abinit/tests/v4/Refs/t69.abo

2185 lines
110 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h10 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v4_t69-t70/t69.abi
- output file -> t69.abo
- root for input files -> t69i
- root for output files -> t69o
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 10
mpw = 77 nfft = 1728 nkpt = 10
================================================================================
P This job should need less than 1.499 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.049 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = -3 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 128
- mkqmem = 128 mk1mem = 128 mpw = 77
nfft = 1728 nkpt = 128
================================================================================
P This job should need less than 3.350 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.604 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 128
- mkqmem = 128 mk1mem = 128 mpw = 77
nfft = 1728 nkpt = 128
================================================================================
P This job should need less than 3.363 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.604 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0610000000E+01 1.0610000000E+01 1.0610000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
asr 0
chneut 0
diemac 9.00000000E+00
ecut 3.00000000E+00 Hartree
- fftalg 512
getddk1 0
getddk2 0
getddk3 -1
getwfk1 0
getwfk2 -1
getwfk3 -2
iscf1 7
iscf2 -3
iscf3 7
ixc 7
jdtset 1 2 3
kpt1 0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 1.25000000E-01 -2.50000000E-01
1.25000000E-01 1.25000000E-01 -1.25000000E-01
0.00000000E+00 1.25000000E-01 5.00000000E-01
0.00000000E+00 2.50000000E-01 -3.75000000E-01
1.25000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 2.50000000E-01 -1.25000000E-01
0.00000000E+00 3.75000000E-01 5.00000000E-01
1.25000000E-01 3.75000000E-01 -3.75000000E-01
kpt2 0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 1.25000000E-01 -2.50000000E-01
0.00000000E+00 2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 -2.50000000E-01
1.25000000E-01 1.25000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 5.00000000E-01
0.00000000E+00 2.50000000E-01 -3.75000000E-01
0.00000000E+00 3.75000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 5.00000000E-01
1.25000000E-01 1.25000000E-01 -3.75000000E-01
1.25000000E-01 2.50000000E-01 -2.50000000E-01
1.25000000E-01 3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -3.75000000E-01
2.50000000E-01 1.25000000E-01 -2.50000000E-01
2.50000000E-01 2.50000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 -2.50000000E-01
3.75000000E-01 1.25000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 2.50000000E-01
0.00000000E+00 2.50000000E-01 3.75000000E-01
0.00000000E+00 3.75000000E-01 5.00000000E-01
0.00000000E+00 5.00000000E-01 -3.75000000E-01
0.00000000E+00 -3.75000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 2.50000000E-01
1.25000000E-01 1.25000000E-01 3.75000000E-01
1.25000000E-01 2.50000000E-01 5.00000000E-01
1.25000000E-01 3.75000000E-01 -3.75000000E-01
1.25000000E-01 5.00000000E-01 -2.50000000E-01
1.25000000E-01 -3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 3.75000000E-01
2.50000000E-01 1.25000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -3.75000000E-01
2.50000000E-01 3.75000000E-01 -2.50000000E-01
2.50000000E-01 5.00000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 5.00000000E-01
3.75000000E-01 1.25000000E-01 -3.75000000E-01
3.75000000E-01 2.50000000E-01 -2.50000000E-01
3.75000000E-01 3.75000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -3.75000000E-01
5.00000000E-01 1.25000000E-01 -2.50000000E-01
5.00000000E-01 2.50000000E-01 -1.25000000E-01
-3.75000000E-01 0.00000000E+00 -2.50000000E-01
-3.75000000E-01 1.25000000E-01 -1.25000000E-01
-2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 0.00000000E+00
1.25000000E-01 0.00000000E+00 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 1.25000000E-01 -2.50000000E-01
0.00000000E+00 2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 -2.50000000E-01
1.25000000E-01 1.25000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 5.00000000E-01
0.00000000E+00 2.50000000E-01 -3.75000000E-01
0.00000000E+00 3.75000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 5.00000000E-01
1.25000000E-01 1.25000000E-01 -3.75000000E-01
1.25000000E-01 2.50000000E-01 -2.50000000E-01
1.25000000E-01 3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -3.75000000E-01
2.50000000E-01 1.25000000E-01 -2.50000000E-01
2.50000000E-01 2.50000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 -2.50000000E-01
3.75000000E-01 1.25000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 2.50000000E-01
0.00000000E+00 2.50000000E-01 3.75000000E-01
0.00000000E+00 3.75000000E-01 5.00000000E-01
0.00000000E+00 5.00000000E-01 -3.75000000E-01
0.00000000E+00 -3.75000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 2.50000000E-01
1.25000000E-01 1.25000000E-01 3.75000000E-01
1.25000000E-01 2.50000000E-01 5.00000000E-01
1.25000000E-01 3.75000000E-01 -3.75000000E-01
1.25000000E-01 5.00000000E-01 -2.50000000E-01
1.25000000E-01 -3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 3.75000000E-01
2.50000000E-01 1.25000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -3.75000000E-01
2.50000000E-01 3.75000000E-01 -2.50000000E-01
2.50000000E-01 5.00000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 5.00000000E-01
3.75000000E-01 1.25000000E-01 -3.75000000E-01
3.75000000E-01 2.50000000E-01 -2.50000000E-01
3.75000000E-01 3.75000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -3.75000000E-01
5.00000000E-01 1.25000000E-01 -2.50000000E-01
5.00000000E-01 2.50000000E-01 -1.25000000E-01
-3.75000000E-01 0.00000000E+00 -2.50000000E-01
-3.75000000E-01 1.25000000E-01 -1.25000000E-01
-2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 0.00000000E+00
1.25000000E-01 0.00000000E+00 0.00000000E+00
outvar_i_n : Printing only first 50 k-points.
kptopt1 1
kptopt2 2
kptopt3 2
kptrlatt -4 4 4 4 -4 4 4 4 -4
kptrlen 4.24400000E+01
P mkmem1 10
P mkmem2 128
P mkmem3 128
P mkqmem1 10
P mkqmem2 128
P mkqmem3 128
P mk1mem1 10
P mk1mem2 128
P mk1mem3 128
natom 2
nband1 4
nband2 4
nband3 4
ndtset 3
ngfft 12 12 12
nkpt1 10
nkpt2 128
nkpt3 128
nqpt1 0
nqpt2 1
nqpt3 1
nstep1 16
nstep2 15
nstep3 15
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 1
optdriver3 1
prtpot1 0
prtpot2 1
prtpot3 1
rfelfd1 0
rfelfd2 2
rfelfd3 3
rfphon1 0
rfphon2 0
rfphon3 1
rfstrs1 0
rfstrs2 0
rfstrs3 3
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolvrs1 1.00000000E-18
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-08
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 0.00000000E+00
typat 1 2
wtk1 0.03125 0.03125 0.09375 0.09375 0.09375 0.09375
0.18750 0.09375 0.09375 0.18750
wtk2 0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781
wtk3 0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781
outvars : Printing only first 50 k-points.
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4036425458E+00 1.4036425458E+00 1.4036425458E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6525000000E+00 2.6525000000E+00 2.6525000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 10, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 77, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3050000 5.3050000 G(1)= -0.0942507 0.0942507 0.0942507
R(2)= 5.3050000 0.0000000 5.3050000 G(2)= 0.0942507 -0.0942507 0.0942507
R(3)= 5.3050000 5.3050000 0.0000000 G(3)= 0.0942507 0.0942507 -0.0942507
Unit cell volume ucvol= 2.9859750E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05142
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- Aluminum, fhi98PP : Hamann-type, LDA CA PerdewWang, l=2 local
- 13.00000 3.00000 981214 znucl, zion, pspdat
6 7 2 2 493 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
No XC core correction.
1.024700 amesh (Hamman grid)
pspatm : epsatm= 1.36305739
--- l ekb(1:nproj) -->
0 1.768744
1 0.900554
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/33as.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/33as.pspnc
- Troullier-Martins psp for element As Thu Oct 27 17:37:14 EDT 1994
- 33.00000 5.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 4.772 10.829 1 2.5306160 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 2.745 5.580 0 2.5306160 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2.05731715564010 0.36322996461007 2.76014815959125 rchrg,fchrg,qchrg
pspatm : epsatm= 27.20579911
--- l ekb(1:nproj) -->
0 0.838751
pspatm: atomic psp has been read and splines computed
2.28550852E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 74.469 74.418
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 16, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-18, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -9.7613467299752 -9.761E+00 6.712E-04 9.226E-01
ETOT 2 -9.7656196296940 -4.273E-03 1.996E-10 5.227E-02
ETOT 3 -9.7658599609645 -2.403E-04 3.314E-06 3.525E-03
ETOT 4 -9.7658721729796 -1.221E-05 9.664E-08 7.001E-05
ETOT 5 -9.7658722909974 -1.180E-07 5.719E-10 3.175E-07
ETOT 6 -9.7658722914659 -4.685E-10 1.752E-12 7.069E-09
ETOT 7 -9.7658722914765 -1.063E-11 4.134E-14 8.487E-11
ETOT 8 -9.7658722914767 -1.812E-13 6.349E-16 2.856E-13
ETOT 9 -9.7658722914766 5.329E-14 3.031E-18 1.093E-15
ETOT 10 -9.7658722914767 -4.619E-14 1.058E-20 1.981E-18
ETOT 11 -9.7658722914767 5.329E-15 2.692E-23 1.334E-20
At SCF step 11 vres2 = 1.33E-20 < tolvrs= 1.00E-18 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.91068023E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.91068023E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.91068023E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3050000, 5.3050000, ]
- [ 5.3050000, 0.0000000, 5.3050000, ]
- [ 5.3050000, 5.3050000, 0.0000000, ]
lattice_lengths: [ 7.50240, 7.50240, 7.50240, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9859750E+02
convergence: {deltae: 5.329E-15, res2: 1.334E-20, residm: 2.692E-23, diffor: null, }
etotal : -9.76587229E+00
entropy : 0.00000000E+00
fermie : 7.84748682E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.91068023E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.91068023E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.91068023E-04, ]
pressure_GPa: -8.5635E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.89134787
2 2.00000 2.49718725
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.068E-24; max= 26.917E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40364254578497 1.40364254578497 1.40364254578497
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.610000000000 10.610000000000 10.610000000000 bohr
= 5.614570183140 5.614570183140 5.614570183140 angstroms
prteigrs : about to open file t69o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.07847 Average Vxc (hartree)= -0.33495
Eigenvalues (hartree) for nkpt= 10 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.0000 0.0000 -0.1250 (reduced coord)
-0.34865 0.03265 0.07847 0.07847
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.92021253014069E+00
hartree : 7.88950069311513E-01
xc : -3.93636576105137E+00
Ewald energy : -8.47989583509473E+00
psp_core : 7.65414498117480E-01
local_psp : -2.42022700737243E+00
non_local_psp : 5.96039214472158E-01
total_energy : -9.76587229147669E+00
total_energy_eV : -2.65742899651110E+02
band_energy : -7.16243168043123E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.91068023E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.91068023E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.91068023E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -8.5635E+00 GPa]
- sigma(1 1)= 8.56351546E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 8.56351546E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 8.56351546E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 128, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 77, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3050000 5.3050000 G(1)= -0.0942507 0.0942507 0.0942507
R(2)= 5.3050000 0.0000000 5.3050000 G(2)= 0.0942507 -0.0942507 0.0942507
R(3)= 5.3050000 5.3050000 0.0000000 G(3)= 0.0942507 0.0942507 -0.0942507
Unit cell volume ucvol= 2.9859750E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05142
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3112825778662 -8.311E+00 2.710E-02 0.000E+00
ETOT 2 -8.3150932296993 -3.811E-03 1.679E-05 0.000E+00
ETOT 3 -8.3150945863392 -1.357E-06 4.291E-09 0.000E+00
ETOT 4 -8.3150945871559 -8.168E-10 6.727E-12 0.000E+00
ETOT 5 -8.3150945871567 -7.354E-13 9.941E-15 0.000E+00
ETOT 6 -8.3150945871567 -1.421E-14 1.679E-17 0.000E+00
ETOT 7 -8.3150945871567 -1.243E-14 2.539E-20 0.000E+00
ETOT 8 -8.3150945871567 1.066E-14 9.963E-23 0.000E+00
At SCF step 8 max residual= 9.96E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.354E-24; max= 99.634E-24
dfpt_looppert : ek2= 1.6833336546E+01
f-sum rule ratio= 1.0028274804E+00
prteigrs : about to open file t69t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 128 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.00781, kpt= 0.0000 0.0000 -0.1250 (reduced coord)
0.03070 -0.19835 -0.02942 -0.02942
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.21485598E+01 eigvalue= -1.18228168E+00 local= -1.73407882E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.68809325E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.68960461E+00 enl1= 2.50743300E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.31509459E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8315094587E+01 Ha. Also 2DEtotal= -0.226265230643E+03 eV
( non-var. 2DEtotal : -8.3150945871E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3112825777647 -8.311E+00 2.710E-02 0.000E+00
ETOT 2 -8.3150932295977 -3.811E-03 1.679E-05 0.000E+00
ETOT 3 -8.3150945862376 -1.357E-06 4.291E-09 0.000E+00
ETOT 4 -8.3150945870543 -8.167E-10 6.727E-12 0.000E+00
ETOT 5 -8.3150945870551 -7.976E-13 9.941E-15 0.000E+00
ETOT 6 -8.3150945870551 6.573E-14 1.679E-17 0.000E+00
ETOT 7 -8.3150945870551 -3.020E-14 2.539E-20 0.000E+00
ETOT 8 -8.3150945870551 7.105E-15 9.963E-23 0.000E+00
At SCF step 8 max residual= 9.96E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.354E-24; max= 99.634E-24
dfpt_looppert : ek2= 1.6833336546E+01
f-sum rule ratio= 1.0028274803E+00
prteigrs : about to open file t69t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 128 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.00781, kpt= 0.0000 0.0000 -0.1250 (reduced coord)
0.03070 -0.19835 -0.02942 -0.02942
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.21485598E+01 eigvalue= -1.18228168E+00 local= -1.73407882E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.68809325E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.68960461E+00 enl1= 2.50743300E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.31509459E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8315094587E+01 Ha. Also 2DEtotal= -0.226265230641E+03 eV
( non-var. 2DEtotal : -8.3150945870E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: -3, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3112825776632 -8.311E+00 2.710E-02 0.000E+00
ETOT 2 -8.3150932294961 -3.811E-03 1.679E-05 0.000E+00
ETOT 3 -8.3150945861360 -1.357E-06 4.291E-09 0.000E+00
ETOT 4 -8.3150945869528 -8.168E-10 6.727E-12 0.000E+00
ETOT 5 -8.3150945869536 -7.780E-13 9.941E-15 0.000E+00
ETOT 6 -8.3150945869535 3.375E-14 1.679E-17 0.000E+00
ETOT 7 -8.3150945869535 2.132E-14 2.539E-20 0.000E+00
ETOT 8 -8.3150945869535 0.000E+00 9.963E-23 0.000E+00
At SCF step 8 max residual= 9.96E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.354E-24; max= 99.634E-24
dfpt_looppert : ek2= 1.6833336546E+01
f-sum rule ratio= 1.0028274803E+00
prteigrs : about to open file t69t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 128 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.00781, kpt= 0.0000 0.0000 -0.1250 (reduced coord)
-0.09209 0.59504 0.08827 0.08827
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.21485598E+01 eigvalue= -1.18228168E+00 local= -1.73407882E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.68809325E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.68960461E+00 enl1= 2.50743300E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.31509459E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8315094587E+01 Ha. Also 2DEtotal= -0.226265230638E+03 eV
( non-var. 2DEtotal : -8.3150945869E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 3.6767583618 0.0000000000
1 2 1.8383791809 0.0000000000
1 3 1.8383791809 0.0000000000
2 1 1.8383791809 0.0000000000
2 2 3.6767583618 0.0000000000
2 3 1.8383791809 0.0000000000
3 1 1.8383791809 0.0000000000
3 2 1.8383791809 0.0000000000
3 3 3.6767583618 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 128, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 77, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, rfstrs: 3, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getddk/=0, take file _1WF from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3050000 5.3050000 G(1)= -0.0942507 0.0942507 0.0942507
R(2)= 5.3050000 0.0000000 5.3050000 G(2)= 0.0942507 -0.0942507 0.0942507
R(3)= 5.3050000 5.3050000 0.0000000 G(3)= 0.0942507 0.0942507 -0.0942507
Unit cell volume ucvol= 2.9859750E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05142
--------------------------------------------------------------------------------
symkchk : k-point set has full space-group symmetry.
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
4) idir= 1 ipert= 5
5) idir= 2 ipert= 5
6) idir= 3 ipert= 5
7) idir= 1 ipert= 6
8) idir= 2 ipert= 6
9) idir= 3 ipert= 6
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 72 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 6.5139692852719 -1.464E+01 1.148E-02 1.945E+02
ETOT 2 5.0217046308344 -1.492E+00 9.268E-04 2.029E+00
ETOT 3 5.0082169138902 -1.349E-02 5.342E-06 5.671E-02
ETOT 4 5.0079142425572 -3.027E-04 1.607E-07 2.092E-03
ETOT 5 5.0079045457127 -9.697E-06 5.596E-09 3.120E-05
ETOT 6 5.0079044210093 -1.247E-07 9.980E-11 2.323E-07
ETOT 7 5.0079044201246 -8.848E-10 8.647E-13 2.760E-09
At SCF step 7 vres2 = 2.76E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.689E-14; max= 86.473E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.89184489E+01 eigvalue= 6.51144406E-01 local= -1.10599805E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.49294329E+01 Hartree= 3.64525823E+00 xc= -1.67305926E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 5.66822049E+00 enl1= -1.73706352E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.61500359E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -6.53215717E+00 fr.nonlo= 1.58462043E+01 Ewald= 1.18438931E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.5007904420E+01 Ha. Also 2DEtotal= 0.136272009510E+03 eV
(2DErelax= -1.6150035857E+01 Ha. 2DEnonrelax= 2.1157940277E+01 Ha)
( non-var. 2DEtotal : 5.0079062317E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 72 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 36.736482661612 -4.711E+01 1.177E-01 3.445E+03
ETOT 2 5.5491337914007 -3.119E+01 1.811E-02 4.799E+01
ETOT 3 5.0124402207696 -5.367E-01 5.244E-04 7.984E-01
ETOT 4 5.0078738699298 -4.566E-03 4.271E-06 1.108E-02
ETOT 5 5.0078329738345 -4.090E-05 3.402E-08 8.050E-05
ETOT 6 5.0078327231662 -2.507E-07 2.043E-10 7.110E-07
ETOT 7 5.0078327199077 -3.258E-09 3.526E-12 3.159E-08
ETOT 8 5.0078327196979 -2.098E-10 1.396E-13 1.084E-09
At SCF step 8 vres2 = 1.08E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.898E-15; max= 13.964E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 9.53917583E+01 eigvalue= 1.86581351E-01 local= -5.05659730E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.32037316E+02 Hartree= 3.55211865E+01 xc= -1.09980794E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.29855099E+00 enl1= -2.56307141E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.88340056E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 5.65027426E+01 fr.nonlo= 1.26968882E+01 Ewald= 1.18438931E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.87269502E+01 frxc 2 = 2.15252646E+01
Resulting in :
2DEtotal= 0.5007832720E+01 Ha. Also 2DEtotal= 0.136270058442E+03 eV
(2DErelax= -7.8834005572E+01 Ha. 2DEnonrelax= 8.3841838291E+01 Ha)
( non-var. 2DEtotal : 5.0078231595E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t69o_DS2_1WF7
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -205.87053094223 -2.059E+02 1.119E+00 1.361E+03
ETOT 2 -218.51687188185 -1.265E+01 8.052E-03 2.052E+01
ETOT 3 -218.74443592647 -2.276E-01 2.340E-04 3.644E-01
ETOT 4 -218.74675617608 -2.320E-03 1.705E-06 9.113E-03
ETOT 5 -218.74679483761 -3.866E-05 3.222E-08 2.577E-04
ETOT 6 -218.74679667339 -1.836E-06 1.248E-09 7.159E-06
ETOT 7 -218.74679670709 -3.370E-08 2.343E-11 4.640E-08
ETOT 8 -218.74679670726 -1.666E-10 1.714E-13 7.683E-10
At SCF step 8 vres2 = 7.68E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 39.869E-15; max= 17.135E-14
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.64688884E+02 eigvalue= -5.63281391E+01 local= -5.92756474E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -4.37493591E+02 Hartree= 3.03195715E+01 xc= -1.71729688E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.89995921E+02 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.18746797E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.2187467967E+03 Ha. Also 2DEtotal= -0.595240305335E+04 eV
( non-var. 2DEtotal : -2.1874679558E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.1894012020410 -3.392E+00 5.230E-03 8.742E+01
ETOT 2 1.4394106452843 -7.500E-01 7.521E-04 6.015E+00
ETOT 3 1.3864706459945 -5.294E-02 2.852E-05 8.250E-02
ETOT 4 1.3860376580711 -4.330E-04 2.293E-07 1.223E-03
ETOT 5 1.3860331619167 -4.496E-06 3.414E-09 1.235E-05
ETOT 6 1.3860331143470 -4.757E-08 3.003E-11 1.434E-07
ETOT 7 1.3860331138345 -5.124E-10 3.771E-13 2.906E-09
At SCF step 7 vres2 = 2.91E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.023E-14; max= 37.708E-14
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.11232950E+00 eigvalue= 2.97603081E-01 local= -2.53149611E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.04937155E+00 Hartree= 8.91376188E-01 xc= -3.53983133E-01
kin1= -4.87704857E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 6.45240291E-01 enl1= -1.32986740E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.19521771E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -4.41577348E-01 fr.kin= 3.89361671E+00 fr.loc= 3.90545224E+00
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 9.38025699E-01 fr.xc= -2.36004334E-01 Ewald= -3.24367664E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 7.65414498E-01
Resulting in :
2DEtotal= 0.1386033114E+01 Ha. Also 2DEtotal= 0.377158791032E+02 eV
(2DErelax= -4.1952177092E+00 Ha. 2DEnonrelax= 5.5812508231E+00 Ha)
( non-var. 2DEtotal : 1.3860314386E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.1896096390601 -3.392E+00 5.230E-03 8.743E+01
ETOT 2 1.4394462775443 -7.502E-01 7.523E-04 6.019E+00
ETOT 3 1.3864706385139 -5.298E-02 2.854E-05 8.251E-02
ETOT 4 1.3860376573788 -4.330E-04 2.292E-07 1.222E-03
ETOT 5 1.3860331620794 -4.495E-06 3.410E-09 1.237E-05
ETOT 6 1.3860331143601 -4.772E-08 3.007E-11 1.435E-07
ETOT 7 1.3860331138461 -5.141E-10 3.755E-13 2.934E-09
At SCF step 7 vres2 = 2.93E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.089E-14; max= 37.548E-14
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.11232954E+00 eigvalue= 2.97603088E-01 local= -2.53149612E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.04937159E+00 Hartree= 8.91376204E-01 xc= -3.53983137E-01
kin1= -4.87704860E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 6.45240284E-01 enl1= -1.32986738E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.19521771E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -4.41577348E-01 fr.kin= 3.89361671E+00 fr.loc= 3.90545224E+00
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 9.38025699E-01 fr.xc= -2.36004334E-01 Ewald= -3.24367664E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 7.65414498E-01
Resulting in :
2DEtotal= 0.1386033114E+01 Ha. Also 2DEtotal= 0.377158791035E+02 eV
(2DErelax= -4.1952177092E+00 Ha. 2DEnonrelax= 5.5812508231E+00 Ha)
( non-var. 2DEtotal : 1.3860314083E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 2.1897659670388 -3.391E+00 5.230E-03 8.744E+01
ETOT 2 1.4394751284304 -7.503E-01 7.524E-04 6.022E+00
ETOT 3 1.3864706756351 -5.300E-02 2.855E-05 8.252E-02
ETOT 4 1.3860376565549 -4.330E-04 2.291E-07 1.222E-03
ETOT 5 1.3860331620822 -4.494E-06 3.407E-09 1.236E-05
ETOT 6 1.3860331143717 -4.771E-08 3.006E-11 1.435E-07
ETOT 7 1.3860331138572 -5.145E-10 3.747E-13 2.942E-09
At SCF step 7 vres2 = 2.94E-09 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.114E-14; max= 37.466E-14
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.11232955E+00 eigvalue= 2.97603091E-01 local= -2.53149612E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.04937161E+00 Hartree= 8.91376211E-01 xc= -3.53983139E-01
kin1= -4.87704861E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 6.45240281E-01 enl1= -1.32986737E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.19521771E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -4.41577348E-01 fr.kin= 3.89361671E+00 fr.loc= 3.90545224E+00
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 9.38025699E-01 fr.xc= -2.36004334E-01 Ewald= -3.24367664E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 7.65414498E-01
Resulting in :
2DEtotal= 0.1386033114E+01 Ha. Also 2DEtotal= 0.377158791038E+02 eV
(2DErelax= -4.1952177092E+00 Ha. 2DEnonrelax= 5.5812508231E+00 Ha)
( non-var. 2DEtotal : 1.3860313962E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 40 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.4996589662060 -2.957E+00 4.506E-03 8.046E+01
ETOT 2 0.90362703952997 -5.960E-01 3.402E-04 1.138E+00
ETOT 3 0.89623323831290 -7.394E-03 4.213E-06 6.025E-02
ETOT 4 0.89592898173329 -3.043E-04 1.727E-07 1.642E-03
ETOT 5 0.89592234136494 -6.640E-06 5.663E-09 1.117E-05
ETOT 6 0.89592230018086 -4.118E-08 3.915E-11 6.514E-08
ETOT 7 0.89592229991110 -2.698E-10 3.178E-13 7.394E-10
At SCF step 7 vres2 = 7.39E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 67.121E-15; max= 31.781E-14
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.12300965E+00 eigvalue= 2.18583175E-01 local= -1.96290218E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -6.11869669E+00 Hartree= 2.82707108E+00 xc= -4.26060857E-01
kin1= -2.97065998E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.37065852E-01 enl1= 4.12086601E-01
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.56050334E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= 8.92969956E-02 fr.kin= 1.94680835E+00 fr.loc= -7.59814810E-01
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.02130469E-01 fr.xc= 4.28503362E-02 Ewald= 3.03515429E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
Resulting in :
2DEtotal= 0.8959222999E+00 Ha. Also 2DEtotal= 0.243792856116E+02 eV
(2DErelax= -3.5605033377E+00 Ha. 2DEnonrelax= 4.4564256376E+00 Ha)
( non-var. 2DEtotal : 8.9592135542E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 40 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.4996540982067 -2.957E+00 4.506E-03 8.046E+01
ETOT 2 0.90363532465801 -5.960E-01 3.402E-04 1.138E+00
ETOT 3 0.89623360845206 -7.402E-03 4.216E-06 6.028E-02
ETOT 4 0.89592899648198 -3.046E-04 1.728E-07 1.645E-03
ETOT 5 0.89592234150496 -6.655E-06 5.668E-09 1.121E-05
ETOT 6 0.89592230017752 -4.133E-08 3.932E-11 6.530E-08
ETOT 7 0.89592229990767 -2.699E-10 3.182E-13 7.414E-10
At SCF step 7 vres2 = 7.41E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 67.266E-15; max= 31.819E-14
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.12300962E+00 eigvalue= 2.18583173E-01 local= -1.96290216E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -6.11869666E+00 Hartree= 2.82707106E+00 xc= -4.26060854E-01
kin1= -2.97065997E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.37065850E-01 enl1= 4.12086602E-01
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.56050334E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= 8.92969956E-02 fr.kin= 1.94680835E+00 fr.loc= -7.59814810E-01
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.02130469E-01 fr.xc= 4.28503362E-02 Ewald= 3.03515429E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
Resulting in :
2DEtotal= 0.8959222999E+00 Ha. Also 2DEtotal= 0.243792856115E+02 eV
(2DErelax= -3.5605033377E+00 Ha. 2DEnonrelax= 4.4564256376E+00 Ha)
( non-var. 2DEtotal : 8.9592137157E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 40 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.4998321867217 -2.957E+00 4.506E-03 8.047E+01
ETOT 2 0.90364295499942 -5.962E-01 3.403E-04 1.139E+00
ETOT 3 0.89623404123752 -7.409E-03 4.220E-06 6.034E-02
ETOT 4 0.89592900604812 -3.050E-04 1.729E-07 1.647E-03
ETOT 5 0.89592234151648 -6.665E-06 5.675E-09 1.122E-05
ETOT 6 0.89592230017117 -4.135E-08 3.933E-11 6.543E-08
ETOT 7 0.89592229990095 -2.702E-10 3.187E-13 7.410E-10
At SCF step 7 vres2 = 7.41E-10 < tolvrs= 1.00E-08 =>converged.
-open ddk wf file :t69o_DS2_1WF7
-open ddk wf file :t69o_DS2_1WF8
-open ddk wf file :t69o_DS2_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 67.336E-15; max= 31.872E-14
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.12300961E+00 eigvalue= 2.18583175E-01 local= -1.96290215E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -6.11869666E+00 Hartree= 2.82707106E+00 xc= -4.26060854E-01
kin1= -2.97065997E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.37065849E-01 enl1= 4.12086602E-01
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.56050334E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= 8.92969956E-02 fr.kin= 1.94680835E+00 fr.loc= -7.59814810E-01
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.02130469E-01 fr.xc= 4.28503362E-02 Ewald= 3.03515429E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
Resulting in :
2DEtotal= 0.8959222999E+00 Ha. Also 2DEtotal= 0.243792856113E+02 eV
(2DErelax= -3.5605033377E+00 Ha. 2DEnonrelax= 4.4564256376E+00 Ha)
( non-var. 2DEtotal : 8.9592137162E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
cartesian coordinates for strain terms (1/ucvol factor
for elastic tensor components not included)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 5.0079061807 0.0000000000
1 1 2 1 2.5039530904 0.0000000000
1 1 3 1 2.5039530904 0.0000000000
1 1 1 2 -5.0078418141 -0.0000000000
1 1 2 2 -2.5039209070 0.0000000000
1 1 3 2 -2.5039209070 0.0000000000
1 1 1 4 -5.6248285458 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
1 1 1 6 -0.0000000000 0.0000000000
1 1 2 6 -0.7812490383 0.0000000000
1 1 3 6 -0.7812490414 0.0000000000
2 1 1 1 2.5039530904 0.0000000000
2 1 2 1 5.0079061807 0.0000000000
2 1 3 1 2.5039530904 0.0000000000
2 1 1 2 -2.5039209070 0.0000000000
2 1 2 2 -5.0078418141 -0.0000000000
2 1 3 2 -2.5039209070 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -5.6248285458 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 0.0000000000 0.0000000000
2 1 3 5 0.0000000000 0.0000000000
2 1 1 6 -0.7812490093 0.0000000000
2 1 2 6 -0.0000000000 0.0000000000
2 1 3 6 -0.7812490414 0.0000000000
3 1 1 1 2.5039530904 0.0000000000
3 1 2 1 2.5039530904 0.0000000000
3 1 3 1 5.0079061807 0.0000000000
3 1 1 2 -2.5039209070 0.0000000000
3 1 2 2 -2.5039209070 0.0000000000
3 1 3 2 -5.0078418141 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -5.6248285458 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
3 1 1 6 -0.7812490093 0.0000000000
3 1 2 6 -0.7812490383 0.0000000000
3 1 3 6 0.0000000000 0.0000000000
1 2 1 1 -5.0078185174 0.0000000000
1 2 2 1 -2.5039092587 -0.0000000000
1 2 3 1 -2.5039092587 -0.0000000000
1 2 1 2 5.0078226548 0.0000000000
1 2 2 2 2.5039113274 0.0000000000
1 2 3 2 2.5039113274 0.0000000000
1 2 1 4 -44.7828137668 0.0000000000
1 2 2 4 -0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
1 2 1 5 -0.0000000000 0.0000000000
1 2 2 5 -0.0000000000 0.0000000000
1 2 3 5 -0.0000000000 0.0000000000
1 2 1 6 -0.0000000000 0.0000000000
1 2 2 6 0.7812402353 0.0000000000
1 2 3 6 0.7812402600 0.0000000000
2 2 1 1 -2.5039092587 -0.0000000000
2 2 2 1 -5.0078185174 0.0000000000
2 2 3 1 -2.5039092587 -0.0000000000
2 2 1 2 2.5039113274 0.0000000000
2 2 2 2 5.0078226548 0.0000000000
2 2 3 2 2.5039113274 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
2 2 2 4 -44.7828137668 0.0000000000
2 2 3 4 -0.0000000000 0.0000000000
2 2 1 5 -0.0000000000 0.0000000000
2 2 2 5 -0.0000000000 0.0000000000
2 2 3 5 0.0000000000 0.0000000000
2 2 1 6 0.7812401712 0.0000000000
2 2 2 6 0.0000000000 0.0000000000
2 2 3 6 0.7812402600 0.0000000000
3 2 1 1 -2.5039092587 -0.0000000000
3 2 2 1 -2.5039092587 -0.0000000000
3 2 3 1 -5.0078185174 -0.0000000000
3 2 1 2 2.5039113274 0.0000000000
3 2 2 2 2.5039113274 0.0000000000
3 2 3 2 5.0078226548 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
3 2 3 4 -44.7828137668 0.0000000000
3 2 1 5 0.0000000000 0.0000000000
3 2 2 5 0.0000000000 0.0000000000
3 2 3 5 0.0000000000 0.0000000000
3 2 1 6 0.7812401712 0.0000000000
3 2 2 6 0.7812402353 0.0000000000
3 2 3 6 0.0000000000 0.0000000000
1 4 1 1 -5.6248133230 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 2 -44.7828179120 0.0000000000
1 4 2 2 -0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 1 4 -218.7467955756 0.0000000000
1 4 2 4 72.9155985252 0.0000000000
1 4 3 4 72.9155985252 0.0000000000
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
1 4 1 6 2.1380484945 0.0000000000
1 4 2 6 -2.1380484894 0.0000000000
1 4 3 6 -2.1380484733 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 -5.6248133230 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 2 2 -44.7828179120 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
2 4 1 4 72.9155985252 0.0000000000
2 4 2 4 -218.7467955756 0.0000000000
2 4 3 4 72.9155985252 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
2 4 1 6 -2.1380484945 0.0000000000
2 4 2 6 2.1380484894 0.0000000000
2 4 3 6 -2.1380484733 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 -5.6248133230 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -44.7828179120 0.0000000000
3 4 1 4 72.9155985252 0.0000000000
3 4 2 4 72.9155985252 0.0000000000
3 4 3 4 -218.7467955756 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
3 4 1 6 -2.1380484945 0.0000000000
3 4 2 6 -2.1380484894 0.0000000000
3 4 3 6 2.1380484733 0.0000000000
1 5 1 5 1.3860314386 0.0000000000
1 5 2 5 0.6057057640 0.0000000000
1 5 3 5 0.6057057521 0.0000000000
1 5 1 6 -0.0000000000 0.0000000000
1 5 2 6 -0.0000000000 0.0000000000
1 5 3 6 -0.0000000000 0.0000000000
2 5 1 5 0.6057057960 0.0000000000
2 5 2 5 1.3860314083 0.0000000000
2 5 3 5 0.6057057521 0.0000000000
2 5 1 6 0.0000000000 0.0000000000
2 5 2 6 0.0000000000 0.0000000000
2 5 3 6 -0.0000000000 0.0000000000
3 5 1 5 0.6057057960 0.0000000000
3 5 2 5 0.6057057640 0.0000000000
3 5 3 5 1.3860313962 0.0000000000
3 5 1 6 0.0000000000 0.0000000000
3 5 2 6 -0.0000000000 0.0000000000
3 5 3 6 0.0000000000 0.0000000000
1 6 1 5 -0.0000000000 0.0000000000
1 6 2 5 -0.0000000000 0.0000000000
1 6 3 5 -0.0000000000 0.0000000000
1 6 1 6 0.8959213554 0.0000000000
1 6 2 6 -0.0000000000 0.0000000000
1 6 3 6 0.0000000000 0.0000000000
2 6 1 5 -0.0000000000 0.0000000000
2 6 2 5 0.0000000000 0.0000000000
2 6 3 5 0.0000000000 0.0000000000
2 6 1 6 -0.0000000000 0.0000000000
2 6 2 6 0.8959213716 0.0000000000
2 6 3 6 0.0000000000 0.0000000000
3 6 1 5 0.0000000000 0.0000000000
3 6 2 5 0.0000000000 0.0000000000
3 6 3 5 0.0000000000 0.0000000000
3 6 1 6 0.0000000000 0.0000000000
3 6 2 6 0.0000000000 0.0000000000
3 6 3 6 0.8959213716 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0889724218 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.0889712782 -0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 -0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.0889724218 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 -0.0889712782 0.0000000000
2 1 3 2 0.0000000000 -0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 3 1 0.0889724218 0.0000000000
3 1 1 2 0.0000000000 -0.0000000000
3 1 2 2 0.0000000000 -0.0000000000
3 1 3 2 -0.0889712782 -0.0000000000
1 2 1 1 -0.0889708643 0.0000000000
1 2 2 1 0.0000000000 -0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0889709378 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 -0.0000000000
2 2 2 1 -0.0889708643 -0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 0.0889709378 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 -0.0889708643 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0889709378 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 9.7501435882 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 9.7501435882 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 9.7501435882 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 2.1047807329 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 -2.1274061765 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 2.1047807329 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -2.1274061765 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 2.1047807329 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 3 4 -0.0000000000 0.0000000000
3 2 3 4 -2.1274061765 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 2.1047831557 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 -0.0000000000 0.0000000000
2 4 2 1 2.1047831557 0.0000000000
3 4 2 1 -0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 2.1047831557 0.0000000000
1 4 1 2 -2.1274068363 0.0000000000
2 4 1 2 -0.0000000000 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -2.1274068363 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -2.1274068363 0.0000000000
Rigid-atom elastic tensor , in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 0.0046418053 0.0000000000
1 5 2 5 0.0020285025 0.0000000000
1 5 3 5 0.0020285025 0.0000000000
1 5 1 6 -0.0000000000 0.0000000000
1 5 2 6 -0.0000000000 0.0000000000
1 5 3 6 -0.0000000000 0.0000000000
2 5 1 5 0.0020285026 0.0000000000
2 5 2 5 0.0046418052 0.0000000000
2 5 3 5 0.0020285025 0.0000000000
2 5 1 6 0.0000000000 0.0000000000
2 5 2 6 0.0000000000 0.0000000000
2 5 3 6 -0.0000000000 0.0000000000
3 5 1 5 0.0020285026 0.0000000000
3 5 2 5 0.0020285025 0.0000000000
3 5 3 5 0.0046418052 0.0000000000
3 5 1 6 0.0000000000 0.0000000000
3 5 2 6 -0.0000000000 0.0000000000
3 5 3 6 0.0000000000 0.0000000000
1 6 1 5 -0.0000000000 0.0000000000
1 6 2 5 -0.0000000000 0.0000000000
1 6 3 5 -0.0000000000 0.0000000000
1 6 1 6 0.0030004316 0.0000000000
1 6 2 6 -0.0000000000 0.0000000000
1 6 3 6 0.0000000000 0.0000000000
2 6 1 5 -0.0000000000 0.0000000000
2 6 2 5 0.0000000000 0.0000000000
2 6 3 5 0.0000000000 0.0000000000
2 6 1 6 -0.0000000000 0.0000000000
2 6 2 6 0.0030004316 0.0000000000
2 6 3 6 0.0000000000 0.0000000000
3 6 1 5 0.0000000000 0.0000000000
3 6 2 5 0.0000000000 0.0000000000
3 6 3 5 0.0000000000 0.0000000000
3 6 1 6 0.0000000000 0.0000000000
3 6 2 6 0.0000000000 0.0000000000
3 6 3 6 0.0030004316 0.0000000000
Internal strain coupling parameters, in cartesian coordinates,
zero average net force deriv. has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 0.0000000000 0.0000000000
1 1 2 5 0.0000000000 0.0000000000
1 1 3 5 0.0000000000 0.0000000000
1 1 1 6 0.1472657098 0.0000000000
1 1 2 6 0.0000000000 0.0000000000
1 1 3 6 -0.0000000000 0.0000000000
2 1 1 5 -0.0000000000 0.0000000000
2 1 2 5 -0.0000000000 0.0000000000
2 1 3 5 -0.0000000000 0.0000000000
2 1 1 6 0.0000000000 0.0000000000
2 1 2 6 0.1472657185 0.0000000000
2 1 3 6 -0.0000000000 0.0000000000
3 1 1 5 -0.0000000000 0.0000000000
3 1 2 5 -0.0000000000 0.0000000000
3 1 3 5 -0.0000000000 0.0000000000
3 1 1 6 -0.0000000000 0.0000000000
3 1 2 6 -0.0000000000 0.0000000000
3 1 3 6 0.1472657211 0.0000000000
1 2 1 5 -0.0000000000 0.0000000000
1 2 2 5 -0.0000000000 0.0000000000
1 2 3 5 -0.0000000000 0.0000000000
1 2 1 6 -0.1472657098 0.0000000000
1 2 2 6 -0.0000000000 0.0000000000
1 2 3 6 0.0000000000 0.0000000000
2 2 1 5 0.0000000000 0.0000000000
2 2 2 5 0.0000000000 0.0000000000
2 2 3 5 0.0000000000 0.0000000000
2 2 1 6 -0.0000000000 0.0000000000
2 2 2 6 -0.1472657185 0.0000000000
2 2 3 6 0.0000000000 0.0000000000
3 2 1 5 0.0000000000 0.0000000000
3 2 2 5 0.0000000000 0.0000000000
3 2 3 5 0.0000000000 0.0000000000
3 2 1 6 0.0000000000 0.0000000000
3 2 2 6 0.0000000000 0.0000000000
3 2 3 6 -0.1472657211 0.0000000000
Rigid-atom proper piezoelectric tensor, in cartesian coordinates,
(from strain response)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 5 0.0000000000 0.0000000000
1 4 2 5 0.0000000000 0.0000000000
1 4 3 5 0.0000000000 0.0000000000
1 4 1 6 -0.0120911304 0.0000000000
1 4 2 6 0.0000000000 0.0000000000
1 4 3 6 0.0000000000 0.0000000000
2 4 1 5 0.0000000000 0.0000000000
2 4 2 5 0.0000000000 0.0000000000
2 4 3 5 0.0000000000 0.0000000000
2 4 1 6 0.0000000000 0.0000000000
2 4 2 6 -0.0120911304 0.0000000000
2 4 3 6 0.0000000000 0.0000000000
3 4 1 5 0.0000000000 0.0000000000
3 4 2 5 0.0000000000 0.0000000000
3 4 3 5 0.0000000000 0.0000000000
3 4 1 6 0.0000000000 0.0000000000
3 4 2 6 0.0000000000 0.0000000000
3 4 3 6 -0.0120911303 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
2.559658E-06 2.559658E-06 2.559659E-06 1.568567E-03 1.568567E-03
1.568567E-03
Phonon frequencies in cm-1 :
- 5.617799E-01 5.617800E-01 5.617802E-01 3.442606E+02 3.442606E+02
- 3.442606E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
2.559658E-06 2.559658E-06 4.043976E-06 1.568567E-03 1.568567E-03
1.729799E-03
Phonon frequencies in cm-1 :
- 5.617799E-01 5.617800E-01 8.875502E-01 3.442606E+02 3.442606E+02
- 3.796470E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
2.559658E-06 2.559659E-06 4.043976E-06 1.568567E-03 1.568567E-03
1.729799E-03
Phonon frequencies in cm-1 :
- 5.617799E-01 5.617802E-01 8.875501E-01 3.442606E+02 3.442606E+02
- 3.796470E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
2.559658E-06 2.559659E-06 4.043975E-06 1.568567E-03 1.568567E-03
1.729799E-03
Phonon frequencies in cm-1 :
- 5.617800E-01 5.617802E-01 8.875500E-01 3.442606E+02 3.442606E+02
- 3.796470E+02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0610000000E+01 1.0610000000E+01 1.0610000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
asr 0
chneut 0
diemac 9.00000000E+00
ecut 3.00000000E+00 Hartree
etotal1 -9.7658722915E+00
etotal2 -8.3150945870E+00
etotal3 8.9592229990E-01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddk1 0
getddk2 0
getddk3 -1
getwfk1 0
getwfk2 -1
getwfk3 -2
iscf1 7
iscf2 -3
iscf3 7
ixc 7
jdtset 1 2 3
kpt1 0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 1.25000000E-01 -2.50000000E-01
1.25000000E-01 1.25000000E-01 -1.25000000E-01
0.00000000E+00 1.25000000E-01 5.00000000E-01
0.00000000E+00 2.50000000E-01 -3.75000000E-01
1.25000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 2.50000000E-01 -1.25000000E-01
0.00000000E+00 3.75000000E-01 5.00000000E-01
1.25000000E-01 3.75000000E-01 -3.75000000E-01
kpt2 0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 1.25000000E-01 -2.50000000E-01
0.00000000E+00 2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 -2.50000000E-01
1.25000000E-01 1.25000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 5.00000000E-01
0.00000000E+00 2.50000000E-01 -3.75000000E-01
0.00000000E+00 3.75000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 5.00000000E-01
1.25000000E-01 1.25000000E-01 -3.75000000E-01
1.25000000E-01 2.50000000E-01 -2.50000000E-01
1.25000000E-01 3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -3.75000000E-01
2.50000000E-01 1.25000000E-01 -2.50000000E-01
2.50000000E-01 2.50000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 -2.50000000E-01
3.75000000E-01 1.25000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 2.50000000E-01
0.00000000E+00 2.50000000E-01 3.75000000E-01
0.00000000E+00 3.75000000E-01 5.00000000E-01
0.00000000E+00 5.00000000E-01 -3.75000000E-01
0.00000000E+00 -3.75000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 2.50000000E-01
1.25000000E-01 1.25000000E-01 3.75000000E-01
1.25000000E-01 2.50000000E-01 5.00000000E-01
1.25000000E-01 3.75000000E-01 -3.75000000E-01
1.25000000E-01 5.00000000E-01 -2.50000000E-01
1.25000000E-01 -3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 3.75000000E-01
2.50000000E-01 1.25000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -3.75000000E-01
2.50000000E-01 3.75000000E-01 -2.50000000E-01
2.50000000E-01 5.00000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 5.00000000E-01
3.75000000E-01 1.25000000E-01 -3.75000000E-01
3.75000000E-01 2.50000000E-01 -2.50000000E-01
3.75000000E-01 3.75000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -3.75000000E-01
5.00000000E-01 1.25000000E-01 -2.50000000E-01
5.00000000E-01 2.50000000E-01 -1.25000000E-01
-3.75000000E-01 0.00000000E+00 -2.50000000E-01
-3.75000000E-01 1.25000000E-01 -1.25000000E-01
-2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 0.00000000E+00
1.25000000E-01 0.00000000E+00 0.00000000E+00
kpt3 0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 1.25000000E-01 -2.50000000E-01
0.00000000E+00 2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 -2.50000000E-01
1.25000000E-01 1.25000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 5.00000000E-01
0.00000000E+00 2.50000000E-01 -3.75000000E-01
0.00000000E+00 3.75000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 5.00000000E-01
1.25000000E-01 1.25000000E-01 -3.75000000E-01
1.25000000E-01 2.50000000E-01 -2.50000000E-01
1.25000000E-01 3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 -3.75000000E-01
2.50000000E-01 1.25000000E-01 -2.50000000E-01
2.50000000E-01 2.50000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 -2.50000000E-01
3.75000000E-01 1.25000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 2.50000000E-01
0.00000000E+00 2.50000000E-01 3.75000000E-01
0.00000000E+00 3.75000000E-01 5.00000000E-01
0.00000000E+00 5.00000000E-01 -3.75000000E-01
0.00000000E+00 -3.75000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 -1.25000000E-01
1.25000000E-01 0.00000000E+00 2.50000000E-01
1.25000000E-01 1.25000000E-01 3.75000000E-01
1.25000000E-01 2.50000000E-01 5.00000000E-01
1.25000000E-01 3.75000000E-01 -3.75000000E-01
1.25000000E-01 5.00000000E-01 -2.50000000E-01
1.25000000E-01 -3.75000000E-01 -1.25000000E-01
2.50000000E-01 0.00000000E+00 3.75000000E-01
2.50000000E-01 1.25000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -3.75000000E-01
2.50000000E-01 3.75000000E-01 -2.50000000E-01
2.50000000E-01 5.00000000E-01 -1.25000000E-01
3.75000000E-01 0.00000000E+00 5.00000000E-01
3.75000000E-01 1.25000000E-01 -3.75000000E-01
3.75000000E-01 2.50000000E-01 -2.50000000E-01
3.75000000E-01 3.75000000E-01 -1.25000000E-01
5.00000000E-01 0.00000000E+00 -3.75000000E-01
5.00000000E-01 1.25000000E-01 -2.50000000E-01
5.00000000E-01 2.50000000E-01 -1.25000000E-01
-3.75000000E-01 0.00000000E+00 -2.50000000E-01
-3.75000000E-01 1.25000000E-01 -1.25000000E-01
-2.50000000E-01 0.00000000E+00 -1.25000000E-01
0.00000000E+00 1.25000000E-01 0.00000000E+00
1.25000000E-01 0.00000000E+00 0.00000000E+00
outvar_i_n : Printing only first 50 k-points.
kptopt1 1
kptopt2 2
kptopt3 2
kptrlatt -4 4 4 4 -4 4 4 4 -4
kptrlen 4.24400000E+01
P mkmem1 10
P mkmem2 128
P mkmem3 128
P mkqmem1 10
P mkqmem2 128
P mkqmem3 128
P mk1mem1 10
P mk1mem2 128
P mk1mem3 128
natom 2
nband1 4
nband2 4
nband3 4
ndtset 3
ngfft 12 12 12
nkpt1 10
nkpt2 128
nkpt3 128
nqpt1 0
nqpt2 1
nqpt3 1
nstep1 16
nstep2 15
nstep3 15
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 1
optdriver3 1
prtpot1 0
prtpot2 1
prtpot3 1
rfelfd1 0
rfelfd2 2
rfelfd3 3
rfphon1 0
rfphon2 0
rfphon3 1
rfstrs1 0
rfstrs2 0
rfstrs3 3
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
strten1 2.9106802349E-04 2.9106802349E-04 2.9106802349E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolvrs1 1.00000000E-18
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-08
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 0.00000000E+00
typat 1 2
wtk1 0.03125 0.03125 0.09375 0.09375 0.09375 0.09375
0.18750 0.09375 0.09375 0.18750
wtk2 0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781
wtk3 0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
0.00781 0.00781
outvars : Printing only first 50 k-points.
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4036425458E+00 1.4036425458E+00 1.4036425458E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6525000000E+00 2.6525000000E+00 2.6525000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Metric tensor formulation of strain in density-functional perturbation theory,
- D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B71, 035117 (2005).
- Comment: Non-vanishing rfstrs. Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2005
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [4] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [5] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 6.1 wall= 6.7
================================================================================
Calculation completed.
.Delivered 13 WARNINGs and 4 COMMENTs to log file.
+Overall time at end (sec) : cpu= 6.1 wall= 6.7