abinit/tests/v5/Refs/t00.abo

460 lines
23 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h10 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v5_t00/t00.abi
- output file -> t00.abo
- root for input files -> t00i
- root for output files -> t00o
Symmetries : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need of the present run
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 24 mpssoang = 1 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 8 n1xccc = 0 ntypat = 2
occopt = 2 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 1
mpw = 280 nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 4.895 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.028 Mbytes ; DEN or POT disk file : 0.148 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.2000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.00794000E+00 9.01218200E+00
builtintest 3
diemac 1.00000000E+00
diemix 3.33333333E-01
ecut 4.50000000E+00 Hartree
enunit 2
- fftalg 512
istwfk 2
kptopt 0
P mkmem 1
natom 2
nband 4 2
ngfft 24 20 20
nkpt 1
nline 5
nspden 2
nsppol 2
nstep 15
nsym 8
ntypat 2
occ 1.000000 1.000000 1.000000 0.000000
1.000000 1.000000
occopt 2
prtvol 1
spgroup 99
symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 1 0
tolwfr 1.00000000E-16
typat 1 2
xangst -7.9376581288E-01 0.0000000000E+00 0.0000000000E+00
7.9376581288E-01 0.0000000000E+00 0.0000000000E+00
xcart -1.5000000000E+00 0.0000000000E+00 0.0000000000E+00
1.5000000000E+00 0.0000000000E+00 0.0000000000E+00
xred -1.2500000000E-01 0.0000000000E+00 0.0000000000E+00
1.2500000000E-01 0.0000000000E+00 0.0000000000E+00
znucl 1.00000 4.00000
================================================================================
chkinp: Checking input parameters for consistency.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 4, nsppol: 2, nspinor: 1, nspden: 2, mpw: 280, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 5.00000000E+00, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosGTH_pwteter/01h.pspgth
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosGTH_pwteter/01h.pspgth
- Goedecker-Teter-Hutter Wed May 8 14:27:44 EDT 1996
- 1.00000 1.00000 960508 znucl, zion, pspdat
2 1 0 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.2000000
cc1= -4.0663326; cc2= 0.6778322; cc3= 0.0000000; cc4= 0.0000000
rrs= 0.0000000; h1s= 0.0000000; h2s= 0.0000000
rrp= 0.0000000; h1p= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= -0.00480358
--- l ekb(1:nproj) -->
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosGTH_pwteter/04be.pspgth
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosGTH_pwteter/04be.pspgth
- Goedecker-Teter-Hutter Thu May 9 12:17:58 EDT 1996
- 4.00000 4.00000 960509 znucl, zion, pspdat
2 1 0 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.3250000
cc1= -23.9909934; cc2= 17.1717632; cc3= -3.3189599; cc4= 0.1650828
rrs= 0.0000000; h1s= 0.0000000; h2s= 0.0000000
rrp= 0.0000000; h1p= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= -0.00883941
--- l ekb(1:nproj) -->
pspatm: atomic psp has been read and splines computed
-6.82149656E-02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 4 bands with npw= 280 for ikpt= 1 by node 0
P newkpt: treating 2 bands with npw= 280 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 559.000 559.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 15, nline: 5, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -7.9142387050474 -7.914E+00 2.563E-04 1.449E+03
ETOT 2 -8.6893285235486 -7.751E-01 4.645E-06 4.415E+02
ETOT 3 -8.9185085879860 -2.292E-01 1.566E-02 1.947E+01
ETOT 4 -8.9255130420827 -7.004E-03 5.426E-04 5.282E+00
ETOT 5 -8.9273147323005 -1.802E-03 6.801E-04 1.643E-01
ETOT 6 -8.9274358661148 -1.211E-04 4.598E-07 4.125E-02
ETOT 7 -8.9274649610950 -2.909E-05 9.002E-08 2.622E-03
ETOT 8 -8.9274666321364 -1.671E-06 1.774E-08 4.190E-04
ETOT 9 -8.9274669442774 -3.121E-07 4.310E-09 1.417E-05
ETOT 10 -8.9274669571747 -1.290E-08 4.879E-10 9.018E-06
ETOT 11 -8.9274669648547 -7.680E-09 4.811E-11 1.144E-07
ETOT 12 -8.9274669650911 -2.363E-10 3.922E-12 9.965E-09
ETOT 13 -8.9274669651088 -1.772E-11 6.064E-14 2.493E-09
ETOT 14 -8.9274669651157 -6.910E-12 8.955E-14 2.793E-11
ETOT 15 -8.9274669651156 9.948E-14 5.152E-16 1.171E-11
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.39486061E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.36426977E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.36426977E-03 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 15 was not enough SCF cycles to converge;
maximum residual= 5.152E-16 exceeds tolwfr= 1.000E-16
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 12.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 12.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2000000E+03
convergence: {deltae: 9.948E-14, res2: 1.171E-11, residm: 5.152E-16, diffor: null, }
etotal : -8.92746697E+00
entropy : 0.00000000E+00
fermie : -1.38716892E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.39486061E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.36426977E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.36426977E-03, ]
pressure_GPa: -4.0438E+01
xred :
- [ -1.2500E-01, 0.0000E+00, 0.0000E+00, H]
- [ 1.2500E-01, 0.0000E+00, 0.0000E+00, Be]
cartesian_forces: # hartree/bohr
- [ 1.16776428E-02, -0.00000000E+00, -0.00000000E+00, ]
- [ -1.16776428E-02, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 1.16776428E-02, max: 1.16776428E-02, mean: 1.16776428E-02, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.584253 0.593793 1.178047 -0.009540
2 2.00000 1.350730 1.174833 2.525563 0.175897
---------------------------------------------------------------------
Sum: 1.934984 1.768626 3.703610 0.166357
Total magnetization (from the atomic spheres): 0.166357
Total magnetization (exact up - dn): 1.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 12.030E-17; max= 51.524E-17
reduced coordinates (array xred) for 2 atoms
-0.125000000000 0.000000000000 0.000000000000
0.125000000000 0.000000000000 0.000000000000
rms dE/dt= 8.0905E-02; max dE/dt= 1.4001E-01; dE/dt below (all hartree)
1 -0.140251831149 0.000000000000 0.000000000000
2 0.140011596260 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -0.79376581288500 0.00000000000000 0.00000000000000
2 0.79376581288500 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.01167764280874 -0.00000000000000 -0.00000000000000
2 -0.01167764280874 -0.00000000000000 -0.00000000000000
frms,max,avg= 6.7420902E-03 1.1677643E-02 1.001E-05 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.60048848644734 -0.00000000000000 -0.00000000000000
2 -0.60048848644734 -0.00000000000000 -0.00000000000000
frms,max,avg= 3.4669219E-01 6.0048849E-01 5.147E-04 0.000E+00 0.000E+00 e/A
length scales= 12.000000000000 10.000000000000 10.000000000000 bohr
= 6.350126503080 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t00o_EIG
Fermi (or HOMO) energy (hartree) = -0.13872 Average Vxc (hartree)= -0.13153
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 4, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-2.06230 -0.23789 -0.13872 -0.11450
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 2, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-2.05264 -0.23352
Fermi (or HOMO) energy (eV) = -3.77468 Average Vxc (eV)= -3.57915
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 4, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-56.11811 -6.47341 -3.77468 -3.11568
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 2, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-55.85513 -6.35435
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.82629993345408E+00
hartree : 2.80584791779415E+00
xc : -1.72800722812979E+00
Ewald energy : -1.92964196595347E+00
psp_core : -5.68458046378009E-05
local_psp : -1.19019087764759E+01
non_local_psp : 0.00000000000000E+00
total_energy : -8.92746696511561E+00
total_energy_eV : -2.42928730485230E+02
band_energy : -4.72506980637436E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.39486061E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.36426977E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.36426977E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -4.0438E+01 GPa]
- sigma(1 1)= 4.10382092E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 4.01381955E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 4.01381955E+01 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.2000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.00794000E+00 9.01218200E+00
builtintest 3
diemac 1.00000000E+00
diemix 3.33333333E-01
ecut 4.50000000E+00 Hartree
enunit 2
etotal -8.9274669651E+00
fcart 1.1677642809E-02 -0.0000000000E+00 -0.0000000000E+00
-1.1677642809E-02 -0.0000000000E+00 -0.0000000000E+00
- fftalg 512
istwfk 2
kptopt 0
P mkmem 1
natom 2
nband 4 2
ngfft 24 20 20
nkpt 1
nline 5
nspden 2
nsppol 2
nstep 15
nsym 8
ntypat 2
occ 1.000000 1.000000 1.000000 0.000000
1.000000 1.000000
occopt 2
prtvol 1
spgroup 99
strten 1.3948606147E-03 1.3642697658E-03 1.3642697658E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 1 0
tolwfr 1.00000000E-16
typat 1 2
xangst -7.9376581288E-01 0.0000000000E+00 0.0000000000E+00
7.9376581288E-01 0.0000000000E+00 0.0000000000E+00
xcart -1.5000000000E+00 0.0000000000E+00 0.0000000000E+00
1.5000000000E+00 0.0000000000E+00 0.0000000000E+00
xred -1.2500000000E-01 0.0000000000E+00 0.0000000000E+00
1.2500000000E-01 0.0000000000E+00 0.0000000000E+00
znucl 1.00000 4.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 0.3 wall= 0.4
================================================================================
Calculation completed.
.Delivered 17 WARNINGs and 6 COMMENTs to log file.
+Overall time at end (sec) : cpu= 0.3 wall= 0.4