abinit/tests/v3/Refs/t78.abo

1060 lines
50 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h09 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v3_t78-t79/t78.abi
- output file -> t78.abo
- root for input files -> t78i
- root for output files -> t78o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 0 ntypat = 1
occopt = 3 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 1
mpw = 33 nfft = 1728 nkpt = 1
================================================================================
P This job should need less than 1.558 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 2 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 0 ntypat = 1
occopt = 3 xclevel = 1
- mband = 20 mffmem = 1 mkmem = 1
mpw = 33 nfft = 1728 nkpt = 1
================================================================================
P This job should need less than 1.505 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 3 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = -3 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 2 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 3
xclevel = 1
- mband = 20 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 65
nfft = 1728 nkpt = 1
================================================================================
P This job should need less than 1.637 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.022 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 4 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = -3 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 2 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 3
xclevel = 1
- mband = 20 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 65
nfft = 1728 nkpt = 1
================================================================================
P This job should need less than 1.637 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.022 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 5 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = -3 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 2 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 3
xclevel = 1
- mband = 20 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 65
nfft = 1728 nkpt = 1
================================================================================
P This job should need less than 1.637 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.022 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.6557000000E+00 7.6557000000E+00 7.6557000000E+00 Bohr
amu 2.69800000E+01
ecut 6.00000000E+00 Hartree
enunit 2
- fftalg 512
getden1 0
getden2 1
getden3 0
getden4 0
getden5 0
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
iscf1 7
iscf2 -2
iscf3 -3
iscf4 -3
iscf5 -3
istwfk1 2
istwfk2 2
istwfk3 1
istwfk4 1
istwfk5 1
jdtset 1 2 3 4 5
kptopt 0
P mkmem 1
P mkqmem 1
P mk1mem 1
natom 1
nband 20
nbdbuf1 0
nbdbuf2 2
nbdbuf3 2
nbdbuf4 2
nbdbuf5 2
ndtset 5
ngfft 12 12 12
nkpt 1
npulayit1 1
npulayit2 7
npulayit3 7
npulayit4 7
npulayit5 7
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 1
nqpt5 1
nsym 1
ntypat 1
occ 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 1
prtvol 1
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 0 0
rfdir4 0 1 0
rfdir5 0 0 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 2
rfelfd5 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 1
toldfe1 1.00000000E-10 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 0.00000000E+00 Hartree
toldfe5 0.00000000E+00 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-22
tolwfr4 1.00000000E-22
tolwfr5 1.00000000E-22
tsmear 2.00000000E-04 Hartree
typat 1
znucl 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 1, nkpt: 1, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 33, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 2.00000000E-04, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8278500 3.8278500 G(1)= -0.1306216 0.1306216 0.1306216
R(2)= 3.8278500 0.0000000 3.8278500 G(2)= 0.1306216 -0.1306216 0.1306216
R(3)= 3.8278500 3.8278500 0.0000000 G(3)= 0.1306216 0.1306216 -0.1306216
Unit cell volume ucvol= 1.1217465E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 6.000 => boxcut(ratio)= 2.01034
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/13al.3.hgh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/13al.3.hgh
- Hartwigsen-Goedecker-Hutter psp for Al, from PRB58, 3641 (1998)
- 13.00000 3.00000 10605 znucl, zion, pspdat
3 1 1 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.4500000
cc1 = -8.4913510; cc2 = 0.0000000; cc3 = 0.0000000; cc4 = 0.0000000
rrs = 0.4601040; h11s= 5.0883400; h22s= 2.6797000; h33s= 0.0000000
rrp = 0.5367440; h11p= 2.1934380; h22p= 0.0000000; h33p= 0.0000000
k11p= 0.0061540; k22p= 0.0039470; k33p= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= -8.36960928
--- l ekb(1:nproj) -->
0 0.792147 1.890012
1 0.692782
pspatm: atomic psp has been read and splines computed
-2.51088278E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
P newkpt: treating 20 bands with npw= 33 for ikpt= 1 by node 0
_setup2: Arith. and geom. avg. npw (full set) are 65.000 65.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -1.9415541275563 -1.942E+00 3.270E-03 4.197E-01
ETOT 2 -1.9417586257739 -2.045E-04 6.283E-04 8.849E-03
ETOT 3 -1.9418107175545 -5.209E-05 1.377E-03 6.147E-03
ETOT 4 -1.9433574386108 -1.547E-03 1.881E-04 1.160E-01
ETOT 5 -1.9412636010518 2.094E-03 8.310E-05 1.924E-01
ETOT 6 -1.9448181931480 -3.555E-03 2.650E-05 9.839E-02
ETOT 7 -1.9449276571417 -1.095E-04 4.774E-06 6.036E-02
ETOT 8 -1.9451290742124 -2.014E-04 2.641E-05 1.079E-02
ETOT 9 -1.9451378771395 -8.803E-06 1.704E-06 1.791E-03
ETOT 10 -1.9451394387963 -1.562E-06 5.638E-07 1.030E-05
ETOT 11 -1.9451394593569 -2.056E-08 1.975E-09 1.405E-06
ETOT 12 -1.9451394604385 -1.082E-09 5.860E-10 1.261E-08
ETOT 13 -1.9451394604392 -6.739E-13 2.821E-12 1.668E-09
ETOT 14 -1.9451394604671 -2.789E-11 1.005E-12 6.191E-11
At SCF step 14, etot is converged :
for the second time, diff in etot= 2.789E-11 < toldfe= 1.000E-10
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.98240909E-04 sigma(3 2)= -3.44784861E-03
sigma(2 2)= 1.98240580E-04 sigma(3 1)= -3.44785009E-03
sigma(3 3)= 1.98237970E-04 sigma(2 1)= -3.44784528E-03
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8278500, 3.8278500, ]
- [ 3.8278500, 0.0000000, 3.8278500, ]
- [ 3.8278500, 3.8278500, 0.0000000, ]
lattice_lengths: [ 5.41340, 5.41340, 5.41340, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.1217465E+02
convergence: {deltae: -2.789E-11, res2: 6.191E-11, residm: 1.005E-12, diffor: null, }
etotal : -1.94513946E+00
entropy : 0.00000000E+00
fermie : 8.31660073E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.98240909E-04, -3.44784528E-03, -3.44785009E-03, ]
- [ -3.44784528E-03, 1.98240580E-04, -3.44784861E-03, ]
- [ -3.44785009E-03, -3.44784861E-03, 1.98237970E-04, ]
pressure_GPa: -5.8324E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.92017634
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 30.338E-14; max= 10.048E-13
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 6.4712E-10; max dE/dt= 7.1750E-10; dE/dt below (all hartree)
1 0.000000000506 -0.000000000697 0.000000000718
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 6.338E-11 -2.508E-10 1.186E-10 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 3.259E-09 -1.290E-08 6.101E-09 e/A
length scales= 7.655700000000 7.655700000000 7.655700000000 bohr
= 4.051221955802 4.051221955802 4.051221955802 angstroms
prteigrs : about to open file t78o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.83166 Average Vxc (hartree)= -0.33918
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.04504 0.83166 0.84238 0.84238 0.86263 0.86326 0.86326 0.97699
1.09741 1.09741 1.16006 1.25029 1.26248 1.26248 1.49360 2.33808
2.35132 2.35132 2.44166 2.44166
occupation numbers for kpt# 1
2.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
Fermi (or HOMO) energy (eV) = 22.63062 Average Vxc (eV)= -9.22946
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.22568 22.63062 22.92239 22.92239 23.47339 23.49037 23.49038 26.58530
29.86202 29.86203 31.56680 34.02215 34.35373 34.35373 40.64296 63.62245
63.98256 63.98256 66.44086 66.44086
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.12194367844230E+00
hartree : 1.52913146036279E-02
xc : -8.17120933708914E-01
Ewald energy : -2.69496967403532E+00
psp_core : -2.23836914378345E-01
local_psp : 3.78881647827194E-01
non_local_psp : 2.74948679654577E-01
internal : -1.94486220159488E+00
'-kT*entropy' : -2.77258872223357E-04
total_energy : -1.94513946046710E+00
total_energy_eV : -5.29299365200036E+01
band_energy : 7.41573917815201E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.98240909E-04 sigma(3 2)= -3.44784861E-03
sigma(2 2)= 1.98240580E-04 sigma(3 1)= -3.44785009E-03
sigma(3 3)= 1.98237970E-04 sigma(2 1)= -3.44784528E-03
-Cartesian components of stress tensor (GPa) [Pressure= -5.8324E+00 GPa]
- sigma(1 1)= 5.83244793E+00 sigma(3 2)= -1.01439191E+02
- sigma(2 2)= 5.83243825E+00 sigma(3 1)= -1.01439235E+02
- sigma(3 3)= 5.83236145E+00 sigma(2 1)= -1.01439093E+02
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 1, nkpt: 1, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 33, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 2.00000000E-04, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8278500 3.8278500 G(1)= -0.1306216 0.1306216 0.1306216
R(2)= 3.8278500 0.0000000 3.8278500 G(2)= 0.1306216 -0.1306216 0.1306216
R(3)= 3.8278500 3.8278500 0.0000000 G(3)= 0.1306216 0.1306216 -0.1306216
Unit cell volume ucvol= 1.1217465E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 6.000 => boxcut(ratio)= 2.01034
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t78o_DS1_WFK
P newkpt: treating 20 bands with npw= 33 for ikpt= 1 by node 0
================================================================================
prteigrs : about to open file t78o_DS2_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
7.86E-24 4.27E-24 5.51E-23 2.35E-24 7.78E-24 5.07E-24 1.38E-23 5.39E-24
9.57E-23 4.14E-25 9.78E-24 9.27E-23 4.80E-25 5.46E-23 6.08E-23 2.94E-23
3.74E-23 2.38E-23 7.01E-18 4.10E-19
-4.5043E-02 8.3166E-01 8.4238E-01 8.4238E-01 8.6263E-01 8.6326E-01
8.6326E-01 9.7699E-01 1.0974E+00 1.0974E+00 1.1601E+00 1.2503E+00
1.2625E+00 1.2625E+00 1.4936E+00 2.3381E+00 2.3513E+00 2.3513E+00
2.4417E+00 2.4417E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8278500, 3.8278500, ]
- [ 3.8278500, 0.0000000, 3.8278500, ]
- [ 3.8278500, 3.8278500, 0.0000000, ]
lattice_lengths: [ 5.41340, 5.41340, 5.41340, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.1217465E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.568E-23, diffor: 0.000E+00, }
etotal : -1.94513946E+00
entropy : 0.00000000E+00
fermie : 8.31660073E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.92017634
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 28.153E-24; max= 95.676E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.655700000000 7.655700000000 7.655700000000 bohr
= 4.051221955802 4.051221955802 4.051221955802 angstroms
prteigrs : about to open file t78o_DS2_EIG
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.04504 0.83166 0.84238 0.84238 0.86263 0.86326 0.86326 0.97699
1.09741 1.09741 1.16006 1.25029 1.26248 1.26248 1.49360 2.33808
2.35132 2.35132 2.44166 2.44166
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.22568 22.63062 22.92239 22.92239 23.47339 23.49037 23.49037 26.58530
29.86202 29.86203 31.56680 34.02215 34.35373 34.35373 40.64296 63.62245
63.98256 63.98256 66.44086 66.44086
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 1, nkpt: 1, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 65, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 2.00000000E-04, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8278500 3.8278500 G(1)= -0.1306216 0.1306216 0.1306216
R(2)= 3.8278500 0.0000000 3.8278500 G(2)= 0.1306216 -0.1306216 0.1306216
R(3)= 3.8278500 3.8278500 0.0000000 G(3)= 0.1306216 0.1306216 -0.1306216
Unit cell volume ucvol= 1.1217465E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 6.000 => boxcut(ratio)= 2.01034
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -30.381036620864 -3.038E+01 1.678E-01 0.000E+00
ETOT 2 -30.381037313311 -6.924E-07 6.851E-04 0.000E+00
ETOT 3 -30.381037313315 -4.384E-12 6.691E-06 0.000E+00
ETOT 4 -30.381037313315 0.000E+00 2.867E-08 0.000E+00
ETOT 5 -30.381037313315 2.842E-14 2.930E-10 0.000E+00
ETOT 6 -30.381037313315 -2.132E-14 1.399E-12 0.000E+00
ETOT 7 -30.381037313315 0.000E+00 1.521E-14 0.000E+00
ETOT 8 -30.381037313315 0.000E+00 8.109E-17 0.000E+00
ETOT 9 -30.381037313315 0.000E+00 9.235E-19 0.000E+00
ETOT 10 -30.381037313315 0.000E+00 5.107E-21 0.000E+00
ETOT 11 -30.381037313315 0.000E+00 8.541E-23 0.000E+00
At SCF step 11 max residual= 8.54E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 30.320E-24; max= 85.414E-24
dfpt_looppert : ek2= 1.2124460656E+01
f-sum rule ratio= 5.5384572517E+00
prteigrs : about to open file t78t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00000
Expectation of eigenvalue derivatives ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 -0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.47035051E-01 eigvalue= -2.03661738E-02 local= -2.58981243E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -6.71508070E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 2.98422698E+01 enl0= 1.71079843E-01 enl1= 6.38873242E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.03810373E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3038103731E+02 Ha. Also 2DEtotal= -0.826710068398E+03 eV
( non-var. 2DEtotal : -3.0381037313E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 1, nkpt: 1, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 65, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 2.00000000E-04, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8278500 3.8278500 G(1)= -0.1306216 0.1306216 0.1306216
R(2)= 3.8278500 0.0000000 3.8278500 G(2)= 0.1306216 -0.1306216 0.1306216
R(3)= 3.8278500 3.8278500 0.0000000 G(3)= 0.1306216 0.1306216 -0.1306216
Unit cell volume ucvol= 1.1217465E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 6.000 => boxcut(ratio)= 2.01034
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 2 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: -3, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -30.381064475524 -3.038E+01 1.482E-01 0.000E+00
ETOT 2 -30.381065167971 -6.924E-07 3.620E-04 0.000E+00
ETOT 3 -30.381065167975 -4.384E-12 2.782E-06 0.000E+00
ETOT 4 -30.381065167975 -1.776E-14 1.011E-08 0.000E+00
ETOT 5 -30.381065167975 -2.842E-14 8.711E-11 0.000E+00
ETOT 6 -30.381065167975 2.842E-14 4.433E-13 0.000E+00
ETOT 7 -30.381065167975 0.000E+00 3.670E-15 0.000E+00
ETOT 8 -30.381065167975 -1.421E-14 1.930E-17 0.000E+00
ETOT 9 -30.381065167975 7.105E-15 1.651E-19 0.000E+00
ETOT 10 -30.381065167975 -7.105E-15 8.807E-22 0.000E+00
ETOT 11 -30.381065167975 7.105E-15 8.941E-23 0.000E+00
At SCF step 11 max residual= 8.94E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.361E-24; max= 89.405E-24
dfpt_looppert : ek2= 1.2124460656E+01
f-sum rule ratio= 5.5384623619E+00
prteigrs : about to open file t78t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00000
Expectation of eigenvalue derivatives ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000
-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.47035026E-01 eigvalue= -2.03661644E-02 local= -2.58981242E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -6.71508690E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 2.98422977E+01 enl0= 1.71079844E-01 enl1= 6.38873867E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.03810652E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3038106517E+02 Ha. Also 2DEtotal= -0.826710826361E+03 eV
( non-var. 2DEtotal : -3.0381065168E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 1, nkpt: 1, mband: 20, nsppol: 1, nspinor: 1, nspden: 1, mpw: 65, }
cutoff_energies: {ecut: 6.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 2.00000000E-04, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8278500 3.8278500 G(1)= -0.1306216 0.1306216 0.1306216
R(2)= 3.8278500 0.0000000 3.8278500 G(2)= 0.1306216 -0.1306216 0.1306216
R(3)= 3.8278500 3.8278500 0.0000000 G(3)= 0.1306216 0.1306216 -0.1306216
Unit cell volume ucvol= 1.1217465E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 6.000 => boxcut(ratio)= 2.01034
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: -3, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -30.381083275927 -3.038E+01 1.416E-01 0.000E+00
ETOT 2 -30.381083968373 -6.924E-07 2.867E-04 0.000E+00
ETOT 3 -30.381083968378 -4.398E-12 2.087E-06 0.000E+00
ETOT 4 -30.381083968378 -2.487E-14 7.050E-09 0.000E+00
ETOT 5 -30.381083968378 -7.105E-15 5.524E-11 0.000E+00
ETOT 6 -30.381083968378 -2.842E-14 2.264E-13 0.000E+00
ETOT 7 -30.381083968378 7.105E-15 1.905E-15 0.000E+00
ETOT 8 -30.381083968378 -7.105E-15 8.239E-18 0.000E+00
ETOT 9 -30.381083968378 1.421E-14 7.097E-20 0.000E+00
ETOT 10 -30.381083968378 -2.132E-14 3.113E-22 0.000E+00
ETOT 11 -30.381083968378 2.132E-14 7.228E-23 0.000E+00
At SCF step 11 max residual= 7.23E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.183E-24; max= 72.278E-24
dfpt_looppert : ek2= 1.2124460656E+01
f-sum rule ratio= 5.5384658999E+00
prteigrs : about to open file t78t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 1 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
Expectation of eigenvalue derivatives ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 20, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000
-0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.47035023E-01 eigvalue= -2.03661655E-02 local= -2.58981240E-01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -6.71509119E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 2.98423165E+01 enl0= 1.71079842E-01 enl1= 6.38874396E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.03810840E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3038108397E+02 Ha. Also 2DEtotal= -0.826711337946E+03 eV
( non-var. 2DEtotal : -3.0381083968E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
respfn : d/dk was computed, but no 2DTE, so no DDB output.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.6557000000E+00 7.6557000000E+00 7.6557000000E+00 Bohr
amu 2.69800000E+01
ecut 6.00000000E+00 Hartree
enunit 2
etotal1 -1.9451394605E+00
etotal3 -3.0381037313E+01
etotal4 -3.0381065168E+01
etotal5 -3.0381083968E+01
fcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 0
getden4 0
getden5 0
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
iscf1 7
iscf2 -2
iscf3 -3
iscf4 -3
iscf5 -3
istwfk1 2
istwfk2 2
istwfk3 1
istwfk4 1
istwfk5 1
jdtset 1 2 3 4 5
kptopt 0
P mkmem 1
P mkqmem 1
P mk1mem 1
natom 1
nband 20
nbdbuf1 0
nbdbuf2 2
nbdbuf3 2
nbdbuf4 2
nbdbuf5 2
ndtset 5
ngfft 12 12 12
nkpt 1
npulayit1 1
npulayit2 7
npulayit3 7
npulayit4 7
npulayit5 7
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 1
nqpt5 1
nsym 1
ntypat 1
occ 2.000000 1.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 1
prtvol 1
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 0 0
rfdir4 0 1 0
rfdir5 0 0 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 2
rfelfd5 2
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 1
strten1 1.9824090901E-04 1.9824058003E-04 1.9823796968E-04
-3.4478486141E-03 -3.4478500897E-03 -3.4478452849E-03
toldfe1 1.00000000E-10 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 0.00000000E+00 Hartree
toldfe5 0.00000000E+00 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-22
tolwfr4 1.00000000E-22
tolwfr5 1.00000000E-22
tsmear 2.00000000E-04 Hartree
typat 1
znucl 13.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 0.7 wall= 0.7
================================================================================
Calculation completed.
.Delivered 3 WARNINGs and 17 COMMENTs to log file.
+Overall time at end (sec) : cpu= 0.7 wall= 0.7