abinit/tests/v4/Refs/t39.out

1196 lines
45 KiB
Plaintext

.Version 9.0.0 of CUT3D
.(MPI version, prepared for a x86_64_linux_gnu9.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
CUT3D comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Mon 24 Feb 2020.
- ( at 16h16 )
What is the name of the 3D function (density, potential or wavef) file ?
=> Your 3D function file is: t38o_DS2_WFK
- Your file contains unformatted binary header + 3D data
===============================================================================
ECHO of the ABINIT file header
First record :
.codvsn,headform,fform = 9.0.0 80 2
Second record :
bantot,intxc,ixc,natom = 24 0 1 2
ngfft(1:3),nkpt = 20 20 20 3
nspden,nspinor = 1 1
nsppol,nsym,npsp,ntypat = 1 48 1 1
occopt,pertcase,usepaw = 1 0 0
ecut,ecutdg,ecutsm = 8.0000000000E+00 8.0000000000E+00 0.0000000000E+00
ecut_eff = 8.0000000000E+00
qptn(1:3) = 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
rprimd(1:3,1) = 0.0000000000E+00 5.0900000000E+00 5.0900000000E+00
rprimd(1:3,2) = 5.0900000000E+00 0.0000000000E+00 5.0900000000E+00
rprimd(1:3,3) = 5.0900000000E+00 5.0900000000E+00 0.0000000000E+00
stmbias,tphysel,tsmear = 0.0000000000E+00 0.0000000000E+00 1.0000000000E-02
Third record :
istwfk= 1 1 1
nband = 8 8 8
npwarr= 283 302 272
so_psp= 1
symafm=
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
symrel=
1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
type = 1 1
kptns = (max 50 k-points will be written)
0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 5.000000E-01 5.000000E-01
5.000000E-01 5.000000E-01 5.000000E-01
wtk =
1.00 1.00 1.00
occ =
2.00 2.00 2.00 2.00 0.00 0.00 0.00 0.00 2.00 2.00
2.00 2.00 0.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00
0.00 0.00 0.00 0.00
tnons =
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
0.000000 0.000000 0.000000 0.250000 0.250000 0.250000
znucl= 14.00
Pseudopotential info :
title= Troullier-Martins psp for element Si Thu Oct 27 17:31:21 EDT 1994
znuclpsp= 14.00, zionpsp= 4.00, pspso= 0, pspdat=940714, pspcod= 1, pspxc= 1
lmnmax = 2
Last record :
residm,etot,fermie= 8.341161E-17 -8.866223895987E+00 1.938279E-01
xred =
0.000000E+00 0.000000E+00 0.000000E+00
2.500000E-01 2.500000E-01 2.500000E-01
End the ECHO of the ABINIT file header
===============================================================================
===========================================================
ECHO important input variables ...
Dimensional primitive vectors (ABINIT equivalent: rprimd):
0.000000E+00 5.090000E+00 5.090000E+00
5.090000E+00 0.000000E+00 5.090000E+00
5.090000E+00 5.090000E+00 0.000000E+00
Grid density (ABINIT equivalent: ngfft): 20 20 20
Number of atoms : 2
Number of atomic types: 1
# Atomic positions (cartesian coordinates - Bohr)
1 0.000000E+00 0.000000E+00 0.000000E+00
2 2.545000E+00 2.545000E+00 2.545000E+00
This file is a WF file.
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 1
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 1)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.60000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.630000E+01 463
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.417726
l=0, charge= 0.413230, m=-l,l splitting: 0.413
l=1, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000
l=2, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000
l=3, charge= 0.004066, m=-l,l splitting: 0.000 0.004 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.000430, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.417726
l=0, charge= 0.413230, m=-l,l splitting: 0.413
l=1, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000
l=2, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000
l=3, charge= 0.004066, m=-l,l splitting: 0.000 0.004 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.000430, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.826460 proportion = 0.989238
l=1, charge = 0.000000 proportion = 0.000000
l=2, charge = 0.000000 proportion = 0.000000
l=3, charge = 0.008132 proportion = 0.009733
l=4, charge = 0.000860 proportion = 0.001029
Total over all atoms and l=0 to 4 : 0.835452
Charge in the sphere around each atom
Atom number 1 : charge = 0.40615776
Atom number 2 : charge = 0.40615776
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 1
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 1)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.491888
l=0, charge= 0.484165, m=-l,l splitting: 0.484
l=1, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000
l=2, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000
l=3, charge= 0.006908, m=-l,l splitting: 0.000 0.007 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.000815, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.491888
l=0, charge= 0.484165, m=-l,l splitting: 0.484
l=1, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000
l=2, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000
l=3, charge= 0.006908, m=-l,l splitting: 0.000 0.007 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.000815, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.968330 proportion = 0.984300
l=1, charge = 0.000000 proportion = 0.000000
l=2, charge = 0.000000 proportion = 0.000000
l=3, charge = 0.013815 proportion = 0.014043
l=4, charge = 0.001630 proportion = 0.001657
Total over all atoms and l=0 to 4 : 0.983775
Charge in the sphere around each atom
Atom number 1 : charge = 0.47772836
Atom number 2 : charge = 0.47772836
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 1
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 1)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 3.00000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 5.340000E+01 534
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.570911
l=0, charge= 0.558530, m=-l,l splitting: 0.559
l=1, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000
l=2, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000
l=3, charge= 0.010972, m=-l,l splitting: 0.000 0.011 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.001409, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
Atom # 2 is Si, in-sphere charge = 0.570911
l=0, charge= 0.558530, m=-l,l splitting: 0.559
l=1, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000
l=2, charge= 0.000000, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000
l=3, charge= 0.010972, m=-l,l splitting: 0.000 0.011 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.001409, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
Sum of angular contributions for all atomic spheres
l=0, charge = 1.117061 proportion = 0.978314
l=1, charge = 0.000000 proportion = 0.000000
l=2, charge = 0.000000 proportion = 0.000000
l=3, charge = 0.021943 proportion = 0.019218
l=4, charge = 0.002819 proportion = 0.002468
Total over all atoms and l=0 to 4 : 1.141823
Charge in the sphere around each atom
Atom number 1 : charge = 0.55410356
Atom number 2 : charge = 0.55410356
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 2
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 2)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.594569
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.463971, m=-l,l splitting: 0.184 0.035 0.245
l=2, charge= 0.126271, m=-l,l splitting: 0.009 0.067 0.000 0.050 0.000
l=3, charge= 0.004284, m=-l,l splitting: 0.001 0.000 0.001 0.000 0.001 0.000 0.001
l=4, charge= 0.000042, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.594569
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.463971, m=-l,l splitting: 0.184 0.035 0.245
l=2, charge= 0.126271, m=-l,l splitting: 0.009 0.067 0.000 0.050 0.000
l=3, charge= 0.004284, m=-l,l splitting: 0.001 0.000 0.001 0.000 0.001 0.000 0.001
l=4, charge= 0.000042, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.927942 proportion = 0.780349
l=2, charge = 0.252543 proportion = 0.212375
l=3, charge = 0.008569 proportion = 0.007206
l=4, charge = 0.000084 proportion = 0.000070
Total over all atoms and l=0 to 4 : 1.189137
Charge in the sphere around each atom
Atom number 1 : charge = 0.57633750
Atom number 2 : charge = 0.57633750
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 3
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 3)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.594569
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.463971, m=-l,l splitting: 0.095 0.184 0.184
l=2, charge= 0.126271, m=-l,l splitting: 0.050 0.050 0.000 0.026 0.000
l=3, charge= 0.004284, m=-l,l splitting: 0.001 0.000 0.000 0.002 0.001 0.000 0.001
l=4, charge= 0.000042, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.594569
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.463971, m=-l,l splitting: 0.095 0.184 0.184
l=2, charge= 0.126271, m=-l,l splitting: 0.050 0.050 0.000 0.026 0.000
l=3, charge= 0.004284, m=-l,l splitting: 0.001 0.000 0.000 0.002 0.001 0.000 0.001
l=4, charge= 0.000042, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.927942 proportion = 0.780349
l=2, charge = 0.252543 proportion = 0.212375
l=3, charge = 0.008569 proportion = 0.007206
l=4, charge = 0.000084 proportion = 0.000070
Total over all atoms and l=0 to 4 : 1.189137
Charge in the sphere around each atom
Atom number 1 : charge = 0.56271719
Atom number 2 : charge = 0.56271719
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 4
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 4)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.594569
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.463971, m=-l,l splitting: 0.184 0.245 0.035
l=2, charge= 0.126271, m=-l,l splitting: 0.067 0.009 0.000 0.050 0.000
l=3, charge= 0.004284, m=-l,l splitting: 0.001 0.000 0.001 0.002 0.000 0.000 0.000
l=4, charge= 0.000042, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.594569
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.463971, m=-l,l splitting: 0.184 0.245 0.035
l=2, charge= 0.126271, m=-l,l splitting: 0.067 0.009 0.000 0.050 0.000
l=3, charge= 0.004284, m=-l,l splitting: 0.001 0.000 0.001 0.002 0.000 0.000 0.000
l=4, charge= 0.000042, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.927942 proportion = 0.780349
l=2, charge = 0.252543 proportion = 0.212375
l=3, charge = 0.008569 proportion = 0.007206
l=4, charge = 0.000084 proportion = 0.000070
Total over all atoms and l=0 to 4 : 1.189137
Charge in the sphere around each atom
Atom number 1 : charge = 0.58491833
Atom number 2 : charge = 0.58491833
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 5
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 5)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.446877
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.293892, m=-l,l splitting: 0.147 0.072 0.075
l=2, charge= 0.132441, m=-l,l splitting: 0.033 0.034 0.000 0.066 0.000
l=3, charge= 0.016459, m=-l,l splitting: 0.005 0.000 0.003 0.004 0.002 0.000 0.003
l=4, charge= 0.004086, m=-l,l splitting: 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.000
Atom # 2 is Si, in-sphere charge = 0.446877
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.293892, m=-l,l splitting: 0.147 0.072 0.075
l=2, charge= 0.132441, m=-l,l splitting: 0.033 0.034 0.000 0.066 0.000
l=3, charge= 0.016459, m=-l,l splitting: 0.005 0.000 0.003 0.004 0.002 0.000 0.003
l=4, charge= 0.004086, m=-l,l splitting: 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.587785 proportion = 0.657658
l=2, charge = 0.264881 proportion = 0.296369
l=3, charge = 0.032917 proportion = 0.036830
l=4, charge = 0.008171 proportion = 0.009142
Total over all atoms and l=0 to 4 : 0.893755
Charge in the sphere around each atom
Atom number 1 : charge = 0.43348402
Atom number 2 : charge = 0.43348402
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 1
For which band ? (1 to 8)
=> Your band number is : 6
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 1 6)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.446877
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.293892, m=-l,l splitting: 0.000 0.147 0.147
l=2, charge= 0.132441, m=-l,l splitting: 0.066 0.066 0.000 0.000 0.000
l=3, charge= 0.016459, m=-l,l splitting: 0.000 0.000 0.000 0.008 0.003 0.000 0.005
l=4, charge= 0.004086, m=-l,l splitting: 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.446877
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.293892, m=-l,l splitting: 0.000 0.147 0.147
l=2, charge= 0.132441, m=-l,l splitting: 0.066 0.066 0.000 0.000 0.000
l=3, charge= 0.016459, m=-l,l splitting: 0.000 0.000 0.000 0.008 0.003 0.000 0.005
l=4, charge= 0.004086, m=-l,l splitting: 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.587785 proportion = 0.657658
l=2, charge = 0.264881 proportion = 0.296369
l=3, charge = 0.032917 proportion = 0.036830
l=4, charge = 0.008171 proportion = 0.009142
Total over all atoms and l=0 to 4 : 0.893755
Charge in the sphere around each atom
Atom number 1 : charge = 0.44004258
Atom number 2 : charge = 0.44004258
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 2
For which band ? (1 to 8)
=> Your band number is : 4
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 2 4)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.514847
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.488739, m=-l,l splitting: 0.244 0.244 0.000
l=2, charge= 0.012606, m=-l,l splitting: 0.006 0.000 0.000 0.006 0.000
l=3, charge= 0.010518, m=-l,l splitting: 0.003 0.000 0.002 0.000 0.000 0.005 0.000
l=4, charge= 0.002984, m=-l,l splitting: 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000
Atom # 2 is Si, in-sphere charge = 0.514847
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.488739, m=-l,l splitting: 0.244 0.244 0.000
l=2, charge= 0.012606, m=-l,l splitting: 0.006 0.000 0.000 0.006 0.000
l=3, charge= 0.010518, m=-l,l splitting: 0.003 0.000 0.002 0.000 0.000 0.005 0.000
l=4, charge= 0.002984, m=-l,l splitting: 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.977478 proportion = 0.949291
l=2, charge = 0.025213 proportion = 0.024485
l=3, charge = 0.021035 proportion = 0.020429
l=4, charge = 0.005967 proportion = 0.005795
Total over all atoms and l=0 to 4 : 1.029693
Charge in the sphere around each atom
Atom number 1 : charge = 0.51743284
Atom number 2 : charge = 0.51743284
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 2
For which band ? (1 to 8)
=> Your band number is : 5
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 2 5)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.331407
l=0, charge= 0.070323, m=-l,l splitting: 0.070
l=1, charge= 0.070918, m=-l,l splitting: 0.000 0.000 0.071
l=2, charge= 0.189563, m=-l,l splitting: 0.000 0.106 0.021 0.000 0.063
l=3, charge= 0.000549, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.000054, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.331407
l=0, charge= 0.070324, m=-l,l splitting: 0.070
l=1, charge= 0.070917, m=-l,l splitting: 0.000 0.000 0.071
l=2, charge= 0.189563, m=-l,l splitting: 0.000 0.106 0.021 0.000 0.063
l=3, charge= 0.000549, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000
l=4, charge= 0.000054, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.140647 proportion = 0.212197
l=1, charge = 0.141835 proportion = 0.213990
l=2, charge = 0.379126 proportion = 0.571995
l=3, charge = 0.001098 proportion = 0.001657
l=4, charge = 0.000107 proportion = 0.000162
Total over all atoms and l=0 to 4 : 0.662813
Charge in the sphere around each atom
Atom number 1 : charge = 0.32519041
Atom number 2 : charge = 0.32519023
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 3
For which band ? (1 to 8)
=> Your band number is : 4
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 3 4)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.566645
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.498136, m=-l,l splitting: 0.166 0.022 0.310
l=2, charge= 0.054707, m=-l,l splitting: 0.002 0.028 0.001 0.015 0.008
l=3, charge= 0.011708, m=-l,l splitting: 0.000 0.000 0.004 0.000 0.002 0.005 0.001
l=4, charge= 0.002093, m=-l,l splitting: 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Atom # 2 is Si, in-sphere charge = 0.566645
l=0, charge= 0.000000, m=-l,l splitting: 0.000
l=1, charge= 0.498136, m=-l,l splitting: 0.166 0.022 0.310
l=2, charge= 0.054707, m=-l,l splitting: 0.002 0.028 0.001 0.015 0.008
l=3, charge= 0.011708, m=-l,l splitting: 0.000 0.000 0.004 0.000 0.002 0.005 0.001
l=4, charge= 0.002093, m=-l,l splitting: 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.000000 proportion = 0.000000
l=1, charge = 0.996272 proportion = 0.879097
l=2, charge = 0.109415 proportion = 0.096546
l=3, charge = 0.023417 proportion = 0.020662
l=4, charge = 0.004186 proportion = 0.003694
Total over all atoms and l=0 to 4 : 1.133290
Charge in the sphere around each atom
Atom number 1 : charge = 0.53938984
Atom number 2 : charge = 0.53938984
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
For which k-points? (1 to 3)
=> Your k-point is : 3
For which band ? (1 to 8)
=> Your band number is : 5
=> Your spin polarisation number is : 1
Do you want to analyze a GW wavefunction? (1=yes,0=no)
=> Your choice is : 0
Do you want the atomic analysis for this state :
(kpt,band)= ( 3 5)?
If yes, enter the radius of the atomic spheres, in bohr
If no, enter 0
You entered ratsph= 2.80000000 Bohr
Atomic sphere analysis
wffile : kpgmax, bessargmax, nradint = 2.828427E+00 4.980000E+01 498
Angular analysis (real spherical harmonics)
Atom # 1 is Si, in-sphere charge = 0.432518
l=0, charge= 0.242833, m=-l,l splitting: 0.243
l=1, charge= 0.035575, m=-l,l splitting: 0.012 0.012 0.012
l=2, charge= 0.135336, m=-l,l splitting: 0.045 0.045 0.000 0.045 0.000
l=3, charge= 0.018082, m=-l,l splitting: 0.003 0.002 0.002 0.005 0.002 0.000 0.003
l=4, charge= 0.000691, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Atom # 2 is Si, in-sphere charge = 0.432518
l=0, charge= 0.242833, m=-l,l splitting: 0.243
l=1, charge= 0.035575, m=-l,l splitting: 0.012 0.012 0.012
l=2, charge= 0.135336, m=-l,l splitting: 0.045 0.045 0.000 0.045 0.000
l=3, charge= 0.018082, m=-l,l splitting: 0.003 0.002 0.002 0.005 0.002 0.000 0.003
l=4, charge= 0.000691, m=-l,l splitting: 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum of angular contributions for all atomic spheres
l=0, charge = 0.485667 proportion = 0.561442
l=1, charge = 0.071150 proportion = 0.082251
l=2, charge = 0.270673 proportion = 0.312904
l=3, charge = 0.036164 proportion = 0.041807
l=4, charge = 0.001382 proportion = 0.001597
Total over all atoms and l=0 to 4 : 0.865035
Charge in the sphere around each atom
Atom number 1 : charge = 0.43208534
Atom number 2 : charge = 0.43208535
3D wave function was read. Ready for further treatment.
===========================================================
What is your choice ? Type:
0 => exit to k-point / band / spin-pol loop
1 => 3D formatted real and imaginary data
(output the bare 3D data - two column,R,I)
2 => 3D formatted real data
(output the bare 3D data - one column)
3 => 3D formatted imaginary data
(output the bare 3D data - one column)
4 => 3D indexed real and imaginary data
(3D data, preceeded by 3D index)
5 => 3D indexed real data
(bare 3D data, preceeded by 3D index)
6 => 3D indexed imaginary data
(bare 3D data, preceeded by 3D index)
7 => 3D Data Explorer formatted data
(Real file and Imaginary file)
8 => 3D Data Explorer formatted data
(Only the Real file)
9 => 3D Data Explorer formatted data
(Only the Imaginary file)
10 => 3D Data Explorer formatted data and position files
11 => XCrysden formatted data (norm of wf) and position files
12 => NetCDF data and position file
13 => XCrysden/VENUS wavefunction (real part of data)
14 => Gaussian/cube wavefunction module
Your choice is 0
Exit inner loop
Task 0 has been done !
Run interpolation again? (1=default=yes,0=no)
-
- Proc. 0 individual time (sec): cpu= 0.4 wall= 0.4
Thank you for using me