETOT 9 0.74439100059914 8.248E-07 1.230E-06 1.301E-03
ETOT 10 0.74437486837704 -1.613E-05 1.414E-07 3.314E-04
ETOT 11 0.74437243578661 -2.433E-06 1.690E-07 1.431E-04
ETOT 12 0.74437140723371 -1.029E-06 2.755E-09 6.419E-05
ETOT 13 0.74437086694543 -5.403E-07 1.578E-09 1.880E-05
ETOT 14 0.74437066373833 -2.032E-07 2.000E-09 1.921E-06
ETOT 15 0.74437063854842 -2.519E-08 1.794E-09 4.069E-08
ETOT 16 0.74437063757123 -9.772E-10 1.381E-10 1.259E-09
ETOT 17 0.74437063747261 -9.862E-11 7.734E-12 2.091E-10
ETOT 18 0.74437063746481 -7.795E-12 2.506E-12 4.499E-10
ETOT 19 0.74437063746386 -9.521E-13 2.008E-13 6.659E-10
ETOT 20 0.74437063745626 -7.596E-12 8.046E-14 3.972E-11
-open ddk wf file :t24o_DS32_1WF7
-open ddk wf file :t24o_DS32_1WF8
-open ddk wf file :t24o_DS32_1WF9
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 8.046E-14 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 37.410E-16; max= 80.462E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.06176345E+01 eigvalue= -6.60157849E+00 local= -4.67198303E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.38822234E+01 Hartree= 1.23047042E+01 xc= -4.89636425E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.74694076E+01 enl1= -5.04657212E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.21739715E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 6.43204809E+00 fr.nonlo= 1.87149076E+01 Ewald= 1.77713865E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7443706375E+00 Ha. Also 2DEtotal= 0.202553551499E+02 eV
(2DErelax= -4.2173971468E+01 Ha. 2DEnonrelax= 4.2918342105E+01 Ha)
( non-var. 2DEtotal : 7.4436978210E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 34.786168151463 -6.851E+01 3.055E-01 3.185E+03
ETOT 2 1.8101903990656 -3.298E+01 2.058E-01 7.104E+01
ETOT 3 0.81982736507427 -9.904E-01 2.086E-02 2.312E+00
ETOT 4 0.76085232693620 -5.898E-02 4.688E-03 4.795E-01
ETOT 5 0.74998556986677 -1.087E-02 6.682E-04 2.847E-01
ETOT 6 0.74436618646535 -5.619E-03 2.146E-04 6.390E-03
ETOT 7 0.74395742060126 -4.088E-04 5.109E-05 5.846E-03
ETOT 8 0.74376359294406 -1.938E-04 8.873E-06 6.331E-04
ETOT 9 0.74374708183213 -1.651E-05 2.136E-06 6.735E-04
ETOT 10 0.74373544187753 -1.164E-05 4.242E-07 2.720E-04
ETOT 11 0.74373257350039 -2.868E-06 1.291E-07 1.055E-04
ETOT 12 0.74373163235045 -9.411E-07 1.561E-08 5.468E-05
ETOT 13 0.74373123826437 -3.941E-07 1.280E-08 2.840E-05
ETOT 14 0.74373092958404 -3.087E-07 2.742E-09 2.504E-06
ETOT 15 0.74373089393526 -3.565E-08 3.057E-09 5.245E-07
ETOT 16 0.74373088706360 -6.872E-09 9.208E-11 4.221E-08
ETOT 17 0.74373088630153 -7.621E-10 8.134E-11 2.077E-08
ETOT 18 0.74373088610707 -1.945E-10 2.280E-12 6.632E-09
ETOT 19 0.74373088604553 -6.153E-11 1.698E-12 2.621E-09
ETOT 20 0.74373088601717 -2.836E-11 3.006E-13 5.162E-11
-open ddk wf file :t24o_DS32_1WF7
-open ddk wf file :t24o_DS32_1WF8
-open ddk wf file :t24o_DS32_1WF9
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 3.006E-13 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.884E-15; max= 30.057E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.35904922E+02 eigvalue= -7.42572829E+00 local= -7.32044559E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.47560045E+02 Hartree= 2.71783788E+01 xc= -1.11592849E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.12609840E+01 enl1= -5.75495913E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.02554821E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 5.77416713E+01 fr.nonlo= 2.77854944E+01 Ewald= 1.77713865E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.7437308860E+00 Ha. Also 2DEtotal= 0.202379466280E+02 eV
(2DErelax= -1.0255482119E+02 Ha. 2DEnonrelax= 1.0329855208E+02 Ha)
( non-var. 2DEtotal : 7.4373382986E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t24o_DS32_1WF7
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -4857.2857000098 -4.857E+03 9.814E+01 5.763E+04
ETOT 2 -5710.4265351164 -8.531E+02 3.834E+01 4.505E+02
ETOT 3 -5741.1221242742 -3.070E+01 1.694E+00 9.768E+01
ETOT 4 -5744.7538306155 -3.632E+00 3.055E-01 9.887E+00
ETOT 5 -5745.2762969341 -5.225E-01 5.610E-02 1.597E+00
ETOT 6 -5745.3992846192 -1.230E-01 1.264E-02 1.273E-01
ETOT 7 -5745.4259688767 -2.668E-02 3.209E-03 1.283E-02
ETOT 8 -5745.4308426285 -4.874E-03 5.833E-04 6.447E-02
ETOT 9 -5745.4333015049 -2.459E-03 2.090E-04 2.307E-03
ETOT 10 -5745.4336347721 -3.333E-04 4.038E-05 3.438E-03
ETOT 11 -5745.4337728301 -1.381E-04 1.068E-05 4.023E-04
ETOT 12 -5745.4338013495 -2.852E-05 3.523E-06 3.755E-04
ETOT 13 -5745.4338098853 -8.536E-06 4.395E-07 8.607E-05
ETOT 14 -5745.4338121369 -2.252E-06 1.447E-07 2.696E-05
ETOT 15 -5745.4338127248 -5.879E-07 3.317E-08 3.983E-06
ETOT 16 -5745.4338128647 -1.398E-07 8.879E-09 7.807E-07
ETOT 17 -5745.4338128943 -2.961E-08 2.269E-09 2.162E-07
ETOT 18 -5745.4338129032 -8.938E-09 4.902E-10 2.396E-09
ETOT 19 -5745.4338129050 -1.792E-09 1.740E-10 2.566E-09
ETOT 20 -5745.4338129052 -1.955E-10 2.616E-11 1.874E-10
-open ddk wf file :t24o_DS32_1WF7
-open ddk wf file :t24o_DS32_1WF8
-open ddk wf file :t24o_DS32_1WF9
scprqt: WARNING -
nstep= 20 was not enough SCF cycles to converge;
maximum residual= 2.616E-11 exceeds tolwfr= 1.000E-16
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 95.851E-14; max= 26.164E-12
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.62485035E+05 eigvalue= -4.70837539E+04 local= -1.35719121E+05
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -1.14908674E+04 Hartree= 1.27378354E+03 xc= -8.17392234E+02
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.56068817E+04 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.74543381E+03
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.5745433813E+04 Ha. Also 2DEtotal= -0.156341204925E+06 eV
( non-var. 2DEtotal : -5.7454337184E+03 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.7443697821 0.0000000000
1 1 2 1 0.6694411701 0.0000000000
1 1 3 1 0.6694411701 0.0000000000
1 1 1 2 -0.7443745046 0.0000000000
1 1 2 2 -0.6694425044 0.0000000000
1 1 3 2 -0.6694425044 -0.0000000000
1 1 1 4 36.3224299640 0.0000000000
1 1 2 4 -29.3499574987 0.0000000000
1 1 3 4 -29.3499574987 0.0000000000
2 1 1 1 0.6694411701 0.0000000000
2 1 2 1 0.7443697821 0.0000000000
2 1 3 1 0.6694411701 0.0000000000
2 1 1 2 -0.6694425044 0.0000000000
2 1 2 2 -0.7443745046 0.0000000000
2 1 3 2 -0.6694425044 -0.0000000000
2 1 1 4 -29.3499574987 0.0000000000
2 1 2 4 36.3224299640 0.0000000000
2 1 3 4 -29.3499574987 0.0000000000
3 1 1 1 0.6694411701 0.0000000000
3 1 2 1 0.6694411701 0.0000000000
3 1 3 1 0.7443697821 0.0000000000
3 1 1 2 -0.6694425044 -0.0000000000
3 1 2 2 -0.6694425044 -0.0000000000
3 1 3 2 -0.7443745046 -0.0000000000
3 1 1 4 -29.3499574987 0.0000000000
3 1 2 4 -29.3499574987 0.0000000000
3 1 3 4 36.3224299640 0.0000000000
1 2 1 1 -0.7443714806 -0.0000000000
1 2 2 1 -0.6694425044 -0.0000000000
1 2 3 1 -0.6694425044 0.0000000000
1 2 1 2 0.7437338299 0.0000000000
1 2 2 2 0.6686654961 0.0000000000
1 2 3 2 0.6686654961 0.0000000000
1 2 1 4 -87.0142650902 0.0000000000
1 2 2 4 33.1744672172 0.0000000000
1 2 3 4 33.1744672172 0.0000000000
2 2 1 1 -0.6694425044 -0.0000000000
2 2 2 1 -0.7443714806 -0.0000000000
2 2 3 1 -0.6694425044 0.0000000000
2 2 1 2 0.6686654961 0.0000000000
2 2 2 2 0.7437338299 0.0000000000
2 2 3 2 0.6686654961 0.0000000000
2 2 1 4 33.1744672172 0.0000000000
2 2 2 4 -87.0142650902 0.0000000000
2 2 3 4 33.1744672172 0.0000000000
3 2 1 1 -0.6694425044 0.0000000000
3 2 2 1 -0.6694425044 0.0000000000
3 2 3 1 -0.7443714806 0.0000000000
3 2 1 2 0.6686654961 0.0000000000
3 2 2 2 0.6686654961 0.0000000000
3 2 3 2 0.7437338299 0.0000000000
3 2 1 4 33.1744672172 0.0000000000
3 2 2 4 33.1744672172 0.0000000000
3 2 3 4 -87.0142650902 0.0000000000
1 4 1 1 36.3224058992 0.0000000000
1 4 2 1 -29.3499574987 0.0000000000
1 4 3 1 -29.3499574987 0.0000000000
1 4 1 2 -87.0142158905 0.0000000000
1 4 2 2 33.1744672172 0.0000000000
1 4 3 2 33.1744672172 0.0000000000
1 4 1 4 -5745.4337183695 0.0000000000
1 4 2 4 2333.3151757439 0.0000000000
1 4 3 4 2333.3151757439 0.0000000000
2 4 1 1 -29.3499574987 0.0000000000
2 4 2 1 36.3224058992 0.0000000000
2 4 3 1 -29.3499574987 0.0000000000
2 4 1 2 33.1744672172 0.0000000000
2 4 2 2 -87.0142158905 0.0000000000
2 4 3 2 33.1744672172 0.0000000000
2 4 1 4 2333.3151757439 0.0000000000
2 4 2 4 -5745.4337183695 0.0000000000
2 4 3 4 2333.3151757439 0.0000000000
3 4 1 1 -29.3499574987 0.0000000000
3 4 2 1 -29.3499574987 0.0000000000
3 4 3 1 36.3224058992 0.0000000000
3 4 1 2 33.1744672172 0.0000000000
3 4 2 2 33.1744672172 0.0000000000
3 4 3 2 -87.0142158905 0.0000000000
3 4 1 4 2333.3151757439 0.0000000000
3 4 2 4 2333.3151757439 0.0000000000
3 4 3 4 -5745.4337183695 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0024449840 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -0.0024450945 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0024449840 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 2 2 -0.0024450945 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0159381777 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 -0.0159382343 0.0000000000
1 2 1 1 -0.0024449959 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
1 2 1 2 0.0024495432 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 -0.0024449959 -0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0024495432 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.0159382111 -0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0159214435 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 225.9275501509 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 225.9275501509 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 129.1068449160 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 14.4520850893 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
1 2 1 4 -13.1286308507 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 14.4520850893 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -13.1286308507 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 0.4385126430 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 2.7110104755 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 14.4520812593 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 14.4520812593 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 -0.0000000000 0.0000000000
2 4 3 1 -0.0000000000 0.0000000000
3 4 3 1 0.4385088129 0.0000000000
1 4 1 2 -13.1286230203 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -13.1286230203 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 2.7110183059 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.790059E-06 3.486231E-06 3.486231E-06 1.702680E-04 1.702680E-04
4.346392E-04
Phonon frequencies in cm-1 :
- -1.490246E+00 7.651392E-01 7.651393E-01 3.736951E+01 3.736951E+01
- 9.539228E+01
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.790059E-06 3.486231E-06 8.280289E-06 1.702680E-04 4.346392E-04
6.301431E-04
Phonon frequencies in cm-1 :
- -1.490246E+00 7.651392E-01 1.817313E+00 3.736951E+01 9.539228E+01
- 1.383004E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
-6.790059E-06 3.486231E-06 8.280289E-06 1.702680E-04 4.346392E-04
6.301431E-04
Phonon frequencies in cm-1 :
- -1.490246E+00 7.651393E-01 1.817313E+00 3.736951E+01 9.539228E+01
- 1.383004E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
3.486231E-06 3.486231E-06 8.624708E-05 1.702680E-04 1.702680E-04
4.365868E-04
Phonon frequencies in cm-1 :
- 7.651392E-01 7.651393E-01 1.892905E+01 3.736951E+01 3.736951E+01
- 9.581973E+01
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 8.0000000000E+00 8.0000000000E+00 8.0000000000E+00 Bohr
amu 7.26100000E+01 1.27600000E+02
asr 0
chneut 0
ecut 2.00000000E+00 Hartree
etotal11 -1.1595852004E+01
etotal12 -8.1133457801E+00
etotal13 -3.8367990627E+03
etotal21 -1.1595852004E+01
etotal22 -8.1133463550E+00
etotal23 -3.8367991731E+03
etotal31 -1.1600232811E+01
etotal32 -8.6314694605E+00
etotal33 -5.7454338129E+03
fcart11 1.8076736570E-19 2.2499770209E-19 4.2213731245E-03
-1.8076736570E-19 -2.2499770209E-19 -4.2213731245E-03
fcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart21 -7.3636242200E-20 -2.5124432048E-19 4.2213886342E-03
7.3636242200E-20 2.5124432048E-19 -4.2213886342E-03
fcart22 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart23 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart31 -2.4626946378E-19 9.5158218717E-20 3.9440297516E-03
2.4626946378E-19 -9.5158218717E-20 -3.9440297516E-03
fcart32 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart33 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddk11 0
getddk12 0
getddk13 -1
getddk21 0
getddk22 0
getddk23 -1
getddk31 0
getddk32 0
getddk33 -1
getwfk11 0
getwfk12 -1
getwfk13 -2
getwfk21 0
getwfk22 -1
getwfk23 -2
getwfk31 0
getwfk32 -1
getwfk33 -2
jdtset 11 12 13 21 22 23 31 32 33
kpt11 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt12 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt13 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt21 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt22 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt23 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt31 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt32 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kpt33 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt11 1
kptopt12 2
kptopt13 2
kptopt21 1
kptopt22 2
kptopt23 2
kptopt31 1
kptopt32 2
kptopt33 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.56578031E+01
P mkmem11 2
P mkmem12 4
P mkmem13 4
P mkmem21 2
P mkmem22 4
P mkmem23 4
P mkmem31 2
P mkmem32 4
P mkmem33 4
P mkqmem11 2
P mkqmem12 4
P mkqmem13 4
P mkqmem21 2
P mkqmem22 4
P mkqmem23 4
P mkqmem31 2
P mkqmem32 4
P mkqmem33 4
P mk1mem11 2
P mk1mem12 4
P mk1mem13 4
P mk1mem21 2
P mk1mem22 4
P mk1mem23 4
P mk1mem31 2
P mk1mem32 4
P mk1mem33 4
natom 2
nband11 5
nband12 5
nband13 5
nband21 10
nband22 10
nband23 10
nband31 10
nband32 10
nband33 10
ndtset 9
ngfft 12 12 12
nkpt11 2
nkpt12 4
nkpt13 4
nkpt21 2
nkpt22 4
nkpt23 4
nkpt31 2
nkpt32 4
nkpt33 4
nqpt11 0
nqpt12 1
nqpt13 1
nqpt21 0
nqpt22 1
nqpt23 1
nqpt31 0
nqpt32 1
nqpt33 1
nspinor11 1
nspinor12 1
nspinor13 1
nspinor21 2
nspinor22 2
nspinor23 2
nspinor31 2
nspinor32 2
nspinor33 2
nstep 20
nsym 6
ntypat 2
occ11 2.000000 2.000000 2.000000 2.000000 2.000000
occ12 2.000000 2.000000 2.000000 2.000000 2.000000
occ13 2.000000 2.000000 2.000000 2.000000 2.000000
occ21 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ22 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ23 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ31 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ32 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ33 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
optdriver11 0
optdriver12 1
optdriver13 1
optdriver21 0
optdriver22 1
optdriver23 1
optdriver31 0
optdriver32 1
optdriver33 1
prtpot11 0
prtpot12 1
prtpot13 1
prtpot21 0
prtpot22 1
prtpot23 1
prtpot31 0
prtpot32 1
prtpot33 1
rfelfd11 0
rfelfd12 2
rfelfd13 3
rfelfd21 0
rfelfd22 2
rfelfd23 3
rfelfd31 0
rfelfd32 2
rfelfd33 3
rfphon11 0
rfphon12 0
rfphon13 1
rfphon21 0
rfphon22 0
rfphon23 1
rfphon31 0
rfphon32 0
rfphon33 1
rprim 5.6500230287E-01 0.0000000000E+00 8.2508932713E-01
-2.8250115144E-01 4.8930634748E-01 8.2508932713E-01
-2.8250115144E-01 -4.8930634748E-01 8.2508932713E-01
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
so_psp11 1 1
so_psp12 1 1
so_psp13 1 1
so_psp21 0 0
so_psp22 0 0
so_psp23 0 0
so_psp31 1 1
so_psp32 1 1
so_psp33 1 1
spgroup 160
strten11 5.3155434249E-04 5.3155434249E-04 1.4943377078E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten21 5.3155431023E-04 5.3155431023E-04 1.4943377327E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten22 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten23 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten31 5.5715342159E-04 5.5715342159E-04 1.5033299994E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten32 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten33 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0
tolwfr 1.00000000E-16
typat 1 2
wtk11 0.25000 0.75000
wtk12 0.25000 0.25000 0.25000 0.25000
wtk13 0.25000 0.25000 0.25000 0.25000
wtk21 0.25000 0.75000
wtk22 0.25000 0.25000 0.25000 0.25000
wtk23 0.25000 0.25000 0.25000 0.25000
wtk31 0.25000 0.75000
wtk32 0.25000 0.25000 0.25000 0.25000
wtk33 0.25000 0.25000 0.25000 0.25000
xangst -3.1608457528E-18 -2.7546839193E-17 2.4625281537E+00
3.1608457528E-18 2.7546839193E-17 -2.4625281537E+00
xcart -5.9731328210E-18 -5.2055981901E-17 4.6535038050E+00
5.9731328210E-18 5.2055981901E-17 -4.6535038050E+00
xred 2.3500000000E-01 2.3500000000E-01 2.3500000000E-01
-2.3500000000E-01 -2.3500000000E-01 -2.3500000000E-01
znucl 32.00000 52.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 5.6 wall= 6.5
================================================================================
Calculation completed.
.Delivered 68 WARNINGs and 59 COMMENTs to log file.
+Overall time at end (sec) : cpu= 5.6 wall= 6.5