abinit/tests/v4/Refs/t03.abo

646 lines
33 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h09 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v4_t03/t03.abi
- output file -> t03.abo
- root for input files -> t03i
- root for output files -> t03o
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 4
lnmax = 4 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 0 ntypat = 1
occopt = 0 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 186 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.812 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.025 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 0 ntypat = 1
occopt = 0 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 186 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 1.861 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.025 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0366000000E+01 1.0366000000E+01 1.0366000000E+01 Bohr
amu 2.80855000E+01
diemac 1.20000000E+01
ecut 5.80000000E+00 Hartree
enunit 2
- fftalg 512
ixc 3
jdtset 1 2
kpt 1.00000000E+00 1.00000000E+00 1.00000000E+00
1.00000000E+00 2.00000000E+00 2.00000000E+00
kptnrm 4.00000000E+00
kptopt 0
P mkmem 2
natom 2
nband 4
ndtset 2
ngfft 16 16 16
nkpt 2
nstep 20
nsym 24
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000
occopt 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 1 -1 1 0 -1 0 0 -1
0 -1 1 0 -1 0 1 -1 0 -1 0 0 -1 0 1 -1 1 0
0 1 0 0 0 1 1 0 0 1 0 -1 0 0 -1 0 1 -1
0 -1 0 1 -1 0 0 -1 1 -1 0 1 -1 1 0 -1 0 0
0 0 1 1 0 0 0 1 0 0 0 -1 0 1 -1 1 0 -1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 -1 0 0 -1 0 1
1 0 -1 0 1 -1 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 -1 0 0 -1 1 0 0 -1 0 0 -1 1 1 -1 0
-1 1 0 -1 0 1 -1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 0 0 1 0 1 0 1 0 0
0 -1 1 1 -1 0 0 -1 0 -1 0 0 -1 1 0 -1 0 1
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
tolwfr 1.00000000E-14
typat 1 1
useylm1 0
useylm2 1
wtk 0.25000 0.75000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3713627361E+00 1.3713627361E+00 1.3713627361E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5915000000E+00 2.5915000000E+00 2.5915000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 186, }
cutoff_energies: {ecut: 5.8, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 0.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1830000 5.1830000 G(1)= -0.0964692 0.0964692 0.0964692
R(2)= 5.1830000 0.0000000 5.1830000 G(2)= 0.0964692 -0.0964692 0.0964692
R(3)= 5.1830000 5.1830000 0.0000000 G(3)= 0.0964692 0.0964692 -0.0964692
Unit cell volume ucvol= 2.7846693E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.800 => boxcut(ratio)= 2.01347
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/14si.phoney_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/14si.phoney_mod
- 2 bohr rc 15 hartree ec psp for silicon 8 November 1991 (new)
- 14.00000 4.00000 980710 znucl, zion, pspdat
5 3 2 2 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
1.000000E-06 3.075239E-02 r1 and al (Hamman grid)
0 0.000 0.000 2 2.0042666 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 2 2.0042666 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 2.0042666 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
pspatm : epsatm= -1.82035725
--- l ekb(1:nproj) -->
0 3.773677 10.247662
1 2.166328 2.055393
pspatm: atomic psp has been read and splines computed
-2.91257160E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 184.500 184.482
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -7.8931360945331 -7.893E+00 1.624E-03 2.851E+00
ETOT 2 -7.8973458227620 -4.210E-03 2.816E-07 1.141E-01
ETOT 3 -7.8974618480452 -1.160E-04 6.319E-07 1.424E-03
ETOT 4 -7.8974628250347 -9.770E-07 7.250E-09 3.224E-05
ETOT 5 -7.8974628927321 -6.770E-08 7.058E-10 2.814E-07
ETOT 6 -7.8974628932097 -4.776E-10 3.732E-12 1.421E-09
ETOT 7 -7.8974628932114 -1.742E-12 1.375E-14 4.587E-12
ETOT 8 -7.8974628932114 -8.882E-16 5.427E-15 5.919E-14
At SCF step 8 max residual= 5.43E-15 < tolwfr= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.73090292E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.73090292E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.73090292E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1830000, 5.1830000, ]
- [ 5.1830000, 0.0000000, 5.1830000, ]
- [ 5.1830000, 5.1830000, 0.0000000, ]
lattice_lengths: [ 7.32987, 7.32987, 7.32987, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7846693E+02
convergence: {deltae: -8.882E-16, res2: 5.919E-14, residm: 5.427E-15, diffor: null, }
etotal : -7.89746289E+00
entropy : 0.00000000E+00
fermie : 1.98837850E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.73090292E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.73090292E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.73090292E-04, ]
pressure_GPa: -1.0977E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.87702581
2 2.00000 1.87702587
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.075E-16; max= 54.275E-16
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.37136273606098 1.37136273606098 1.37136273606098
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.366000000000 10.366000000000 10.366000000000 bohr
= 5.485450944244 5.485450944244 5.485450944244 angstroms
prteigrs : about to open file t03o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.19884 Average Vxc (hartree)= -0.33198
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.17465 0.08568 0.19884 0.19884
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 5.41065 Average Vxc (eV)= -9.03367
Eigenvalues ( eV ) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-4.75253 2.33155 5.41065 5.41065
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.03676771680502E+00
hartree : 5.59362807721272E-01
xc : -2.37986188354358E+00
Ewald energy : -8.31456383429187E+00
psp_core : -1.04593088893961E-01
local_psp : -2.42111286459753E+00
non_local_psp : 1.72653825358920E+00
total_energy : -7.89746289321144E+00
total_energy_eV : -2.14900894307283E+02
band_energy : 3.57683115845176E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.73090292E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.73090292E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.73090292E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.0977E+01 GPa]
- sigma(1 1)= 1.09766935E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.09766935E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.09766935E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 186, }
cutoff_energies: {ecut: 5.8, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 0.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1830000 5.1830000 G(1)= -0.0964692 0.0964692 0.0964692
R(2)= 5.1830000 0.0000000 5.1830000 G(2)= 0.0964692 -0.0964692 0.0964692
R(3)= 5.1830000 5.1830000 0.0000000 G(3)= 0.0964692 0.0964692 -0.0964692
Unit cell volume ucvol= 2.7846693E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.800 => boxcut(ratio)= 2.01347
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/14si.phoney_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/14si.phoney_mod
- 2 bohr rc 15 hartree ec psp for silicon 8 November 1991 (new)
- 14.00000 4.00000 980710 znucl, zion, pspdat
5 3 2 2 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
1.000000E-06 3.075239E-02 r1 and al (Hamman grid)
0 0.000 0.000 2 2.0042666 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 2 2.0042666 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 2.0042666 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
pspatm : epsatm= -1.82035725
--- l ekb(1:nproj) -->
0 3.773677 10.247662
1 2.166328 2.055393
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 184.500 184.482
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -7.8931360945333 -7.893E+00 1.624E-03 2.851E+00
ETOT 2 -7.8973458227622 -4.210E-03 2.816E-07 1.141E-01
ETOT 3 -7.8974618480454 -1.160E-04 6.319E-07 1.424E-03
ETOT 4 -7.8974628250349 -9.770E-07 7.250E-09 3.224E-05
ETOT 5 -7.8974628927324 -6.770E-08 7.058E-10 2.814E-07
ETOT 6 -7.8974628932099 -4.775E-10 3.732E-12 1.421E-09
ETOT 7 -7.8974628932116 -1.728E-12 1.383E-14 4.587E-12
ETOT 8 -7.8974628932116 -8.882E-16 5.428E-15 5.917E-14
At SCF step 8 max residual= 5.43E-15 < tolwfr= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.73090292E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.73090292E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.73090292E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1830000, 5.1830000, ]
- [ 5.1830000, 0.0000000, 5.1830000, ]
- [ 5.1830000, 5.1830000, 0.0000000, ]
lattice_lengths: [ 7.32987, 7.32987, 7.32987, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7846693E+02
convergence: {deltae: -8.882E-16, res2: 5.917E-14, residm: 5.428E-15, diffor: null, }
etotal : -7.89746289E+00
entropy : 0.00000000E+00
fermie : 1.98837850E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.73090292E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.73090292E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.73090292E-04, ]
pressure_GPa: -1.0977E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.87702581
2 2.00000 1.87702587
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.209E-16; max= 54.276E-16
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.37136273606098 1.37136273606098 1.37136273606098
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.366000000000 10.366000000000 10.366000000000 bohr
= 5.485450944244 5.485450944244 5.485450944244 angstroms
prteigrs : about to open file t03o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.19884 Average Vxc (hartree)= -0.33198
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.17465 0.08568 0.19884 0.19884
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 5.41065 Average Vxc (eV)= -9.03367
Eigenvalues ( eV ) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-4.75253 2.33155 5.41065 5.41065
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 3.03676771681660E+00
hartree : 5.59362807723693E-01
xc : -2.37986188354316E+00
Ewald energy : -8.31456383429187E+00
psp_core : -1.04593088893961E-01
local_psp : -2.42111286465588E+00
non_local_psp : 1.72653825363298E+00
total_energy : -7.89746289321159E+00
total_energy_eV : -2.14900894307287E+02
band_energy : 3.57683115845445E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.73090292E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.73090292E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.73090292E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.0977E+01 GPa]
- sigma(1 1)= 1.09766935E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.09766935E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.09766935E+01 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0366000000E+01 1.0366000000E+01 1.0366000000E+01 Bohr
amu 2.80855000E+01
diemac 1.20000000E+01
ecut 5.80000000E+00 Hartree
enunit 2
etotal1 -7.8974628932E+00
etotal2 -7.8974628932E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
- fftalg 512
ixc 3
jdtset 1 2
kpt 1.00000000E+00 1.00000000E+00 1.00000000E+00
1.00000000E+00 2.00000000E+00 2.00000000E+00
kptnrm 4.00000000E+00
kptopt 0
P mkmem 2
natom 2
nband 4
ndtset 2
ngfft 16 16 16
nkpt 2
nstep 20
nsym 24
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000
occopt 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 216
strten1 3.7309029200E-04 3.7309029200E-04 3.7309029200E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 3.7309029191E-04 3.7309029191E-04 3.7309029191E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 1 -1 1 0 -1 0 0 -1
0 -1 1 0 -1 0 1 -1 0 -1 0 0 -1 0 1 -1 1 0
0 1 0 0 0 1 1 0 0 1 0 -1 0 0 -1 0 1 -1
0 -1 0 1 -1 0 0 -1 1 -1 0 1 -1 1 0 -1 0 0
0 0 1 1 0 0 0 1 0 0 0 -1 0 1 -1 1 0 -1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 -1 0 0 -1 0 1
1 0 -1 0 1 -1 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 -1 0 0 -1 1 0 0 -1 0 0 -1 1 1 -1 0
-1 1 0 -1 0 1 -1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 0 0 1 0 1 0 1 0 0
0 -1 1 1 -1 0 0 -1 0 -1 0 0 -1 1 0 -1 0 1
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
tolwfr 1.00000000E-14
typat 1 1
useylm1 0
useylm2 1
wtk 0.25000 0.75000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3713627361E+00 1.3713627361E+00 1.3713627361E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5915000000E+00 2.5915000000E+00 2.5915000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 0.7 wall= 0.7
================================================================================
Calculation completed.
.Delivered 16 WARNINGs and 3 COMMENTs to log file.
+Overall time at end (sec) : cpu= 0.7 wall= 0.7