abinit/tests/v4/Refs/t52.abo

2295 lines
114 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h09 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v4_t52-t53-t54/t52.abi
- output file -> t52.abo
- root for input files -> t52i
- root for output files -> t52o
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 5 mffmem = 1 mkmem = 2
mpw = 74 nfft = 1728 nkpt = 2
================================================================================
P This job should need less than 1.358 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.013 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
mpw = 74 nfft = 1728 nkpt = 16
================================================================================
P This job should need less than 1.228 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.074 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 74
nfft = 1728 nkpt = 16
================================================================================
P This job should need less than 1.419 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.074 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 4 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 74
nfft = 1728 nkpt = 16
================================================================================
P This job should need less than 1.419 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.074 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 5 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
mpw = 74 nfft = 1728 nkpt = 16
================================================================================
P This job should need less than 1.439 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.074 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0616530850E+01 1.0616530850E+01 1.0616530850E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
asr 0
chneut 0
d3e_pert1_elfd1 0
d3e_pert1_elfd2 0
d3e_pert1_elfd3 0
d3e_pert1_elfd4 0
d3e_pert1_elfd5 1
d3e_pert1_phon1 0
d3e_pert1_phon2 0
d3e_pert1_phon3 0
d3e_pert1_phon4 0
d3e_pert1_phon5 1
d3e_pert2_elfd1 0
d3e_pert2_elfd2 0
d3e_pert2_elfd3 0
d3e_pert2_elfd4 0
d3e_pert2_elfd5 1
d3e_pert3_elfd1 0
d3e_pert3_elfd2 0
d3e_pert3_elfd3 0
d3e_pert3_elfd4 0
d3e_pert3_elfd5 1
ecut 3.00000000E+00 Hartree
- fftalg 512
getddk1 0
getddk2 0
getddk3 0
getddk4 3
getddk5 0
getden1 0
getden2 1
getden3 0
getden4 0
getden5 1
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
get1den1 0
get1den2 0
get1den3 0
get1den4 0
get1den5 4
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 4
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
iscf5 7
ixc 3
jdtset 1 2 3 4 5
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptopt5 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12330617E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 16
P mkmem5 16
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 16
P mkqmem5 16
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 16
P mk1mem5 16
natom 2
nband1 5
nband2 4
nband3 4
nband4 4
nband5 4
ndtset 5
ngfft 12 12 12
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 16
nkpt5 16
nstep 100
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
occ5 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 5
prepanl1 0
prepanl2 0
prepanl3 0
prepanl4 1
prepanl5 0
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 0
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 3
rfelfd5 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
toldfe1 1.00000000E-10 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 1.00000000E-10 Hartree
toldfe5 0.00000000E+00 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-18
tolwfr3 1.00000000E-18
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk5 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4045065400E+00 1.4045065400E+00 1.4045065400E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6541327125E+00 2.6541327125E+00 2.6541327125E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 74, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3082654 5.3082654 G(1)= -0.0941927 0.0941927 0.0941927
R(2)= 5.3082654 0.0000000 5.3082654 G(2)= 0.0941927 -0.0941927 0.0941927
R(3)= 5.3082654 5.3082654 0.0000000 G(3)= 0.0941927 0.0941927 -0.0941927
Unit cell volume ucvol= 2.9914923E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05016
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/13al.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/13al.pspnc
- Troullier-Martins psp for element Al Thu Oct 27 17:31:05 EDT 1994
- 13.00000 3.00000 940714 znucl, zion, pspdat
1 1 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 4.657 11.889 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 1.829 2.761 1 2.2761078 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 2.2761078 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2.09673076353074 0.12648111154518 1.01742091001718 rchrg,fchrg,qchrg
pspatm : epsatm= 0.22155260
--- l ekb(1:nproj) -->
0 2.540658
1 1.353815
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/33as.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/33as.pspnc
- Troullier-Martins psp for element As Thu Oct 27 17:37:14 EDT 1994
- 33.00000 5.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 4.772 10.829 1 2.5306160 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 2.745 5.580 0 2.5306160 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2.05731715564010 0.36322996461007 2.76014815959125 rchrg,fchrg,qchrg
pspatm : epsatm= 27.20579911
--- l ekb(1:nproj) -->
0 0.838751
pspatm: atomic psp has been read and splines computed
2.19418814E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 72.500 72.452
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -10.092510383881 -1.009E+01 1.113E-02 1.217E+00
ETOT 2 -10.097711005165 -5.201E-03 7.304E-08 3.509E-02
ETOT 3 -10.097851514347 -1.405E-04 4.448E-06 3.271E-03
ETOT 4 -10.097861198640 -9.684E-06 1.646E-07 1.117E-04
ETOT 5 -10.097861378355 -1.797E-07 2.906E-09 1.034E-06
ETOT 6 -10.097861380301 -1.946E-09 3.397E-11 2.131E-08
ETOT 7 -10.097861380330 -2.913E-11 4.671E-13 6.160E-10
ETOT 8 -10.097861380332 -1.354E-12 2.937E-14 3.333E-12
At SCF step 8, etot is converged :
for the second time, diff in etot= 1.354E-12 < toldfe= 1.000E-10
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.51223691E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.51223691E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.51223691E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3082654, 5.3082654, ]
- [ 5.3082654, 0.0000000, 5.3082654, ]
- [ 5.3082654, 5.3082654, 0.0000000, ]
lattice_lengths: [ 7.50702, 7.50702, 7.50702, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9914923E+02
convergence: {deltae: -1.354E-12, res2: 3.333E-12, residm: 2.937E-14, diffor: null, }
etotal : -1.00978614E+01
entropy : 0.00000000E+00
fermie : 7.09487818E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.51223691E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.51223691E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.51223691E-04, ]
pressure_GPa: -7.3913E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.89338206
2 2.00000 2.50518190
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.410E-15; max= 29.372E-15
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40450654002815 1.40450654002815 1.40450654002815
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.616530850000 10.616530850000 10.616530850000 bohr
= 5.618026160113 5.618026160113 5.618026160113 angstroms
prteigrs : about to open file t52o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.07095 Average Vxc (hartree)= -0.34465
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 5, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.28625 -0.09883 -0.01593 0.02612 0.17554
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.92740710956732E+00
hartree : 7.97491153311908E-01
xc : -4.34479657188193E+00
Ewald energy : -8.47467935444799E+00
psp_core : 7.33476114489264E-01
local_psp : -2.38279865789092E+00
non_local_psp : 6.46038826520839E-01
total_energy : -1.00978613803315E+01
total_energy_eV : -2.74776782185270E+02
band_energy : -6.73975357887365E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.51223691E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.51223691E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.51223691E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -7.3913E+00 GPa]
- sigma(1 1)= 7.39125493E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 7.39125493E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 7.39125493E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 74, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3082654 5.3082654 G(1)= -0.0941927 0.0941927 0.0941927
R(2)= 5.3082654 0.0000000 5.3082654 G(2)= 0.0941927 -0.0941927 0.0941927
R(3)= 5.3082654 5.3082654 0.0000000 G(3)= 0.0941927 0.0941927 -0.0941927
Unit cell volume ucvol= 2.9914923E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05016
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t52o_DS1_WFK
================================================================================
prteigrs : about to open file t52o_DS2_EIG
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
2.00E-19 9.55E-19 9.52E-20 4.08E-19
-2.8625E-01 -9.8834E-02 -1.5927E-02 2.6118E-02
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3082654, 5.3082654, ]
- [ 5.3082654, 0.0000000, 5.3082654, ]
- [ 5.3082654, 5.3082654, 0.0000000, ]
lattice_lengths: [ 7.50702, 7.50702, 7.50702, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9914923E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.555E-19, diffor: 0.000E+00, }
etotal : -1.00978614E+01
entropy : 0.00000000E+00
fermie : 7.09487818E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.89338206
2 2.00000 2.50518190
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.662E-20; max= 95.550E-20
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40450654002815 1.40450654002815 1.40450654002815
length scales= 10.616530850000 10.616530850000 10.616530850000 bohr
= 5.618026160113 5.618026160113 5.618026160113 angstroms
prteigrs : about to open file t52o_DS2_EIG
Eigenvalues (hartree) for nkpt= 16 k points:
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.28625 -0.09883 -0.01593 0.02612
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 74, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3082654 5.3082654 G(1)= -0.0941927 0.0941927 0.0941927
R(2)= 5.3082654 0.0000000 5.3082654 G(2)= 0.0941927 -0.0941927 0.0941927
R(3)= 5.3082654 5.3082654 0.0000000 G(3)= 0.0941927 0.0941927 -0.0941927
Unit cell volume ucvol= 2.9914923E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05016
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-18, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -9.7553528277383 -9.755E+00 2.070E-02 0.000E+00
ETOT 2 -9.7593229932647 -3.970E-03 8.493E-06 0.000E+00
ETOT 3 -9.7593256015904 -2.608E-06 3.522E-09 0.000E+00
ETOT 4 -9.7593256029696 -1.379E-09 3.407E-12 0.000E+00
ETOT 5 -9.7593256029710 -1.409E-12 5.272E-15 0.000E+00
ETOT 6 -9.7593256029710 1.066E-14 7.025E-18 0.000E+00
ETOT 7 -9.7593256029710 5.329E-15 8.717E-19 0.000E+00
At SCF step 7 max residual= 8.72E-19 < tolwfr= 1.00E-18 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.783E-20; max= 87.172E-20
dfpt_looppert : ek2= 1.6812632574E+01
f-sum rule ratio= 1.1786538085E+00
prteigrs : about to open file t52t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.06453 -0.07260 0.18570 0.15335
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.82193495E+01 eigvalue= -2.28792486E+00 local= -2.42461732E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.98162734E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.07407418E+00 enl1= 2.97622213E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -9.75932560E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.9759325603E+01 Ha. Also 2DEtotal= -0.265564755197E+03 eV
( non-var. 2DEtotal : -9.7593256002E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-18, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -9.7555376367364 -9.756E+00 2.070E-02 0.000E+00
ETOT 2 -9.7593232350586 -3.786E-03 8.493E-06 0.000E+00
ETOT 3 -9.7593256017519 -2.367E-06 2.658E-09 0.000E+00
ETOT 4 -9.7593256028183 -1.066E-09 1.629E-12 0.000E+00
ETOT 5 -9.7593256028192 -9.344E-13 3.092E-15 0.000E+00
ETOT 6 -9.7593256028192 1.243E-14 2.158E-18 0.000E+00
ETOT 7 -9.7593256028192 0.000E+00 8.717E-19 0.000E+00
At SCF step 7 max residual= 8.72E-19 < tolwfr= 1.00E-18 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.353E-20; max= 87.172E-20
dfpt_looppert : ek2= 1.6812632574E+01
f-sum rule ratio= 1.1786538085E+00
prteigrs : about to open file t52t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.09773 0.16204 0.19457 -0.04268
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.82193495E+01 eigvalue= -2.28792486E+00 local= -2.42461732E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.98162734E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.07407418E+00 enl1= 2.97622213E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -9.75932560E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.9759325603E+01 Ha. Also 2DEtotal= -0.265564755193E+03 eV
( non-var. 2DEtotal : -9.7593256003E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-18, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -9.7553522292565 -9.755E+00 2.070E-02 0.000E+00
ETOT 2 -9.7593229921669 -3.971E-03 8.493E-06 0.000E+00
ETOT 3 -9.7593256012854 -2.609E-06 3.521E-09 0.000E+00
ETOT 4 -9.7593256026659 -1.381E-09 3.407E-12 0.000E+00
ETOT 5 -9.7593256026673 -1.396E-12 5.271E-15 0.000E+00
ETOT 6 -9.7593256026673 5.329E-15 7.025E-18 0.000E+00
ETOT 7 -9.7593256026673 -5.329E-15 8.717E-19 0.000E+00
At SCF step 7 max residual= 8.72E-19 < tolwfr= 1.00E-18 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.799E-20; max= 87.172E-20
dfpt_looppert : ek2= 1.6812632574E+01
f-sum rule ratio= 1.1786538084E+00
prteigrs : about to open file t52t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.08113 -0.04472 -0.19013 -0.05534
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.82193495E+01 eigvalue= -2.28792486E+00 local= -2.42461732E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.98162734E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.07407418E+00 enl1= 2.97622213E-01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -9.75932560E+00
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.9759325603E+01 Ha. Also 2DEtotal= -0.265564755189E+03 eV
( non-var. 2DEtotal : -9.7593255999E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 4.9886752048 0.0000000000
1 2 2.4943376023 0.0000000000
1 3 2.4943376025 0.0000000000
2 1 2.4943376023 0.0000000000
2 2 4.9886752047 0.0000000000
2 3 2.4943376024 0.0000000000
3 1 2.4943376025 0.0000000000
3 2 2.4943376024 0.0000000000
3 3 4.9886752049 0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 74, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3082654 5.3082654 G(1)= -0.0941927 0.0941927 0.0941927
R(2)= 5.3082654 0.0000000 5.3082654 G(2)= 0.0941927 -0.0941927 0.0941927
R(3)= 5.3082654 5.3082654 0.0000000 G(3)= 0.0941927 0.0941927 -0.0941927
Unit cell volume ucvol= 2.9914923E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05016
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 6.7668548039236 -1.366E+01 1.259E-02 1.828E+02
ETOT 2 5.3765398718434 -1.390E+00 7.368E-04 4.100E+00
ETOT 3 5.3515646720352 -2.498E-02 7.978E-06 1.043E-01
ETOT 4 5.3511182114311 -4.465E-04 2.214E-07 2.886E-03
ETOT 5 5.3511072657381 -1.095E-05 3.388E-09 4.448E-05
ETOT 6 5.3511071035197 -1.622E-07 1.110E-10 1.041E-06
ETOT 7 5.3511070995730 -3.947E-09 3.635E-12 8.989E-09
ETOT 8 5.3511070995321 -4.095E-11 3.061E-14 2.618E-10
ETOT 9 5.3511070995303 -1.753E-12 8.000E-16 2.259E-12
At SCF step 9, etot is converged :
for the second time, diff in etot= 1.753E-12 < toldfe= 1.000E-10
-open ddk wf file :t52o_DS3_1WF7
-open ddk wf file :t52o_DS3_1WF8
-open ddk wf file :t52o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.587E-17; max= 79.998E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.77971952E+01 eigvalue= 4.98549261E-01 local= -1.25089807E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -5.40124552E+00 Hartree= 3.53143958E+00 xc= -1.49739473E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 7.25663493E+00 enl1= -2.47536417E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.50774436E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -1.07000633E+01 fr.nonlo= 2.01690378E+01 Ewald= 1.18366073E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -4.78080438E+00 frxc 2 = 3.90377340E+00
Resulting in :
2DEtotal= 0.5351107100E+01 Ha. Also 2DEtotal= 0.145611029361E+03 eV
(2DErelax= -1.5077443635E+01 Ha. 2DEnonrelax= 2.0428550735E+01 Ha)
( non-var. 2DEtotal : 5.3511071468E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 37.705679804787 -4.645E+01 9.866E-02 3.516E+03
ETOT 2 5.5326368832139 -3.217E+01 1.691E-02 1.702E+01
ETOT 3 5.3588559962660 -1.738E-01 1.200E-04 1.418E+00
ETOT 4 5.3512374965752 -7.618E-03 9.940E-06 2.647E-02
ETOT 5 5.3511374379176 -1.001E-04 8.422E-08 3.099E-04
ETOT 6 5.3511363966442 -1.041E-06 8.811E-10 9.048E-06
ETOT 7 5.3511363446370 -5.201E-08 2.633E-11 4.203E-07
ETOT 8 5.3511363427763 -1.861E-09 8.897E-13 5.572E-09
ETOT 9 5.3511363427479 -2.838E-11 1.271E-14 3.331E-11
ETOT 10 5.3511363427479 0.000E+00 9.694E-17 3.207E-13
At SCF step 10, etot is converged :
for the second time, diff in etot= 0.000E+00 < toldfe= 1.000E-10
-open ddk wf file :t52o_DS3_1WF7
-open ddk wf file :t52o_DS3_1WF8
-open ddk wf file :t52o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.306E-18; max= 96.942E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 9.62382219E+01 eigvalue= -9.29383765E-01 local= -5.13577297E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.32073798E+02 Hartree= 3.55804213E+01 xc= -1.08123806E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.00842682E+01 enl1= -2.55330372E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.88034175E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 5.68031724E+01 fr.nonlo= 1.27667453E+01 Ewald= 1.18366073E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.87442873E+01 frxc 2 = 2.14923161E+01
Resulting in :
2DEtotal= 0.5351136343E+01 Ha. Also 2DEtotal= 0.145611825110E+03 eV
(2DErelax= -7.8803417472E+01 Ha. 2DEnonrelax= 8.4154553815E+01 Ha)
( non-var. 2DEtotal : 5.3511363954E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t52o_DS3_1WF7
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -333.18222126829 -3.332E+02 7.663E-01 1.566E+03
ETOT 2 -347.79197379165 -1.461E+01 5.391E-03 9.705E+00
ETOT 3 -347.89306752695 -1.011E-01 7.222E-05 6.953E-01
ETOT 4 -347.89710296144 -4.035E-03 1.987E-06 2.562E-02
ETOT 5 -347.89720785389 -1.049E-04 7.749E-08 4.053E-04
ETOT 6 -347.89720966173 -1.808E-06 1.056E-09 1.832E-05
ETOT 7 -347.89720974651 -8.477E-08 3.708E-11 3.488E-07
ETOT 8 -347.89720974786 -1.355E-09 6.199E-13 3.600E-09
ETOT 9 -347.89720974787 -1.376E-11 5.694E-15 1.799E-11
ETOT 10 -347.89720974787 0.000E+00 6.097E-17 1.642E-13
At SCF step 10, etot is converged :
for the second time, diff in etot= 0.000E+00 < toldfe= 1.000E-10
-open ddk wf file :t52o_DS3_1WF7
-open ddk wf file :t52o_DS3_1WF8
-open ddk wf file :t52o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.355E-18; max= 60.970E-18
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.15927601E+03 eigvalue= -1.31144975E+02 local= -1.13774120E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -6.95794419E+02 Hartree= 4.21094924E+01 xc= -2.36608115E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.39058703E+02 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.47897210E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3478972097E+03 Ha. Also 2DEtotal= -0.946676451827E+04 eV
( non-var. 2DEtotal : -3.4789720975E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 2
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t52o_DS3_1WF8
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -333.18488808402 -3.332E+02 7.663E-01 1.566E+03
ETOT 2 -347.79175922120 -1.461E+01 5.392E-03 9.717E+00
ETOT 3 -347.89305599746 -1.013E-01 7.243E-05 6.959E-01
ETOT 4 -347.89710257874 -4.047E-03 1.988E-06 2.567E-02
ETOT 5 -347.89720775466 -1.052E-04 7.654E-08 4.235E-04
ETOT 6 -347.89720967261 -1.918E-06 1.105E-09 1.884E-05
ETOT 7 -347.89720975765 -8.503E-08 3.598E-11 3.484E-07
ETOT 8 -347.89720975900 -1.357E-09 6.194E-13 3.621E-09
ETOT 9 -347.89720975902 -1.472E-11 5.574E-15 1.817E-11
ETOT 10 -347.89720975902 1.251E-12 6.352E-17 1.645E-13
At SCF step 10, etot is converged :
for the second time, diff in etot= 1.251E-12 < toldfe= 1.000E-10
-open ddk wf file :t52o_DS3_1WF7
-open ddk wf file :t52o_DS3_1WF8
-open ddk wf file :t52o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.559E-18; max= 63.515E-18
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.15927601E+03 eigvalue= -1.31144975E+02 local= -1.13774120E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -6.95794420E+02 Hartree= 4.21094924E+01 xc= -2.36608115E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.39058703E+02 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.47897210E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3478972098E+03 Ha. Also 2DEtotal= -0.946676451858E+04 eV
( non-var. 2DEtotal : -3.4789720975E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 3
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t52o_DS3_1WF9
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -333.18222043687 -3.332E+02 7.663E-01 1.566E+03
ETOT 2 -347.79197407584 -1.461E+01 5.391E-03 9.705E+00
ETOT 3 -347.89306752455 -1.011E-01 7.222E-05 6.953E-01
ETOT 4 -347.89710294025 -4.035E-03 1.987E-06 2.562E-02
ETOT 5 -347.89720783177 -1.049E-04 7.749E-08 4.052E-04
ETOT 6 -347.89720963928 -1.808E-06 1.056E-09 1.832E-05
ETOT 7 -347.89720972405 -8.477E-08 3.708E-11 3.488E-07
ETOT 8 -347.89720972541 -1.354E-09 6.199E-13 3.600E-09
ETOT 9 -347.89720972542 -1.438E-11 5.693E-15 1.799E-11
ETOT 10 -347.89720972542 -4.547E-13 6.095E-17 1.642E-13
At SCF step 10, etot is converged :
for the second time, diff in etot= 4.547E-13 < toldfe= 1.000E-10
-open ddk wf file :t52o_DS3_1WF7
-open ddk wf file :t52o_DS3_1WF8
-open ddk wf file :t52o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.353E-18; max= 60.951E-18
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.15927600E+03 eigvalue= -1.31144975E+02 local= -1.13774120E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -6.95794419E+02 Hartree= 4.21094924E+01 xc= -2.36608115E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.39058703E+02 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.47897210E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3478972097E+03 Ha. Also 2DEtotal= -0.946676451766E+04 eV
( non-var. 2DEtotal : -3.4789720972E+02 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 5.3511071492 0.0000000000
1 1 2 1 2.6755535746 0.0000000000
1 1 3 1 2.6755535746 0.0000000000
1 1 1 2 -5.3510688789 0.0000000000
1 1 2 2 -2.6755344394 0.0000000000
1 1 3 2 -2.6755344394 0.0000000000
1 1 1 4 -7.4641518389 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 2.6755535746 0.0000000000
2 1 2 1 5.3511071492 0.0000000000
2 1 3 1 2.6755535746 0.0000000000
2 1 1 2 -2.6755344394 0.0000000000
2 1 2 2 -5.3510688789 0.0000000000
2 1 3 2 -2.6755344394 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 -7.4641518389 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 1 1 2.6755535746 0.0000000000
3 1 2 1 2.6755535746 0.0000000000
3 1 3 1 5.3511071492 0.0000000000
3 1 1 2 -2.6755344394 0.0000000000
3 1 2 2 -2.6755344394 0.0000000000
3 1 3 2 -5.3510688789 -0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
3 1 3 4 -7.4641518389 0.0000000000
1 2 1 1 -5.3510681572 -0.0000000000
1 2 2 1 -2.6755340786 -0.0000000000
1 2 3 1 -2.6755340786 -0.0000000000
1 2 1 2 5.3511363689 0.0000000000
1 2 2 2 2.6755681844 0.0000000000
1 2 3 2 2.6755681844 0.0000000000
1 2 1 4 -51.7814867422 0.0000000000
1 2 2 4 -0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 -2.6755340786 -0.0000000000
2 2 2 1 -5.3510681572 -0.0000000000
2 2 3 1 -2.6755340786 -0.0000000000
2 2 1 2 2.6755681844 0.0000000000
2 2 2 2 5.3511363689 0.0000000000
2 2 3 2 2.6755681844 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
2 2 2 4 -51.7814867422 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -2.6755340786 -0.0000000000
3 2 2 1 -2.6755340786 -0.0000000000
3 2 3 1 -5.3510681572 0.0000000000
3 2 1 2 2.6755681844 0.0000000000
3 2 2 2 2.6755681844 0.0000000000
3 2 3 2 5.3511363689 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
3 2 3 4 -51.7814867422 0.0000000000
1 4 1 1 -7.4641516204 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 2 -51.7814867027 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 1 4 -347.8972097574 0.0000000000
1 4 2 4 115.9657365858 0.0000000000
1 4 3 4 115.9657365858 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
2 4 2 1 -7.4641516204 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 -0.0000000000 0.0000000000
2 4 2 2 -51.7814867027 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 115.9657365858 0.0000000000
2 4 2 4 -347.8972097574 0.0000000000
2 4 3 4 115.9657365858 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 -0.0000000000 0.0000000000
3 4 3 1 -7.4641516204 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -51.7814867027 0.0000000000
3 4 1 4 115.9657365858 0.0000000000
3 4 2 4 115.9657365858 0.0000000000
3 4 3 4 -347.8972097574 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0949529344 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.0949522553 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0949529344 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 2 2 -0.0949522553 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0949529344 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 -0.0949522553 0.0000000000
1 2 1 1 -0.0949522425 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 0.0000000000 -0.0000000000
1 2 1 2 0.0949534529 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 -0.0949522425 -0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0949534529 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.0949522425 -0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 0.0949534529 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 14.9077598645 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 14.9077598645 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 14.9077598645 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 1.8120433389 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 -3.2412795757 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 1.8120433389 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
1 2 2 4 -0.0000000000 0.0000000000
2 2 2 4 -3.2412795757 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 1.8120433389 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 -3.2412795757 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 1.8120433736 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 -0.0000000000 0.0000000000
2 4 2 1 1.8120433736 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 1.8120433736 0.0000000000
1 4 1 2 -3.2412795694 0.0000000000
2 4 1 2 -0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 -0.0000000000 0.0000000000
2 4 2 2 -3.2412795694 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -3.2412795694 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
3.189310E-06 3.189310E-06 3.189311E-06 1.620431E-03 1.620431E-03
1.620431E-03
Phonon frequencies in cm-1 :
- 6.999727E-01 6.999727E-01 6.999729E-01 3.556435E+02 3.556435E+02
- 3.556435E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
3.189310E-06 3.189310E-06 1.646185E-04 1.620431E-03 1.620431E-03
1.733084E-03
Phonon frequencies in cm-1 :
- 6.999727E-01 6.999727E-01 3.612959E+01 3.556435E+02 3.556435E+02
- 3.803679E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
3.189310E-06 3.189311E-06 1.646185E-04 1.620431E-03 1.620431E-03
1.733084E-03
Phonon frequencies in cm-1 :
- 6.999727E-01 6.999729E-01 3.612959E+01 3.556435E+02 3.556435E+02
- 3.803679E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
3.189310E-06 3.189311E-06 1.646185E-04 1.620431E-03 1.620431E-03
1.733084E-03
Phonon frequencies in cm-1 :
- 6.999727E-01 6.999729E-01 3.612959E+01 3.556435E+02 3.556435E+02
- 3.803679E+02
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 74, }
cutoff_energies: {ecut: 3.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 5, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : get1wf/=0, take file _1WF from output of DATASET 4.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
mkfilename : get1den/=0, take file _DEN from output of DATASET 4.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
The list of irreducible elements of the Raman and non-linear
optical susceptibility tensors is:
i1pert i1dir i2pert i2dir i3pert i3dir
1) 1 1 4 1 4 1
2) 1 1 4 1 4 2
3) 1 1 4 2 4 1
4) 2 1 4 1 4 1
5) 2 1 4 1 4 2
6) 2 1 4 2 4 1
7) 4 1 1 1 4 1
8) 4 1 1 1 4 2
9) 4 1 2 1 4 1
10) 4 1 2 1 4 2
11) 4 1 4 1 4 1
12) 4 1 4 1 4 2
13) 4 1 4 2 4 1
14) 4 1 4 2 4 2
15) 4 1 4 2 4 3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3082654 5.3082654 G(1)= -0.0941927 0.0941927 0.0941927
R(2)= 5.3082654 0.0000000 5.3082654 G(2)= 0.0941927 -0.0941927 0.0941927
R(3)= 5.3082654 5.3082654 0.0000000 G(3)= 0.0941927 0.0941927 -0.0941927
Unit cell volume ucvol= 2.9914923E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 3.000 => boxcut(ratio)= 2.05016
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t52o_DS2_WFK
getshell : finite difference formula of Marzari and Vanderbilt
(see Marzari and Vanderbilt, PRB 56, 12847 (1997), Appendix B)
number of first neighbours : 6
weight : 225.4214546
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF1
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF10
Decomposition of the third-order energy for the set of perturbations
j1 : displacement of atom 1 along direction 1
j3 : homogeneous electric field along direction 1
j2 : homogeneous electric field along direction 1
real part imaginary part
xc -2.5421457899 0.0000000000
ddk -33.2923515109 0.0000000000
dft 0.2309266247 0.0000000000
j2 : homogeneous electric field along direction 2
real part imaginary part
xc 1.2710728908 0.0000000000
ddk 16.6461760432 0.0000000000
dft -0.1154633141 0.0000000000
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF11
j2 : homogeneous electric field along direction 1
real part imaginary part
xc 1.2710728908 0.0000000000
ddk 16.6461760086 0.0000000000
dft -0.1154633011 0.0000000000
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF4
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF10
Decomposition of the third-order energy for the set of perturbations
j1 : displacement of atom 2 along direction 1
j3 : homogeneous electric field along direction 1
j2 : homogeneous electric field along direction 1
real part imaginary part
xc -1.4831190306 0.0000000000
ddk 18.2834179053 0.0000000000
dft 6.6080098837 0.0000000000
j2 : homogeneous electric field along direction 2
real part imaginary part
xc 0.7415595167 0.0000000000
ddk -9.1417088885 0.0000000000
dft -3.3040049427 0.0000000000
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF11
j2 : homogeneous electric field along direction 1
real part imaginary part
xc 0.7415595167 0.0000000000
ddk -9.1417089170 0.0000000000
dft -3.3040049424 0.0000000000
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF10
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF10
j2 : displacement of atom 1 along direction 1
real part imaginary part
xc -2.5421457899 0.0000000000
dft -143.1361909833 0.0000000000
j2 : displacement of atom 2 along direction 1
real part imaginary part
xc -1.4831190306 0.0000000000
dft 165.9854148253 0.0000000000
Decomposition of the third-order energy for the set of perturbations
j1 : homogeneous electric field along direction 1
j3 : homogeneous electric field along direction 1
j2 : homogeneous electric field along direction 1
real part imaginary part
xc 2.1932370264 0.0000000000
ddk 320.2831099862 0.0000000000
dft 9.6765149142 0.0000000000
j2 : homogeneous electric field along direction 2
real part imaginary part
xc -0.7310790087 0.0000000000
ddk -106.7610366607 0.0000000000
dft -3.2255049334 0.0000000000
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF11
j2 : displacement of atom 1 along direction 1
real part imaginary part
xc 1.2710728908 0.0000000000
dft 71.5680944598 0.0000000000
j2 : displacement of atom 2 along direction 1
real part imaginary part
xc 0.7415595167 0.0000000000
dft -82.9927074735 0.0000000000
Decomposition of the third-order energy for the set of perturbations
j1 : homogeneous electric field along direction 1
j3 : homogeneous electric field along direction 2
j2 : homogeneous electric field along direction 1
real part imaginary part
xc -0.7310790087 0.0000000000
ddk -106.7610366900 0.0000000000
dft -3.2255049659 0.0000000000
j2 : homogeneous electric field along direction 2
real part imaginary part
xc -0.7310790090 0.0000000000
ddk -106.7610366563 0.0000000000
dft -3.2255049621 0.0000000000
-inwffil : will read wavefunctions from disk file t52o_DS4_1WF12
j2 : homogeneous electric field along direction 2
real part imaginary part
xc 0.7310790091 0.0000000000
ddk 106.7610366561 0.0000000000
dft 3.2255049628 0.0000000000
--- Third order energy calculation completed ---
Matrix of third-order derivatives (reduced coordinates)
before computing the permutations of the perturbations
j1 j2 j3 matrix element
dir pert dir pert dir pert real part imaginary part
1 1 1 4 1 4 -35.6035706761 0.0000000000
1 1 1 4 2 4 17.8017855984 0.0000000000
1 1 1 4 3 4 17.8017855984 0.0000000000
1 1 2 4 1 4 17.8017856199 0.0000000000
1 1 2 4 2 4 0.0000000000 0.0000000000
1 1 2 4 3 4 0.0000000000 0.0000000000
1 1 3 4 1 4 17.8017856199 0.0000000000
1 1 3 4 2 4 0.0000000000 0.0000000000
1 1 3 4 3 4 0.0000000000 0.0000000000
2 1 1 4 1 4 0.0000000000 0.0000000000
2 1 1 4 2 4 17.8017856199 0.0000000000
2 1 1 4 3 4 0.0000000000 0.0000000000
2 1 2 4 1 4 17.8017850993 0.0000000000
2 1 2 4 2 4 -35.6035706761 0.0000000000
2 1 2 4 3 4 17.8017855984 0.0000000000
2 1 3 4 1 4 0.0000000000 0.0000000000
2 1 3 4 2 4 17.8017856199 0.0000000000
2 1 3 4 3 4 0.0000000000 0.0000000000
3 1 1 4 1 4 0.0000000000 0.0000000000
3 1 1 4 2 4 0.0000000000 0.0000000000
3 1 1 4 3 4 17.8017856199 0.0000000000
3 1 2 4 1 4 0.0000000000 0.0000000000
3 1 2 4 2 4 0.0000000000 0.0000000000
3 1 2 4 3 4 17.8017856199 0.0000000000
3 1 3 4 1 4 17.8017855984 0.0000000000
3 1 3 4 2 4 17.8017850993 0.0000000000
3 1 3 4 3 4 -35.6035706761 0.0000000000
1 2 1 4 1 4 23.4083087584 0.0000000000
1 2 1 4 2 4 -11.7041543428 0.0000000000
1 2 1 4 3 4 -11.7041543428 0.0000000000
1 2 2 4 1 4 -11.7041543146 0.0000000000
1 2 2 4 2 4 0.0000000000 0.0000000000
1 2 2 4 3 4 0.0000000000 0.0000000000
1 2 3 4 1 4 -11.7041543146 0.0000000000
1 2 3 4 2 4 0.0000000000 0.0000000000
1 2 3 4 3 4 0.0000000000 0.0000000000
2 2 1 4 1 4 0.0000000000 0.0000000000
2 2 1 4 2 4 -11.7041543146 0.0000000000
2 2 1 4 3 4 0.0000000000 0.0000000000
2 2 2 4 1 4 -11.7041543873 0.0000000000
2 2 2 4 2 4 23.4083087584 0.0000000000
2 2 2 4 3 4 -11.7041543428 0.0000000000
2 2 3 4 1 4 0.0000000000 0.0000000000
2 2 3 4 2 4 -11.7041543146 0.0000000000
2 2 3 4 3 4 0.0000000000 0.0000000000
3 2 1 4 1 4 0.0000000000 0.0000000000
3 2 1 4 2 4 0.0000000000 0.0000000000
3 2 1 4 3 4 -11.7041543146 0.0000000000
3 2 2 4 1 4 0.0000000000 0.0000000000
3 2 2 4 2 4 0.0000000000 0.0000000000
3 2 2 4 3 4 -11.7041543146 0.0000000000
3 2 3 4 1 4 -11.7041543428 0.0000000000
3 2 3 4 2 4 -11.7041543873 0.0000000000
3 2 3 4 3 4 23.4083087584 0.0000000000
1 4 1 1 1 4 -145.6783367732 0.0000000000
1 4 1 1 2 4 72.8391673506 0.0000000000
1 4 1 1 3 4 72.8391673506 0.0000000000
1 4 2 1 1 4 0.0000000000 0.0000000000
1 4 2 1 2 4 72.8391673506 0.0000000000
1 4 2 1 3 4 0.0000000000 0.0000000000
1 4 3 1 1 4 0.0000000000 0.0000000000
1 4 3 1 2 4 0.0000000000 0.0000000000
1 4 3 1 3 4 72.8391673506 0.0000000000
1 4 1 2 1 4 164.5022957947 0.0000000000
1 4 1 2 2 4 -82.2511479568 0.0000000000
1 4 1 2 3 4 -82.2511479568 0.0000000000
1 4 2 2 1 4 0.0000000000 0.0000000000
1 4 2 2 2 4 -82.2511479568 0.0000000000
1 4 2 2 3 4 0.0000000000 0.0000000000
1 4 3 2 1 4 0.0000000000 0.0000000000
1 4 3 2 2 4 0.0000000000 0.0000000000
1 4 3 2 3 4 -82.2511479568 0.0000000000
1 4 1 4 1 1 -35.6035706761 0.0000000000
1 4 1 4 2 1 0.0000000000 0.0000000000
1 4 1 4 3 1 0.0000000000 0.0000000000
1 4 1 4 1 2 23.4083087584 0.0000000000
1 4 1 4 2 2 0.0000000000 0.0000000000
1 4 1 4 3 2 0.0000000000 0.0000000000
1 4 1 4 1 4 332.1528619269 0.0000000000
1 4 1 4 2 4 -110.7176206646 0.0000000000
1 4 1 4 3 4 -110.7176206274 0.0000000000
1 4 2 4 1 1 17.8017856199 0.0000000000
1 4 2 4 2 1 17.8017855984 0.0000000000
1 4 2 4 3 1 0.0000000000 0.0000000000
1 4 2 4 1 2 -11.7041543146 0.0000000000
1 4 2 4 2 2 -11.7041543428 0.0000000000
1 4 2 4 3 2 0.0000000000 0.0000000000
1 4 2 4 1 4 -110.7176206029 0.0000000000
1 4 2 4 2 4 -110.7176206274 0.0000000000
1 4 2 4 3 4 110.7176206281 0.0000000000
1 4 3 4 1 1 17.8017856199 0.0000000000
1 4 3 4 2 1 0.0000000000 0.0000000000
1 4 3 4 3 1 17.8017855984 0.0000000000
1 4 3 4 1 2 -11.7041543146 0.0000000000
1 4 3 4 2 2 0.0000000000 0.0000000000
1 4 3 4 3 2 -11.7041543428 0.0000000000
1 4 3 4 1 4 -110.7176206029 0.0000000000
1 4 3 4 2 4 110.7176206022 0.0000000000
1 4 3 4 3 4 -110.7176206646 0.0000000000
2 4 1 1 1 4 72.8391673506 0.0000000000
2 4 1 1 2 4 0.0000000000 0.0000000000
2 4 1 1 3 4 0.0000000000 0.0000000000
2 4 2 1 1 4 72.8391694225 0.0000000000
2 4 2 1 2 4 -145.6783367732 0.0000000000
2 4 2 1 3 4 72.8391673506 0.0000000000
2 4 3 1 1 4 0.0000000000 0.0000000000
2 4 3 1 2 4 0.0000000000 0.0000000000
2 4 3 1 3 4 72.8391673506 0.0000000000
2 4 1 2 1 4 -82.2511479568 0.0000000000
2 4 1 2 2 4 0.0000000000 0.0000000000
2 4 1 2 3 4 0.0000000000 0.0000000000
2 4 2 2 1 4 -82.2511478379 0.0000000000
2 4 2 2 2 4 164.5022957947 0.0000000000
2 4 2 2 3 4 -82.2511479568 0.0000000000
2 4 3 2 1 4 0.0000000000 0.0000000000
2 4 3 2 2 4 0.0000000000 0.0000000000
2 4 3 2 3 4 -82.2511479568 0.0000000000
2 4 1 4 1 1 17.8017855984 0.0000000000
2 4 1 4 2 1 17.8017850346 0.0000000000
2 4 1 4 3 1 0.0000000000 0.0000000000
2 4 1 4 1 2 -11.7041543428 0.0000000000
2 4 1 4 2 2 -11.7041544720 0.0000000000
2 4 1 4 3 2 0.0000000000 0.0000000000
2 4 1 4 1 4 -110.7176206646 0.0000000000
2 4 1 4 2 4 -110.7176207211 0.0000000000
2 4 1 4 3 4 110.7176206898 0.0000000000
2 4 2 4 1 1 0.0000000000 0.0000000000
2 4 2 4 2 1 -35.6035706761 0.0000000000
2 4 2 4 3 1 0.0000000000 0.0000000000
2 4 2 4 1 2 0.0000000000 0.0000000000
2 4 2 4 2 2 23.4083087584 0.0000000000
2 4 2 4 3 2 0.0000000000 0.0000000000
2 4 2 4 1 4 -110.7176206274 0.0000000000
2 4 2 4 2 4 332.1528619269 0.0000000000
2 4 2 4 3 4 -110.7176206646 0.0000000000
2 4 3 4 1 1 0.0000000000 0.0000000000
2 4 3 4 2 1 17.8017856199 0.0000000000
2 4 3 4 3 1 17.8017855984 0.0000000000
2 4 3 4 1 2 0.0000000000 0.0000000000
2 4 3 4 2 2 -11.7041543146 0.0000000000
2 4 3 4 3 2 -11.7041543428 0.0000000000
2 4 3 4 1 4 110.7176206022 0.0000000000
2 4 3 4 2 4 -110.7176206029 0.0000000000
2 4 3 4 3 4 -110.7176206274 0.0000000000
3 4 1 1 1 4 72.8391673506 0.0000000000
3 4 1 1 2 4 0.0000000000 0.0000000000
3 4 1 1 3 4 0.0000000000 0.0000000000
3 4 2 1 1 4 0.0000000000 0.0000000000
3 4 2 1 2 4 72.8391673506 0.0000000000
3 4 2 1 3 4 0.0000000000 0.0000000000
3 4 3 1 1 4 72.8391673506 0.0000000000
3 4 3 1 2 4 72.8391694225 0.0000000000
3 4 3 1 3 4 -145.6783367732 0.0000000000
3 4 1 2 1 4 -82.2511479568 0.0000000000
3 4 1 2 2 4 0.0000000000 0.0000000000
3 4 1 2 3 4 0.0000000000 0.0000000000
3 4 2 2 1 4 0.0000000000 0.0000000000
3 4 2 2 2 4 -82.2511479568 0.0000000000
3 4 2 2 3 4 0.0000000000 0.0000000000
3 4 3 2 1 4 -82.2511479568 0.0000000000
3 4 3 2 2 4 -82.2511478379 0.0000000000
3 4 3 2 3 4 164.5022957947 0.0000000000
3 4 1 4 1 1 17.8017855984 0.0000000000
3 4 1 4 2 1 0.0000000000 0.0000000000
3 4 1 4 3 1 17.8017856199 0.0000000000
3 4 1 4 1 2 -11.7041543428 0.0000000000
3 4 1 4 2 2 0.0000000000 0.0000000000
3 4 1 4 3 2 -11.7041543146 0.0000000000
3 4 1 4 1 4 -110.7176206891 0.0000000000
3 4 1 4 2 4 110.7176206898 0.0000000000
3 4 1 4 3 4 -110.7176206029 0.0000000000
3 4 2 4 1 1 0.0000000000 0.0000000000
3 4 2 4 2 1 17.8017855984 0.0000000000
3 4 2 4 3 1 17.8017850346 0.0000000000
3 4 2 4 1 2 0.0000000000 0.0000000000
3 4 2 4 2 2 -11.7041543428 0.0000000000
3 4 2 4 3 2 -11.7041544720 0.0000000000
3 4 2 4 1 4 110.7176206281 0.0000000000
3 4 2 4 2 4 -110.7176206646 0.0000000000
3 4 2 4 3 4 -110.7176207211 0.0000000000
3 4 3 4 1 1 0.0000000000 0.0000000000
3 4 3 4 2 1 0.0000000000 0.0000000000
3 4 3 4 3 1 -35.6035706761 0.0000000000
3 4 3 4 1 2 0.0000000000 0.0000000000
3 4 3 4 2 2 0.0000000000 0.0000000000
3 4 3 4 3 2 23.4083087584 0.0000000000
3 4 3 4 1 4 -110.7176206349 0.0000000000
3 4 3 4 2 4 -110.7176206274 0.0000000000
3 4 3 4 3 4 332.1528619269 0.0000000000
Non-linear optical susceptibility tensor d (pm/V)
in cartesian coordinates
i1dir i2dir i3dir d
1 1 1 0.000000004
1 1 2 0.000000003
1 1 3 0.000000002
1 2 1 0.000000003
1 2 2 0.000000000
1 2 3 32.723425551
1 3 1 0.000000002
1 3 2 32.723425551
1 3 3 0.000000003
2 1 1 0.000000003
2 1 2 0.000000000
2 1 3 32.723425551
2 2 1 0.000000000
2 2 2 -0.000000002
2 2 3 0.000000001
2 3 1 32.723425551
2 3 2 0.000000001
2 3 3 0.000000002
3 1 1 0.000000002
3 1 2 32.723425551
3 1 3 0.000000003
3 2 1 32.723425551
3 2 2 0.000000001
3 2 3 0.000000002
3 3 1 0.000000003
3 3 2 0.000000002
3 3 3 0.000000004
First-order change in the electronic dielectric
susceptibility tensor (Bohr^-1)
induced by an atomic displacement
atom displacement
1 1 0.000000000 -0.000000000 -0.000000000
-0.000000000 -0.000000000 -0.194968961
-0.000000000 -0.194968961 -0.000000000
1 2 -0.000000000 0.000000000 -0.194968960
0.000000000 0.000000001 0.000000000
-0.194968960 0.000000000 0.000000000
1 3 0.000000000 -0.194968960 0.000000000
-0.194968960 -0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
2 1 -0.000000000 0.000000000 0.000000000
-0.000000000 -0.000000000 0.189964903
0.000000000 0.189964903 0.000000000
2 2 0.000000000 -0.000000000 0.189964903
-0.000000000 -0.000000000 -0.000000000
0.189964903 -0.000000000 -0.000000000
2 3 -0.000000000 0.189964903 -0.000000000
0.189964903 -0.000000000 -0.000000000
-0.000000000 -0.000000000 -0.000000000
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0616530850E+01 1.0616530850E+01 1.0616530850E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
asr 0
chneut 0
d3e_pert1_elfd1 0
d3e_pert1_elfd2 0
d3e_pert1_elfd3 0
d3e_pert1_elfd4 0
d3e_pert1_elfd5 1
d3e_pert1_phon1 0
d3e_pert1_phon2 0
d3e_pert1_phon3 0
d3e_pert1_phon4 0
d3e_pert1_phon5 1
d3e_pert2_elfd1 0
d3e_pert2_elfd2 0
d3e_pert2_elfd3 0
d3e_pert2_elfd4 0
d3e_pert2_elfd5 1
d3e_pert3_elfd1 0
d3e_pert3_elfd2 0
d3e_pert3_elfd3 0
d3e_pert3_elfd4 0
d3e_pert3_elfd5 1
ecut 3.00000000E+00 Hartree
etotal1 -1.0097861380E+01
etotal3 -9.7593256027E+00
etotal4 -3.4789720973E+02
etotal5 0.0000000000E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddk1 0
getddk2 0
getddk3 0
getddk4 3
getddk5 0
getden1 0
getden2 1
getden3 0
getden4 0
getden5 1
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
get1den1 0
get1den2 0
get1den3 0
get1den4 0
get1den5 4
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 4
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
iscf5 7
ixc 3
jdtset 1 2 3 4 5
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptopt5 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12330617E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 16
P mkmem5 16
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 16
P mkqmem5 16
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 16
P mk1mem5 16
natom 2
nband1 5
nband2 4
nband3 4
nband4 4
nband5 4
ndtset 5
ngfft 12 12 12
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 16
nkpt5 16
nstep 100
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
occ5 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 5
prepanl1 0
prepanl2 0
prepanl3 0
prepanl4 1
prepanl5 0
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 0
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 3
rfelfd5 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
strten1 2.5122369121E-04 2.5122369121E-04 2.5122369121E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
toldfe1 1.00000000E-10 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 1.00000000E-10 Hartree
toldfe5 0.00000000E+00 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-18
tolwfr3 1.00000000E-18
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk5 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4045065400E+00 1.4045065400E+00 1.4045065400E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6541327125E+00 2.6541327125E+00 2.6541327125E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Nonlinear optical susceptibilities, Raman efficiencies, and electrooptic tensors
- from first principles density functional theory.
- M. Veithen, X. Gonze, and Ph. Ghosez, Phys. Rev. B 71, 125107 (2005).
- Comment: to be cited for non-linear response calculations, with optdriver=5.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#veithen2005
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [4] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.2 wall= 4.4
================================================================================
Calculation completed.
.Delivered 42 WARNINGs and 14 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.2 wall= 4.4