abinit/tests/v4/Refs/t62.abo

1343 lines
61 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h09 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v4_t62/t62.abi
- output file -> t62.abo
- root for input files -> t62i
- root for output files -> t62o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 4
lnmax = 4 mgfft = 24 mpssoang = 4 mqgrid = 1501
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
mpw = 449 nfft = 13824 nkpt = 4
================================================================================
P This job should need less than 4.892 Mbytes of memory.
P Max. in main chain + fourwf.f
P 15 blocks of mpw integer numbers, for 0.026 Mbytes.
P 59 blocks of mpw real(dp) numbers, for 0.202 Mbytes.
P 37 blocks of nfft real(dp) numbers, for 3.902 Mbytes.
P Additional real(dp) numbers, for 0.525 Mbytes.
P With residue estimated to be 0.237 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 4.892 Mbytes.
P Main chain + nonlop.f + opernl.f 4.514 Mbytes.
P XC chain 3.806 Mbytes.
P mkrho chain 3.849 Mbytes.
P fourdp chain 3.614 Mbytes.
- parallel k-point chain 3.596 Mbytes.
P newvtr chain 3.806 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.112 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 4
mgfft = 24 mpssoang = 4 mqgrid = 1501 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 449
nfft = 13824 nkpt = 4
================================================================================
P This job should need less than 4.095 Mbytes of memory.
P Max. in main chain + fourwf.f
P 30 blocks of mpw integer numbers, for 0.051 Mbytes.
P 176 blocks of mpw real(dp) numbers, for 0.603 Mbytes.
P 25 blocks of nfft real(dp) numbers, for 2.637 Mbytes.
P Additional real(dp) numbers, for 0.567 Mbytes.
P With residue estimated to be 0.237 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 4.095 Mbytes.
P Main chain + nonlop.f + opernl.f 3.720 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.112 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.1810000000E+01 1.1810000000E+01 1.1810000000E+01 Bohr
amu 1.38905500E+02 7.49215900E+01
diemac 1.00000000E+01
ecut 8.00000000E+00 Hartree
- fftalg 512
getwfk1 0
getwfk2 1
ixc 2
jdtset 1 2
kpt 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt1 1
kptopt2 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.64088805E+01
P mkmem 4
P mkqmem 4
P mk1mem 4
mqgrid 1501
natom 2
nband 4
ndtset 2
ngfft 24 24 24
nkpt 4
nloc_alg 2
nqpt1 0
nqpt2 1
nstep 50
nsym 1
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 1
prtpot1 0
prtpot2 1
prtvol 10
rfdir1 1 1 1
rfdir2 1 0 0
rfstrs1 0
rfstrs2 3
rprim -7.0000000000E-03 5.4800000000E-01 4.7300000000E-01
4.6800000000E-01 3.8000000000E-02 5.1200000000E-01
4.8100000000E-01 5.1400000000E-01 -3.2000000000E-02
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
tolvrs 1.00000000E-12
typat 1 2
wtk 0.25000 0.25000 0.25000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.9452471515E+00 3.6085716239E+00 3.0810380873E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.5657105100E+00 6.8192121000E+00 5.8223181900E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.4300000000E-01 4.9300000000E-01 5.0800000000E-01
znucl 57.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 449, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Zunger-Ceperley-Alder - ixc=2
Citation for XC functional:
J.P.Perdew and A.Zunger, PRB 23, 5048 (1981)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= -0.0826700 6.4718800 5.5861300 G(1)= -0.0894920 0.0884305 0.0752381
R(2)= 5.5270800 0.4487800 6.0467200 G(2)= 0.0882308 -0.0769357 0.0904405
R(3)= 5.6806100 6.0703400 -0.3779200 G(3)= 0.0888889 0.0761432 -0.0869012
Unit cell volume ucvol= 4.1205059E+02 bohr^3
Angles (23,13,12)= 6.22082069E+01 5.89443922E+01 5.89067595E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 8.000 => boxcut(ratio)= 2.20476
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 9.721952 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/57la.drh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/57la.drh
- psp for La for testing purposes only by D. R. Hamann in fhi format
- 57.00000 3.00000 999999 znucl, zion, pspdat
6 2 3 1 1295 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.00000000000000 1.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.012000 amesh (Hamman grid)
pspatm : epsatm= 138.07249370
--- l ekb(1:nproj) -->
0 -0.249207
2 -1.677910
3 -8.662078
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/33as.drh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/33as.drh
- psp for Asw for testing purposes only by D. R. Hamann in fhi format
- 33.00000 5.00000 999999 znucl, zion, pspdat
6 2 2 2 1249 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
4.00000000000000 1.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
1.012000 amesh (Hamman grid)
pspatm : epsatm= 26.49435566
--- l ekb(1:nproj) -->
0 2.605584
1 1.737897
pspatm: atomic psp has been read and splines computed
1.31653479E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 4 bands with npw= 446 for ikpt= 1 by node 0
P newkpt: treating 4 bands with npw= 449 for ikpt= 2 by node 0
P newkpt: treating 4 bands with npw= 442 for ikpt= 3 by node 0
P newkpt: treating 4 bands with npw= 442 for ikpt= 4 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 444.750 444.740
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.491285090623 -1.149E+01 1.012E-02 6.647E+01
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.28472 Average Vxc (hartree)= -0.33792
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.62319 -0.31963 -0.28799 -0.28472
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.61284 -0.33886 -0.30832 -0.29541
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.61382 -0.33758 -0.30959 -0.28918
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.61437 -0.33847 -0.31028 -0.28807
ETOT 2 -11.534775618952 -4.349E-02 1.114E-05 1.420E+01
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.25185 Average Vxc (hartree)= -0.34395
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.56119 -0.28966 -0.25951 -0.25185
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.54839 -0.31091 -0.27732 -0.26285
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.54925 -0.31119 -0.28030 -0.25816
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.54961 -0.31178 -0.28098 -0.25413
ETOT 3 -11.546218475348 -1.144E-02 4.989E-05 1.626E-01
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26561 Average Vxc (hartree)= -0.34198
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58847 -0.30228 -0.27256 -0.26561
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57723 -0.32281 -0.29017 -0.27748
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57800 -0.32325 -0.29266 -0.27274
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57835 -0.32367 -0.29340 -0.26887
ETOT 4 -11.546332774345 -1.143E-04 9.521E-07 1.627E-03
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26358 Average Vxc (hartree)= -0.34193
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58606 -0.29968 -0.27040 -0.26358
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57490 -0.32050 -0.28770 -0.27533
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57566 -0.32090 -0.29012 -0.27067
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57600 -0.32133 -0.29091 -0.26679
ETOT 5 -11.546334168561 -1.394E-06 3.286E-08 4.172E-04
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26348 Average Vxc (hartree)= -0.34193
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58585 -0.29955 -0.27033 -0.26348
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57467 -0.32044 -0.28757 -0.27526
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57543 -0.32084 -0.29001 -0.27059
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57577 -0.32128 -0.29079 -0.26670
ETOT 6 -11.546334514012 -3.455E-07 2.527E-09 2.628E-06
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26345 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58576 -0.29952 -0.27030 -0.26345
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57458 -0.32042 -0.28754 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57535 -0.32081 -0.28998 -0.27056
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57569 -0.32126 -0.29077 -0.26667
ETOT 7 -11.546334744919 -2.309E-07 4.690E-11 8.776E-07
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26346 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26346
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57535 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57569 -0.32127 -0.29077 -0.26668
ETOT 8 -11.546334517406 2.275E-07 3.627E-12 9.396E-09
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26347 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26347
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57536 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57570 -0.32127 -0.29078 -0.26668
ETOT 9 -11.546334517414 -8.001E-12 1.493E-13 1.933E-09
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26346 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26346
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57536 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57570 -0.32127 -0.29078 -0.26668
ETOT 10 -11.546334517416 -1.332E-12 4.797E-15 1.520E-11
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26346 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26346
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57536 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57570 -0.32127 -0.29078 -0.26668
ETOT 11 -11.546334517416 -3.197E-14 4.353E-16 1.044E-12
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26346 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26346
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57536 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57570 -0.32127 -0.29078 -0.26668
ETOT 12 -11.546334517416 -2.132E-14 9.848E-18 1.182E-13
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26346 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26346
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57536 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57570 -0.32127 -0.29078 -0.26668
At SCF step 12 vres2 = 1.18E-13 < tolvrs= 1.00E-12 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -3.72255470E-04 sigma(3 2)= 6.25806562E-05
sigma(2 2)= 3.12944205E-05 sigma(3 1)= 3.08495167E-05
sigma(3 3)= 1.42652339E-05 sigma(2 1)= 6.21068287E-05
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ -0.0826700, 6.4718800, 5.5861300, ]
- [ 5.5270800, 0.4487800, 6.0467200, ]
- [ 5.6806100, 6.0703400, -0.3779200, ]
lattice_lengths: [ 8.54967, 8.20444, 8.32233, ]
lattice_angles: [ 62.208, 58.944, 58.907, ] # degrees, (23, 13, 12)
lattice_volume: 4.1205059E+02
convergence: {deltae: -2.132E-14, res2: 1.182E-13, residm: 9.848E-18, diffor: null, }
etotal : -1.15463345E+01
entropy : 0.00000000E+00
fermie : -2.63464563E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -3.72255470E-04, 6.21068287E-05, 3.08495167E-05, ]
- [ 6.21068287E-05, 3.12944205E-05, 6.25806562E-05, ]
- [ 3.08495167E-05, 6.25806562E-05, 1.42652339E-05, ]
pressure_GPa: 3.2039E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, La]
- [ 5.4300E-01, 4.9300E-01, 5.0800E-01, As]
cartesian_forces: # hartree/bohr
- [ -1.05974308E-02, 1.62978283E-02, 8.02547605E-03, ]
- [ 1.05974308E-02, -1.62978283E-02, -8.02547605E-03, ]
force_length_stats: {min: 2.10317145E-02, max: 2.10317145E-02, mean: 2.10317145E-02, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.34863043
2 2.00000 2.44342071
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 59.429E-19; max= 98.480E-19
0.2500 0.2500 0.2500 1 9.03372E-18 kpt; spin; max resid(k); each band:
9.03E-18 4.33E-18 2.45E-18 7.00E-18
-0.2500 0.2500 0.2500 1 8.03847E-18 kpt; spin; max resid(k); each band:
7.38E-18 7.44E-18 2.58E-18 8.04E-18
0.2500 -0.2500 0.2500 1 8.77980E-18 kpt; spin; max resid(k); each band:
8.78E-18 3.51E-18 3.82E-18 6.42E-18
-0.2500 -0.2500 0.2500 1 9.84804E-18 kpt; spin; max resid(k); each band:
9.26E-18 1.54E-18 3.65E-18 9.85E-18
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.543000000000 0.493000000000 0.508000000000
rms dE/dt= 8.9714E-02; max dE/dt= 1.5196E-01; dE/dt below (all hartree)
1 -0.150415004077 0.002304474311 -0.033258716998
2 0.151955058124 -0.003157330089 0.038142281893
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.94524715150183 3.60857162386115 3.08103808730698
cartesian forces (hartree/bohr) at end:
1 -0.01059743084971 0.01629782829498 0.00802547604629
2 0.01059743084971 -0.01629782829498 -0.00802547604629
frms,max,avg= 1.2142666E-02 1.6297828E-02 -1.105E-04 -2.868E-04 1.928E-04 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.54494175882895 0.83806795648050 0.41268653640024
2 0.54494175882895 -0.83806795648050 -0.41268653640024
frms,max,avg= 6.2440094E-01 8.3806796E-01 -5.683E-03 -1.475E-02 9.915E-03 e/A
length scales= 11.810000000000 11.810000000000 11.810000000000 bohr
= 6.249582833448 6.249582833448 6.249582833448 angstroms
prteigrs : about to open file t62o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26346 Average Vxc (hartree)= -0.34194
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.58577 -0.29953 -0.27031 -0.26346
kpt# 2, nband= 4, wtk= 0.25000, kpt= -0.2500 0.2500 0.2500 (reduced coord)
-0.57459 -0.32042 -0.28755 -0.27523
kpt# 3, nband= 4, wtk= 0.25000, kpt= 0.2500 -0.2500 0.2500 (reduced coord)
-0.57536 -0.32082 -0.28999 -0.27057
kpt# 4, nband= 4, wtk= 0.25000, kpt= -0.2500 -0.2500 0.2500 (reduced coord)
-0.57570 -0.32127 -0.29078 -0.26668
Total charge density [el/Bohr^3]
) Maximum= 9.0463E-02 at reduced coord. 0.3750 0.5833 0.6250
)Next maximum= 9.0206E-02 at reduced coord. 0.3750 0.6250 0.5833
) Minimum= 1.3156E-05 at reduced coord. 0.0000 0.0000 0.0000
)Next minimum= 1.3949E-04 at reduced coord. 0.0000 0.0417 0.0000
Integrated= 8.0000E+00
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.28574127677274E+00
hartree : 9.44172342168801E-01
xc : -6.30706861204765E+00
Ewald energy : -7.96241888855914E+00
psp_core : 3.19508050058723E+00
local_psp : -3.55278877724625E+00
non_local_psp : -1.14905235909159E+00
total_energy : -1.15463345174159E+01
total_energy_eV : -3.14191740729371E+02
band_energy : -2.89401831800612E+00
...
===> extra information on forces <===
ewald contribution to reduced grads
1 -0.382802617930 -0.168763558511 -0.228991769594
2 0.382802617930 0.168763558511 0.228991769594
nonlocal contribution to red. grads
1 0.262633597793 0.188102093858 0.215798515099
2 0.024206300296 0.018537531755 0.020046585833
local psp contribution to red. grads
1 -0.087119701424 -0.042763024796 -0.054504428728
2 -0.232309358543 -0.174121123161 -0.197438272066
core charge xc contribution to reduced grads
1 0.056873717333 0.025728966234 0.034438969494
2 -0.022744498136 -0.016337290377 -0.013457792365
residual contribution to red. grads
1 0.000000000151 -0.000000002473 -0.000000003269
2 -0.000000003423 -0.000000006817 -0.000000009104
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -3.72255470E-04 sigma(3 2)= 6.25806562E-05
sigma(2 2)= 3.12944205E-05 sigma(3 1)= 3.08495167E-05
sigma(3 3)= 1.42652339E-05 sigma(2 1)= 6.21068287E-05
-Cartesian components of stress tensor (GPa) [Pressure= 3.2039E+00 GPa]
- sigma(1 1)= -1.09521322E+01 sigma(3 2)= 1.84118616E+00
- sigma(2 2)= 9.20713485E-01 sigma(3 1)= 9.07623964E-01
- sigma(3 3)= 4.19697602E-01 sigma(2 1)= 1.82724568E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 449, }
cutoff_energies: {ecut: 8.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfstrs: 3, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Zunger-Ceperley-Alder - ixc=2
Citation for XC functional:
J.P.Perdew and A.Zunger, PRB 23, 5048 (1981)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= -0.0826700 6.4718800 5.5861300 G(1)= -0.0894920 0.0884305 0.0752381
R(2)= 5.5270800 0.4487800 6.0467200 G(2)= 0.0882308 -0.0769357 0.0904405
R(3)= 5.6806100 6.0703400 -0.3779200 G(3)= 0.0888889 0.0761432 -0.0869012
Unit cell volume ucvol= 4.1205059E+02 bohr^3
Angles (23,13,12)= 6.22082069E+01 5.89443922E+01 5.89067595E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 8.000 => boxcut(ratio)= 2.20476
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 9.721952 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
symkchk : k-point set has full space-group symmetry.
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 5
2) idir= 1 ipert= 6
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-12, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 7.2383124289475 -5.581E+00 4.284E-02 2.116E+03
ETOT 2 4.7276309517124 -2.511E+00 8.557E-03 5.834E+02
ETOT 3 3.8352590493428 -8.924E-01 9.308E-04 2.308E+00
ETOT 4 3.8297529727523 -5.506E-03 5.449E-05 1.362E-01
ETOT 5 3.8295198230164 -2.331E-04 6.577E-07 2.345E-03
ETOT 6 3.8295153091918 -4.514E-06 4.066E-08 4.519E-04
ETOT 7 3.8295145162465 -7.929E-07 1.303E-09 1.060E-05
ETOT 8 3.8295144992217 -1.702E-08 9.243E-11 2.313E-06
ETOT 9 3.8295144953308 -3.891E-09 3.494E-12 9.203E-09
ETOT 10 3.8295144953062 -2.460E-11 1.749E-13 1.702E-09
ETOT 11 3.8295144953041 -2.043E-12 6.876E-15 2.226E-10
ETOT 12 3.8295144953038 -3.659E-13 6.150E-16 4.067E-12
ETOT 13 3.8295144953038 -1.776E-14 2.773E-17 5.081E-14
At SCF step 13 vres2 = 5.08E-14 < tolvrs= 1.00E-12 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 88.126E-19; max= 27.732E-18
0.2500 0.2500 0.2500 1 9.42764E-18 kpt; spin; max resid(k); each band:
3.20E-18 3.91E-18 6.92E-18 9.43E-18
-0.2500 0.2500 0.2500 1 2.77321E-17 kpt; spin; max resid(k); each band:
2.47E-18 5.96E-18 1.39E-17 2.77E-17
0.2500 -0.2500 0.2500 1 1.35821E-17 kpt; spin; max resid(k); each band:
2.81E-18 2.88E-18 9.78E-18 1.36E-17
-0.2500 -0.2500 0.2500 1 2.18122E-17 kpt; spin; max resid(k); each band:
2.74E-18 2.93E-18 1.10E-17 2.18E-17
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.10386041E+01 eigvalue= 3.83454229E+00 local= -3.96254506E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.97318511E+00 Hartree= 3.52451757E+00 xc= -8.06610176E-01
kin1= -4.99622396E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -3.68892726E+00 enl1= -1.09601970E+01
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.99002466E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -2.58424372E-01 fr.kin= 4.48716187E+00 fr.loc= 1.11224288E+00
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 8.50459661E-01 fr.xc= -6.53869765E-01 Ewald= 4.08688838E+00
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 3.19508050E+00
Resulting in :
2DEtotal= 0.3829514495E+01 Ha. Also 2DEtotal= 0.104206388929E+03 eV
(2DErelax= -8.9900246570E+00 Ha. 2DEnonrelax= 1.2819539152E+01 Ha)
( non-var. 2DEtotal : 3.8295144950E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-12, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.57860350683333 -3.236E+00 5.063E-03 1.120E+02
ETOT 2 0.44181087239159 -1.368E-01 4.538E-04 5.022E+00
ETOT 3 0.43605951646138 -5.751E-03 3.031E-05 1.866E-01
ETOT 4 0.43582591842691 -2.336E-04 1.246E-06 1.672E-02
ETOT 5 0.43579496018484 -3.096E-05 7.759E-08 3.580E-04
ETOT 6 0.43579430926924 -6.509E-07 3.076E-09 5.373E-06
ETOT 7 0.43579429907319 -1.020E-08 8.745E-11 7.073E-07
ETOT 8 0.43579429772605 -1.347E-09 6.612E-12 6.433E-08
ETOT 9 0.43579429761145 -1.146E-10 3.079E-13 1.238E-09
ETOT 10 0.43579429760892 -2.528E-12 1.151E-14 3.222E-11
ETOT 11 0.43579429760885 -7.239E-14 5.064E-16 1.209E-12
ETOT 12 0.43579429760884 -8.882E-16 1.482E-17 1.191E-13
At SCF step 12 vres2 = 1.19E-13 < tolvrs= 1.00E-12 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 58.740E-19; max= 14.823E-18
0.2500 0.2500 0.2500 1 7.31985E-18 kpt; spin; max resid(k); each band:
2.97E-18 4.67E-18 5.40E-18 7.32E-18
-0.2500 0.2500 0.2500 1 1.44204E-17 kpt; spin; max resid(k); each band:
2.77E-18 2.69E-18 9.91E-18 1.44E-17
0.2500 -0.2500 0.2500 1 7.91761E-18 kpt; spin; max resid(k); each band:
3.06E-18 2.64E-18 4.42E-18 7.92E-18
-0.2500 -0.2500 0.2500 1 1.48228E-17 kpt; spin; max resid(k); each band:
2.61E-18 3.32E-18 5.03E-18 1.48E-17
Seventeen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.12665029E+00 eigvalue= 1.43734343E+00 local= -1.52380312E+00
4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.07168247E+00 Hartree= 1.18257747E+00 xc= -1.86040007E-01
kin1= -3.34263714E+00
8,9,10: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -8.89632234E-01 enl1= -2.11197207E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.37919585E+00
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.hart= -1.14495952E-01 fr.kin= 2.16395081E+00 fr.loc= 1.11293960E+00
14,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.nonl= 1.19192873E+00 fr.xc= 6.60423179E-02 Ewald= -6.05375369E-01
17 Non-relaxation contributions : pseudopotential core energy
pspcore= 0.00000000E+00
Resulting in :
2DEtotal= 0.4357942976E+00 Ha. Also 2DEtotal= 0.118585659162E+02 eV
(2DErelax= -3.3791958487E+00 Ha. 2DEnonrelax= 3.8149901463E+00 Ha)
( non-var. 2DEtotal : 4.3579429975E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
Ewald part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 4.0868883848 0.0000000000
1 5 1 6 0.0407419141 0.0000000000
2 5 1 5 -3.2256611920 0.0000000000
2 5 1 6 -0.6386136541 0.0000000000
3 5 1 5 -3.2133746099 0.0000000000
3 5 1 6 0.5753218692 0.0000000000
1 6 1 5 0.0407419141 0.0000000000
1 6 1 6 -0.6053753686 0.0000000000
2 6 1 5 0.1052399852 0.0000000000
2 6 1 6 0.0008887763 0.0000000000
3 6 1 5 0.0041386082 0.0000000000
3 6 1 6 -0.0036059336 0.0000000000
Ewald part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 -1.1355720026 0.0000000000
1 1 1 6 -1.2454188059 0.0000000000
2 1 1 5 -0.4275072344 0.0000000000
2 1 1 6 -0.6219491645 0.0000000000
3 1 1 5 -0.6300108707 0.0000000000
3 1 1 6 -0.6367934555 0.0000000000
1 2 1 5 1.1355720026 0.0000000000
1 2 1 6 1.2454188059 0.0000000000
2 2 1 5 0.4275072344 0.0000000000
2 2 1 6 0.6219491645 0.0000000000
3 2 1 5 0.6300108707 0.0000000000
3 2 1 6 0.6367934555 0.0000000000
Frozen wf local part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 1.1122428756 0.0000000000
1 5 1 6 -0.0218900085 0.0000000000
2 5 1 5 -0.0425284496 0.0000000000
2 5 1 6 0.1463309479 0.0000000000
3 5 1 5 -0.0764434642 0.0000000000
3 5 1 6 -0.2470530176 0.0000000000
1 6 1 5 -0.0218900085 0.0000000000
1 6 1 6 1.1129396050 0.0000000000
2 6 1 5 -0.0627012158 0.0000000000
2 6 1 6 -0.0094913080 0.0000000000
3 6 1 5 -0.0306213657 0.0000000000
3 6 1 6 0.0245762265 0.0000000000
Frozen wf local part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 0.3101278246 0.0000000000
1 1 1 6 0.2833114879 0.0000000000
2 1 1 5 0.1882479344 0.0000000000
2 1 1 6 0.1990990813 0.0000000000
3 1 1 5 0.2391244340 0.0000000000
3 1 1 6 0.0892161823 0.0000000000
1 2 1 5 -0.1068458497 0.0000000000
1 2 1 6 -0.2949849124 0.0000000000
2 2 1 5 -0.0585459036 0.0000000000
2 2 1 6 -0.1593080842 0.0000000000
3 2 1 5 -0.0816826313 0.0000000000
3 2 1 6 -0.1343363315 0.0000000000
Frozen wf nonlocal part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 0.8504596611 0.0000000000
1 5 1 6 0.0293494393 0.0000000000
2 5 1 5 -0.6887263103 0.0000000000
2 5 1 6 0.0513870760 0.0000000000
3 5 1 5 -0.6946116447 0.0000000000
3 5 1 6 -0.0287841692 0.0000000000
1 6 1 5 0.0293494393 0.0000000000
1 6 1 6 1.1919287343 0.0000000000
2 6 1 5 -0.0042218471 0.0000000000
2 6 1 6 -0.0169100232 0.0000000000
3 6 1 5 -0.0059412198 0.0000000000
3 6 1 6 -0.0135872358 0.0000000000
Frozen wf nonlocal part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 0.2346613474 0.0000000000
1 1 1 6 0.3301615715 0.0000000000
2 1 1 5 -0.0439766459 0.0000000000
2 1 1 6 0.1542723013 0.0000000000
3 1 1 5 0.0044952892 0.0000000000
3 1 1 6 0.1953759827 0.0000000000
1 2 1 5 -0.0386570666 0.0000000000
1 2 1 6 -0.0012522961 0.0000000000
2 2 1 5 -0.0188534455 0.0000000000
2 2 1 6 -0.0023257721 0.0000000000
3 2 1 5 -0.0223185462 0.0000000000
3 2 1 6 0.0019998798 0.0000000000
Frozen wf xc part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 -0.6538697647 0.0000000000
1 5 1 6 0.0021668124 0.0000000000
2 5 1 5 -0.4660075455 0.0000000000
2 5 1 6 0.0242155205 0.0000000000
3 5 1 5 -0.4672858451 0.0000000000
3 5 1 6 -0.0071789333 0.0000000000
1 6 1 5 0.0021668124 0.0000000000
1 6 1 6 0.0660423179 0.0000000000
2 6 1 5 -0.0002411402 0.0000000000
2 6 1 6 0.0005698025 0.0000000000
3 6 1 5 0.0023868175 0.0000000000
3 6 1 6 -0.0005733947 0.0000000000
Frozen wf xc part of the internal strain coupling parameters
(cartesian strain, reduced atomic coordinates)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 0.0605104383 0.0000000000
1 1 1 6 0.0706296628 0.0000000000
2 1 1 5 0.0176393616 0.0000000000
2 1 1 6 0.0299498841 0.0000000000
3 1 1 5 0.0286395349 0.0000000000
3 1 1 6 0.0373571773 0.0000000000
1 2 1 5 0.0250087521 0.0000000000
1 2 1 6 0.0160327558 0.0000000000
2 2 1 5 -0.0134888393 0.0000000000
2 2 1 6 0.0451920301 0.0000000000
3 2 1 5 0.0587084891 0.0000000000
3 2 1 6 -0.0144996481 0.0000000000
Frozen wf kinetic part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 4.4871618669 0.0000000000
1 5 1 6 0.0000000000 0.0000000000
2 5 1 5 0.0000000000 0.0000000000
2 5 1 6 -0.0392007287 0.0000000000
3 5 1 5 0.0000000000 0.0000000000
3 5 1 6 -0.0392007287 0.0000000000
1 6 1 5 0.0000000000 0.0000000000
1 6 1 6 2.1639508101 0.0000000000
2 6 1 5 -0.0324043076 0.0000000000
2 6 1 6 -0.0244489221 0.0000000000
3 6 1 5 -0.0488978442 0.0000000000
3 6 1 6 -0.0162021538 0.0000000000
Frozen wf hartree part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 -0.2584243720 0.0000000000
1 5 1 6 -0.0023362528 0.0000000000
2 5 1 5 0.2968045852 0.0000000000
2 5 1 6 0.0147943588 0.0000000000
3 5 1 5 0.3093373217 0.0000000000
3 5 1 6 -0.0063360370 0.0000000000
1 6 1 5 -0.0023362528 0.0000000000
1 6 1 6 -0.1144959523 0.0000000000
2 6 1 5 0.0034236869 0.0000000000
2 6 1 6 0.0018544410 0.0000000000
3 6 1 5 0.0042793311 0.0000000000
3 6 1 6 -0.0186794575 0.0000000000
Psp core part of the elastic tensor in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 3.1950805006 0.0000000000
1 5 1 6 0.0000000000 0.0000000000
2 5 1 5 3.1950805006 0.0000000000
2 5 1 6 0.0000000000 0.0000000000
3 5 1 5 3.1950805006 0.0000000000
3 5 1 6 0.0000000000 0.0000000000
1 6 1 5 0.0000000000 0.0000000000
1 6 1 6 0.0000000000 0.0000000000
2 6 1 5 0.0000000000 0.0000000000
2 6 1 6 0.0000000000 0.0000000000
3 6 1 5 0.0000000000 0.0000000000
3 6 1 6 0.0000000000 0.0000000000
Non-stationary local part of the 2-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 -0.4722205305 0.0000000000
1 1 1 6 -0.2212735963 0.0000000000
2 1 1 5 -0.1586054073 0.0000000000
2 1 1 6 -0.0898051699 0.0000000000
3 1 1 5 -0.2363095342 0.0000000000
3 1 1 6 -0.1461169573 0.0000000000
1 2 1 5 -1.2247375708 0.0000000000
1 2 1 6 -0.7837474339 0.0000000000
2 2 1 5 -0.2508386979 0.0000000000
2 2 1 6 -0.4373910792 0.0000000000
3 2 1 5 -0.4258655764 0.0000000000
3 2 1 6 -0.4966107071 0.0000000000
1 5 1 5 -1.0118141524 0.0000000000
1 5 1 6 -0.0402143404 0.0000000000
2 5 1 5 0.8411585876 0.0000000000
2 5 1 6 0.0453820019 0.0000000000
3 5 1 5 0.8321276559 0.0000000000
3 5 1 6 -0.1271510917 0.0000000000
1 6 1 5 0.0122878634 0.0000000000
1 6 1 6 -0.6518912439 0.0000000000
2 6 1 5 -0.0096409250 0.0000000000
2 6 1 6 0.0096559679 0.0000000000
3 6 1 5 0.0080249194 0.0000000000
3 6 1 6 0.0045069453 0.0000000000
Non-stationary non-local part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 1.0488783666 0.0000000000
1 1 1 6 0.6623020981 0.0000000000
2 1 1 5 0.2961231250 0.0000000000
2 1 1 6 0.3247344716 0.0000000000
3 1 1 5 0.4468327259 0.0000000000
3 1 1 6 0.4188495024 0.0000000000
1 2 1 5 0.1848811931 0.0000000000
1 2 1 6 -0.0347216979 0.0000000000
2 2 1 5 0.0230638591 0.0000000000
2 2 1 6 -0.0155429345 0.0000000000
3 2 1 5 0.0426097199 0.0000000000
3 2 1 6 0.0383109292 0.0000000000
1 5 1 5 -7.9782105048 0.0000000000
1 5 1 6 -0.0323326587 0.0000000000
2 5 1 5 0.4486892005 0.0000000000
2 5 1 6 0.2682484787 0.0000000000
3 5 1 5 0.4765271115 0.0000000000
3 5 1 6 -0.0931744598 0.0000000000
1 6 1 5 -0.0848348711 0.0000000000
1 6 1 6 -2.7273046027 0.0000000000
2 6 1 5 0.0294248910 0.0000000000
2 6 1 6 -0.0068144250 0.0000000000
3 6 1 5 0.0948533700 0.0000000000
3 6 1 6 -0.0396117429 0.0000000000
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
cartesian coordinates for strain terms (1/ucvol factor
for elastic tensor components not included)
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 0.0463854439 0.0000000000
1 1 1 6 -0.1202875819 0.0000000000
2 1 1 5 -0.1280788665 0.0000000000
2 1 1 6 -0.0036985962 0.0000000000
3 1 1 5 -0.1472284210 0.0000000000
3 1 1 6 -0.0421115681 0.0000000000
1 2 1 5 -0.0247785394 0.0000000000
1 2 1 6 0.1467452214 0.0000000000
2 2 1 5 0.1088442071 0.0000000000
2 2 1 6 0.0525733246 0.0000000000
3 2 1 5 0.2014623259 0.0000000000
3 2 1 6 0.0316575778 0.0000000000
1 5 1 5 3.8295144950 0.0000000000
1 5 1 6 -0.0245150947 0.0000000000
2 5 1 5 0.3588093766 0.0000000000
2 5 1 6 -0.1274559991 0.0000000000
3 5 1 5 0.3613570259 0.0000000000
3 5 1 6 0.0264434319 0.0000000000
1 6 1 5 -0.0245151032 0.0000000000
1 6 1 6 0.4357942997 0.0000000000
2 6 1 5 0.0288791274 0.0000000000
2 6 1 6 -0.0446956906 0.0000000000
3 6 1 5 0.0282226165 0.0000000000
3 6 1 6 -0.0631767464 0.0000000000
Rigid-atom elastic tensor , in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 5 1 5 0.0092937970 0.0000000000
1 5 1 6 -0.0000594954 0.0000000000
2 5 1 5 0.0008707896 0.0000000000
2 5 1 6 -0.0003093212 0.0000000000
3 5 1 5 0.0008769725 0.0000000000
3 5 1 6 0.0000641752 0.0000000000
1 6 1 5 -0.0000594954 0.0000000000
1 6 1 6 0.0010576233 0.0000000000
2 6 1 5 0.0000700864 0.0000000000
2 6 1 6 -0.0001084714 0.0000000000
3 6 1 5 0.0000684931 0.0000000000
3 6 1 6 -0.0001533228 0.0000000000
Internal strain coupling parameters, in cartesian coordinates,
zero average net force deriv. has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 5 0.0291336235 0.0000000000
1 1 1 6 -0.0061875695 0.0000000000
2 1 1 5 0.0010147721 0.0000000000
2 1 1 6 0.0124507788 0.0000000000
3 1 1 5 -0.0071142273 0.0000000000
3 1 1 6 0.0093848387 0.0000000000
1 2 1 5 -0.0291336235 0.0000000000
1 2 1 6 0.0061875695 0.0000000000
2 2 1 5 -0.0010147721 0.0000000000
2 2 1 6 -0.0124507788 0.0000000000
3 2 1 5 0.0071142273 0.0000000000
3 2 1 6 -0.0093848387 0.0000000000
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.1810000000E+01 1.1810000000E+01 1.1810000000E+01 Bohr
amu 1.38905500E+02 7.49215900E+01
diemac 1.00000000E+01
ecut 8.00000000E+00 Hartree
etotal1 -1.1546334517E+01
etotal2 4.3579429761E-01
fcart1 -1.0597430850E-02 1.6297828295E-02 8.0254760463E-03
1.0597430850E-02 -1.6297828295E-02 -8.0254760463E-03
fcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getwfk1 0
getwfk2 1
ixc 2
jdtset 1 2
kpt 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt1 1
kptopt2 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.64088805E+01
P mkmem 4
P mkqmem 4
P mk1mem 4
mqgrid 1501
natom 2
nband 4
ndtset 2
ngfft 24 24 24
nkpt 4
nloc_alg 2
nqpt1 0
nqpt2 1
nstep 50
nsym 1
ntypat 2
occ 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 1
prtpot1 0
prtpot2 1
prtvol 10
rfdir1 1 1 1
rfdir2 1 0 0
rfstrs1 0
rfstrs2 3
rprim -7.0000000000E-03 5.4800000000E-01 4.7300000000E-01
4.6800000000E-01 3.8000000000E-02 5.1200000000E-01
4.8100000000E-01 5.1400000000E-01 -3.2000000000E-02
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 1
strten1 -3.7225547025E-04 3.1294420539E-05 1.4265233950E-05
6.2580656191E-05 3.0849516688E-05 6.2106828670E-05
strten2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
tolvrs 1.00000000E-12
typat 1 2
wtk 0.25000 0.25000 0.25000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.9452471515E+00 3.6085716239E+00 3.0810380873E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.5657105100E+00 6.8192121000E+00 5.8223181900E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.4300000000E-01 4.9300000000E-01 5.0800000000E-01
znucl 57.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Metric tensor formulation of strain in density-functional perturbation theory,
- D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B71, 035117 (2005).
- Comment: Non-vanishing rfstrs. Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2005
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 1.6 wall= 2.3
================================================================================
Calculation completed.
.Delivered 12 WARNINGs and 10 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.6 wall= 2.3