abinit/tests/v3/Refs/t77.abo

2886 lines
139 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h09 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v3_t77/t77.abi
- output file -> t77.abo
- root for input files -> t77i
- root for output files -> t77o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 4
lnmax = 4 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 9 mffmem = 1 mkmem = 2
mpw = 150 nfft = 4096 nkpt = 2
================================================================================
P This job should need less than 2.324 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.043 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 4
lnmax = 4 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 2
occopt = 1 xclevel = 1
- mband = 8 mffmem = 1 mkmem = 16
mpw = 150 nfft = 4096 nkpt = 16
================================================================================
P This job should need less than 2.116 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.295 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 3 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 4
mgfft = 16 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 8 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 150
nfft = 4096 nkpt = 16
================================================================================
P This job should need less than 2.831 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.295 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 4 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 4 lnmax = 4
mgfft = 16 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 2501 ntypat = 2 occopt = 1
xclevel = 1
- mband = 8 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 150
nfft = 4096 nkpt = 16
================================================================================
P This job should need less than 2.831 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.295 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0334455587E+01 1.0334455587E+01 1.0334455587E+01 Bohr
amu 1.37327000E+02 1.59994000E+01
asr 0
chneut 0
diemac 1.20000000E+01
ecut 5.00000000E+00 Hartree
- fftalg 512
getddk1 0
getddk2 0
getddk3 3
getddk4 3
getden1 0
getden2 -1
getden3 0
getden4 0
getwfk1 0
getwfk2 -1
getwfk3 2
getwfk4 2
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
ixc 3
jdtset 1 2 3 4
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.06689112E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 16
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 16
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 16
natom 2
nband1 9
nband2 8
nband3 8
nband4 8
ndtset 4
ngfft 16 16 16
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 16
nstep 100
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
prtbbb 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 3
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
toldfe1 1.00000000E-10 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 1.00000000E-10 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-20
tolwfr3 1.00000000E-20
tolwfr4 0.00000000E+00
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7343791799E+00 2.7343791799E+00 2.7343791799E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.1672277935E+00 5.1672277935E+00 5.1672277935E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 56.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 9, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1672278 5.1672278 G(1)= -0.0967637 0.0967637 0.0967637
R(2)= 5.1672278 0.0000000 5.1672278 G(2)= 0.0967637 -0.0967637 0.0967637
R(3)= 5.1672278 5.1672278 0.0000000 G(3)= 0.0967637 0.0967637 -0.0967637
Unit cell volume ucvol= 2.7593248E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.17519
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/56ba.psp_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/56ba.psp_mod
- Barium.ion 5s2.5p6.6s0.5d0 rcs=rcp=rcd=1.7 ecut=22/28
- 56.00000 10.00000 940000 znucl, zion, pspdat
4 3 2 2 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 0.000 0.000 2 1.6965489 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 2 1.6965489 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 1.6965489 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
pspatm : epsatm= 43.25917021
--- l ekb(1:nproj) -->
0 -9.646692 27.266828
1 -6.938476 21.148499
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/8o.psp_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/8o.psp_mod
- 1.65bohr 35 hartree exncc psp for oxygen with core 19 june 1992
- 8.00000 6.00000 920619 znucl, zion, pspdat
4 3 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 0.000 0.000 2 1.6491622 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 0 1.6491622 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1.00000000000000 0.95000909444395 0.44408665956870 rchrg,fchrg,qchrg
pspatm : epsatm= 1.15255884
--- l ekb(1:nproj) -->
0 7.721978 -1.904542
pspatm: atomic psp has been read and splines computed
7.10587665E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 146.250 146.234
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -38.515552947404 -3.852E+01 4.378E-03 2.644E+02
ETOT 2 -38.974862315076 -4.593E-01 8.873E-04 1.448E+02
ETOT 3 -39.290601170898 -3.157E-01 5.253E-03 1.794E+00
ETOT 4 -39.296089907126 -5.489E-03 9.738E-05 3.711E-01
ETOT 5 -39.297051758684 -9.619E-04 1.003E-05 1.882E-03
ETOT 6 -39.297056202338 -4.444E-06 3.736E-08 1.132E-05
ETOT 7 -39.297056234416 -3.208E-08 1.731E-09 5.275E-08
ETOT 8 -39.297056234480 -6.397E-11 3.550E-11 7.183E-09
ETOT 9 -39.297056234499 -1.892E-11 2.410E-12 1.055E-10
At SCF step 9, etot is converged :
for the second time, diff in etot= 1.892E-11 < toldfe= 1.000E-10
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.23917073E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.23917073E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.23917073E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1672278, 5.1672278, ]
- [ 5.1672278, 0.0000000, 5.1672278, ]
- [ 5.1672278, 5.1672278, 0.0000000, ]
lattice_lengths: [ 7.30756, 7.30756, 7.30756, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7593248E+02
convergence: {deltae: -1.892E-11, res2: 1.055E-10, residm: 2.410E-12, diffor: null, }
etotal : -3.92970562E+01
entropy : 0.00000000E+00
fermie : 2.00057737E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 5.23917073E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.23917073E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 5.23917073E-03, ]
pressure_GPa: -1.5414E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ba]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.98737792
2 2.00000 5.46690550
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.653E-14; max= 24.103E-13
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.73437917991299 2.73437917991299 2.73437917991299
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.334455587000 10.334455587000 10.334455587000 bohr
= 5.468758359826 5.468758359826 5.468758359826 angstroms
prteigrs : about to open file t77o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.20006 Average Vxc (hartree)= -0.39124
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 9, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.86949 -0.63494 -0.19899 -0.17406 -0.16281 0.17584 0.18766 0.20006
0.33198
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.24524501794803E+01
hartree : 4.11090926744727E+00
xc : -6.92381014686407E+00
Ewald energy : -3.64948681578368E+01
psp_core : 2.57522302062507E+00
local_psp : -1.72437497143024E+01
non_local_psp : 2.22678931695182E+00
total_energy : -3.92970562344987E+01
total_energy_eV : -1.06932728176495E+03
band_energy : -2.96504606519622E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.23917073E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.23917073E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.23917073E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.5414E+02 GPa]
- sigma(1 1)= 1.54141699E+02 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.54141699E+02 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.54141699E+02 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 16, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1672278 5.1672278 G(1)= -0.0967637 0.0967637 0.0967637
R(2)= 5.1672278 0.0000000 5.1672278 G(2)= 0.0967637 -0.0967637 0.0967637
R(3)= 5.1672278 5.1672278 0.0000000 G(3)= 0.0967637 0.0967637 -0.0967637
Unit cell volume ucvol= 2.7593248E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.17519
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t77o_DS1_WFK
================================================================================
prteigrs : about to open file t77o_DS2_EIG
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
3.88E-21 9.63E-21 6.45E-21 5.20E-22 1.54E-21 3.25E-21 2.91E-21 5.72E-21
-8.6949E-01 -6.3494E-01 -1.9899E-01 -1.7406E-01 -1.6281E-01 1.7584E-01
1.8766E-01 2.0006E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1672278, 5.1672278, ]
- [ 5.1672278, 0.0000000, 5.1672278, ]
- [ 5.1672278, 5.1672278, 0.0000000, ]
lattice_lengths: [ 7.30756, 7.30756, 7.30756, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7593248E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.631E-21, diffor: 0.000E+00, }
etotal : -3.92970562E+01
entropy : 0.00000000E+00
fermie : 2.00057737E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ba]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.98737792
2 2.00000 5.46690550
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.165E-22; max= 96.312E-22
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.73437917991299 2.73437917991299 2.73437917991299
length scales= 10.334455587000 10.334455587000 10.334455587000 bohr
= 5.468758359826 5.468758359826 5.468758359826 angstroms
prteigrs : about to open file t77o_DS2_EIG
Eigenvalues (hartree) for nkpt= 16 k points:
kpt# 1, nband= 8, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.86949 -0.63494 -0.19899 -0.17406 -0.16281 0.17584 0.18766 0.20006
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 16, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1672278 5.1672278 G(1)= -0.0967637 0.0967637 0.0967637
R(2)= 5.1672278 0.0000000 5.1672278 G(2)= 0.0967637 -0.0967637 0.0967637
R(3)= 5.1672278 5.1672278 0.0000000 G(3)= 0.0967637 0.0967637 -0.0967637
Unit cell volume ucvol= 2.7593248E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.17519
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -15.451593764126 -1.545E+01 3.625E-02 0.000E+00
ETOT 2 -15.468106728688 -1.651E-02 4.477E-04 0.000E+00
ETOT 3 -15.468243747280 -1.370E-04 1.964E-06 0.000E+00
ETOT 4 -15.468245470468 -1.723E-06 6.653E-08 0.000E+00
ETOT 5 -15.468245494483 -2.401E-08 3.329E-10 0.000E+00
ETOT 6 -15.468245494831 -3.477E-10 1.313E-11 0.000E+00
ETOT 7 -15.468245494836 -5.178E-12 6.752E-14 0.000E+00
ETOT 8 -15.468245494836 -6.040E-14 2.801E-15 0.000E+00
ETOT 9 -15.468245494836 -5.329E-15 1.469E-17 0.000E+00
ETOT 10 -15.468245494836 7.105E-15 6.232E-19 0.000E+00
ETOT 11 -15.468245494836 -7.105E-15 9.893E-21 0.000E+00
At SCF step 11 max residual= 9.89E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.324E-22; max= 98.933E-22
dfpt_looppert : ek2= 3.5485895017E+01
f-sum rule ratio= 8.2265810901E-01
prteigrs : about to open file t77t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.00358 -0.02673 0.09975 0.06782 0.08905 -0.25415 -0.29869 -0.35028
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.15838021E+01 eigvalue= -1.76124385E+00 local= -1.54955536E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.91927593E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.14124076E+00 enl1= -1.74373170E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.54682455E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1546824549E+02 Ha. Also 2DEtotal= -0.420912365801E+03 eV
( non-var. 2DEtotal : -1.5468245495E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -15.451598239124 -1.545E+01 3.625E-02 0.000E+00
ETOT 2 -15.468106748428 -1.651E-02 4.477E-04 0.000E+00
ETOT 3 -15.468243747144 -1.370E-04 1.964E-06 0.000E+00
ETOT 4 -15.468245470291 -1.723E-06 6.653E-08 0.000E+00
ETOT 5 -15.468245494305 -2.401E-08 3.329E-10 0.000E+00
ETOT 6 -15.468245494653 -3.477E-10 1.313E-11 0.000E+00
ETOT 7 -15.468245494658 -5.164E-12 6.752E-14 0.000E+00
ETOT 8 -15.468245494658 -5.862E-14 2.801E-15 0.000E+00
ETOT 9 -15.468245494658 0.000E+00 1.469E-17 0.000E+00
ETOT 10 -15.468245494658 -3.553E-15 6.232E-19 0.000E+00
ETOT 11 -15.468245494658 -1.599E-14 9.763E-21 0.000E+00
At SCF step 11 max residual= 9.76E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t77o_DS3_1WF7
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.850E-22; max= 97.630E-22
dfpt_looppert : ek2= 3.5485895017E+01
f-sum rule ratio= 8.2265810900E-01
prteigrs : about to open file t77t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.00876 -0.01287 0.04011 0.05983 -0.03578 0.14868 0.20384 -0.13787
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.15838021E+01 eigvalue= -1.76124385E+00 local= -1.54955536E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.91927593E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.14124076E+00 enl1= -1.74373170E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.54682455E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1546824549E+02 Ha. Also 2DEtotal= -0.420912365796E+03 eV
( non-var. 2DEtotal : -1.5468245494E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -15.451593754782 -1.545E+01 3.625E-02 0.000E+00
ETOT 2 -15.468106728308 -1.651E-02 4.477E-04 0.000E+00
ETOT 3 -15.468243746926 -1.370E-04 1.964E-06 0.000E+00
ETOT 4 -15.468245470114 -1.723E-06 6.653E-08 0.000E+00
ETOT 5 -15.468245494129 -2.401E-08 3.329E-10 0.000E+00
ETOT 6 -15.468245494477 -3.477E-10 1.313E-11 0.000E+00
ETOT 7 -15.468245494482 -5.166E-12 6.752E-14 0.000E+00
ETOT 8 -15.468245494482 -6.395E-14 2.801E-15 0.000E+00
ETOT 9 -15.468245494482 -2.309E-14 1.469E-17 0.000E+00
ETOT 10 -15.468245494482 -1.776E-15 6.232E-19 0.000E+00
ETOT 11 -15.468245494482 -5.329E-15 9.880E-21 0.000E+00
At SCF step 11 max residual= 9.88E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t77o_DS3_1WF7
-open ddk wf file :t77o_DS3_1WF8
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.319E-22; max= 98.795E-22
dfpt_looppert : ek2= 3.5485895017E+01
f-sum rule ratio= 8.2265810899E-01
prteigrs : about to open file t77t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 8, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.00617 0.01980 -0.06993 -0.06382 -0.02664 0.05273 0.04742 0.24407
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.15838021E+01 eigvalue= -1.76124385E+00 local= -1.54955536E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.91927593E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.14124076E+00 enl1= -1.74373170E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.54682455E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1546824549E+02 Ha. Also 2DEtotal= -0.420912365791E+03 eV
( non-var. 2DEtotal : -1.5468245494E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Band by band decomposition of the localisation tensor (bohr^2)
Localisation tensor (bohr^2) for band 1, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 0.4220788894 -0.0000000000
1 2 -0.0000000000 -0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 -0.0000000000 0.0000000000
2 2 0.4220788894 -0.0000000000
2 3 0.0000000000 -0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 0.4220788894 -0.0000000000
Localisation tensor (bohr^2) for band 1, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0432083177 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 -0.0000000000 0.0000000000
2 1 0.0000000000 -0.0000000000
2 2 -0.0432083177 0.0000000000
2 3 -0.0000000000 -0.0000000000
3 1 -0.0000000000 -0.0000000000
3 2 -0.0000000000 0.0000000000
3 3 -0.0432083177 -0.0000000000
Localisation tensor (bohr^2) for band 1, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0227887103 0.0000000000
1 2 0.0000000000 -0.0000000000
1 3 0.0000000000 -0.0000000000
2 1 0.0000000000 0.0000000000
2 2 -0.0227887103 -0.0000000000
2 3 -0.0000000000 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 -0.0000000000 -0.0000000000
3 3 -0.0227887103 0.0000000000
Localisation tensor (bohr^2) for band 1, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0149679567 0.0000000000
1 2 -0.0006936903 0.0000000028
1 3 -0.0000001513 0.0000000028
2 1 -0.0006936903 -0.0000000028
2 2 -0.0146755544 -0.0000000000
2 3 0.0006934756 -0.0000000018
3 1 -0.0000001513 -0.0000000028
3 2 0.0006934756 0.0000000018
3 3 -0.0143831924 -0.0000000000
Localisation tensor (bohr^2) for band 1, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0126164034 -0.0000000000
1 2 0.0006936903 -0.0000000028
1 3 0.0000001513 -0.0000000028
2 1 0.0006936903 0.0000000028
2 2 -0.0129088058 -0.0000000000
2 3 -0.0006934756 0.0000000018
3 1 0.0000001513 0.0000000028
3 2 -0.0006934756 -0.0000000018
3 3 -0.0132011677 -0.0000000000
Localisation tensor (bohr^2) for band 1, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0923142021 0.0000000000
1 2 -0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 -0.0000000000 -0.0000000000
2 2 -0.0923142020 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 0.0000000000 -0.0000000000
3 2 0.0000000000 -0.0000000000
3 3 -0.0923142019 -0.0000000000
Localisation tensor (bohr^2) for band 1, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1090693222 0.0000000000
1 2 -0.0154960829 -0.0000002155
1 3 -0.0000013478 -0.0000000664
2 1 -0.0154960829 0.0000002155
2 2 -0.1002911614 -0.0000000000
2 3 0.0154867636 0.0000004290
3 1 -0.0000013478 0.0000000664
3 2 0.0154867636 -0.0000004290
3 3 -0.0915244160 0.0000000000
Localisation tensor (bohr^2) for band 1, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0811872932 -0.0000000000
1 2 0.0154960829 0.0000002155
1 3 0.0000013478 0.0000000664
2 1 0.0154960829 -0.0000002155
2 2 -0.0899654540 0.0000000000
2 3 -0.0154867636 -0.0000004290
3 1 0.0000013478 -0.0000000664
3 2 -0.0154867636 0.0000004290
3 3 -0.0987321995 0.0000000000
Localisation tensor (bohr^2) for band 2, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0432083177 -0.0000000000
1 2 0.0000000000 -0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 0.0000000000 0.0000000000
2 2 -0.0432083177 0.0000000000
2 3 -0.0000000000 0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 -0.0000000000 -0.0000000000
3 3 -0.0432083177 0.0000000000
Localisation tensor (bohr^2) for band 2, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 1.0512665440 -0.0000000000
1 2 -0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 -0.0000000000 -0.0000000000
2 2 1.0512665440 -0.0000000000
2 3 0.0000000000 0.0000000000
3 1 0.0000000000 -0.0000000000
3 2 0.0000000000 -0.0000000000
3 3 1.0512665440 0.0000000000
Localisation tensor (bohr^2) for band 2, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.3711388777 -0.0000000000
1 2 -0.0000000000 0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 -0.0000000000 -0.0000000000
2 2 -0.3711388777 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 0.0000000000 -0.0000000000
3 3 -0.3711388776 0.0000000000
Localisation tensor (bohr^2) for band 2, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.3353091711 -0.0000000000
1 2 -0.0433072607 0.0000001746
1 3 -0.0000094427 0.0000001745
2 1 -0.0433072607 -0.0000001746
2 2 -0.3170544191 -0.0000000000
2 3 0.0432938575 -0.0000001152
3 1 -0.0000094427 -0.0000001745
3 2 0.0432938575 0.0000001152
3 3 -0.2988021888 0.0000000000
Localisation tensor (bohr^2) for band 2, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.2828867405 -0.0000000000
1 2 0.0433072607 -0.0000001746
1 3 0.0000094427 -0.0000001745
2 1 0.0433072607 0.0000001746
2 2 -0.3011414925 -0.0000000000
2 3 -0.0432938575 0.0000001152
3 1 0.0000094427 0.0000001745
3 2 -0.0432938575 -0.0000001152
3 3 -0.3193937229 0.0000000000
Localisation tensor (bohr^2) for band 2, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0007125514 -0.0000000000
1 2 -0.0000000000 0.0000000000
1 3 -0.0000000000 0.0000000000
2 1 -0.0000000000 -0.0000000000
2 2 -0.0007125514 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 -0.0000000000 -0.0000000000
3 2 0.0000000000 -0.0000000000
3 3 -0.0007125514 0.0000000000
Localisation tensor (bohr^2) for band 2, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0007954695 0.0000000000
1 2 -0.0003525230 -0.0000000049
1 3 -0.0000000307 -0.0000000015
2 1 -0.0003525230 0.0000000049
2 2 -0.0005957736 -0.0000000000
2 3 0.0003523110 0.0000000098
3 1 -0.0000000307 0.0000000015
3 2 0.0003523110 -0.0000000098
3 3 -0.0003963374 0.0000000000
Localisation tensor (bohr^2) for band 2, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0021512975 -0.0000000000
1 2 0.0003525230 0.0000000049
1 3 0.0000000307 0.0000000015
2 1 0.0003525230 -0.0000000049
2 2 -0.0023509933 0.0000000000
2 3 -0.0003523110 -0.0000000098
3 1 0.0000000307 -0.0000000015
3 2 -0.0003523110 0.0000000098
3 3 -0.0025504295 0.0000000000
Localisation tensor (bohr^2) for band 3, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0227887103 -0.0000000000
1 2 0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 0.0000000000 -0.0000000000
2 2 -0.0227887103 -0.0000000000
2 3 -0.0000000000 -0.0000000000
3 1 0.0000000000 -0.0000000000
3 2 -0.0000000000 0.0000000000
3 3 -0.0227887103 -0.0000000000
Localisation tensor (bohr^2) for band 3, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.3711388777 0.0000000000
1 2 -0.0000000000 -0.0000000000
1 3 -0.0000000000 0.0000000000
2 1 -0.0000000000 0.0000000000
2 2 -0.3711388777 0.0000000000
2 3 0.0000000000 -0.0000000000
3 1 -0.0000000000 -0.0000000000
3 2 0.0000000000 0.0000000000
3 3 -0.3711388776 0.0000000000
Localisation tensor (bohr^2) for band 3, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 6.3001136844 0.0000000000
1 2 0.0000000007 -0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 0.0000000007 0.0000000000
2 2 6.3001136849 -0.0000000000
2 3 -0.0000000007 -0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 -0.0000000007 0.0000000000
3 3 6.3001136854 -0.0000000000
Localisation tensor (bohr^2) for band 3, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -4.9370335862 -0.0000000000
1 2 -0.0012897972 0.0000000052
1 3 -0.0000002812 0.0000000052
2 1 -0.0012897972 -0.0000000052
2 2 -4.9364899155 -0.0000000000
2 3 0.0012893980 -0.0000000034
3 1 -0.0000002812 -0.0000000052
3 2 0.0012893980 0.0000000034
3 3 -4.9359463198 0.0000000000
Localisation tensor (bohr^2) for band 3, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0210350675 0.0000000000
1 2 0.0012897965 -0.0000000052
1 3 0.0000002812 -0.0000000052
2 1 0.0012897965 0.0000000052
2 2 -0.0215787388 -0.0000000000
2 3 -0.0012893974 0.0000000034
3 1 0.0000002812 0.0000000052
3 2 -0.0012893974 -0.0000000034
3 3 -0.0221223350 -0.0000000000
Localisation tensor (bohr^2) for band 3, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0659349504 -0.0000000000
1 2 0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 0.0000000000 -0.0000000000
2 2 -0.0659349504 -0.0000000000
2 3 -0.0000000000 0.0000000000
3 1 0.0000000000 -0.0000000000
3 2 -0.0000000000 -0.0000000000
3 3 -0.0659349504 -0.0000000000
Localisation tensor (bohr^2) for band 3, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0802137009 -0.0000000000
1 2 -0.0288825277 -0.0000004017
1 3 -0.0000025121 -0.0000001238
2 1 -0.0288825277 0.0000004017
2 2 -0.0638524387 0.0000000000
2 3 0.0288651578 0.0000007997
3 1 -0.0000025121 0.0000001238
3 2 0.0288651578 -0.0000007997
3 3 -0.0475124532 0.0000000000
Localisation tensor (bohr^2) for band 3, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1785574610 -0.0000000000
1 2 0.0288825277 0.0000004017
1 3 0.0000025121 0.0000001238
2 1 0.0288825277 -0.0000004017
2 2 -0.1949187231 0.0000000000
2 3 -0.0288651578 -0.0000007997
3 1 0.0000025121 -0.0000001238
3 2 -0.0288651578 0.0000007997
3 3 -0.2112587086 0.0000000000
Localisation tensor (bohr^2) for band 4, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0149679567 0.0000000000
1 2 -0.0006936903 -0.0000000028
1 3 -0.0000001513 -0.0000000028
2 1 -0.0006936903 0.0000000028
2 2 -0.0146755544 -0.0000000000
2 3 0.0006934756 0.0000000018
3 1 -0.0000001513 0.0000000028
3 2 0.0006934756 -0.0000000018
3 3 -0.0143831924 -0.0000000000
Localisation tensor (bohr^2) for band 4, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.3353091711 -0.0000000000
1 2 -0.0433072607 -0.0000001746
1 3 -0.0000094427 -0.0000001745
2 1 -0.0433072607 0.0000001746
2 2 -0.3170544191 -0.0000000000
2 3 0.0432938575 0.0000001152
3 1 -0.0000094427 0.0000001745
3 2 0.0432938575 -0.0000001152
3 3 -0.2988021888 -0.0000000000
Localisation tensor (bohr^2) for band 4, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -4.9370335862 0.0000000000
1 2 -0.0012897972 -0.0000000052
1 3 -0.0000002812 -0.0000000052
2 1 -0.0012897972 0.0000000052
2 2 -4.9364899155 -0.0000000000
2 3 0.0012893980 0.0000000034
3 1 -0.0000002812 0.0000000052
3 2 0.0012893980 -0.0000000034
3 3 -4.9359463198 -0.0000000000
Localisation tensor (bohr^2) for band 4, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 34.8765323142 0.0000000000
1 2 0.1399122236 0.0000000551
1 3 0.0000305065 0.0000000551
2 1 0.1399122236 -0.0000000551
2 2 34.8044103461 -0.0000000000
2 3 -0.1398689221 -0.0000000364
3 1 0.0000305065 -0.0000000551
3 2 -0.1398689221 0.0000000364
3 3 34.7322983408 -0.0000000000
Localisation tensor (bohr^2) for band 4, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -28.1106980312 -0.0000000000
1 2 -0.0000000107 0.0000000000
1 3 -0.0000000000 0.0000000000
2 1 -0.0000000107 -0.0000000000
2 2 -28.1106980252 -0.0000000000
2 3 0.0000000107 0.0000000000
3 1 -0.0000000000 -0.0000000000
3 2 0.0000000107 -0.0000000000
3 3 -28.1106980192 -0.0000000000
Localisation tensor (bohr^2) for band 4, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1873249850 0.0000000000
1 2 -0.0779904582 -0.0000003144
1 3 -0.0000170050 -0.0000003143
2 1 -0.0779904582 0.0000003144
2 2 -0.1544506713 -0.0000000000
2 3 0.0779663208 0.0000002075
3 1 -0.0000170050 0.0000003143
3 2 0.0779663208 -0.0000002075
3 3 -0.1215808987 0.0000000000
Localisation tensor (bohr^2) for band 4, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.3215523034 0.0000000000
1 2 0.0567907144 0.0000001222
1 3 0.0292129697 0.0000008696
2 1 0.0567907144 -0.0000001222
2 2 -0.2482637489 0.0000000000
2 3 -0.0072188959 0.0000002933
3 1 0.0292129697 -0.0000008696
3 2 -0.0072188959 -0.0000002933
3 3 -0.2586571770 0.0000000000
Localisation tensor (bohr^2) for band 4, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1333857894 0.0000000000
1 2 -0.0237691863 0.0000001687
1 3 -0.0292057697 -0.0000005787
2 1 -0.0237691863 -0.0000001687
2 2 -0.1788360648 0.0000000000
2 3 -0.0257924124 -0.0000004853
3 1 -0.0292057697 0.0000005787
3 2 -0.0257924124 0.0000004853
3 3 -0.1406082032 -0.0000000000
Localisation tensor (bohr^2) for band 5, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0126164034 0.0000000000
1 2 0.0006936903 0.0000000028
1 3 0.0000001513 0.0000000028
2 1 0.0006936903 -0.0000000028
2 2 -0.0129088058 0.0000000000
2 3 -0.0006934756 -0.0000000018
3 1 0.0000001513 -0.0000000028
3 2 -0.0006934756 0.0000000018
3 3 -0.0132011677 -0.0000000000
Localisation tensor (bohr^2) for band 5, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.2828867405 -0.0000000000
1 2 0.0433072607 0.0000001746
1 3 0.0000094427 0.0000001745
2 1 0.0433072607 -0.0000001746
2 2 -0.3011414925 -0.0000000000
2 3 -0.0432938575 -0.0000001152
3 1 0.0000094427 -0.0000001745
3 2 -0.0432938575 0.0000001152
3 3 -0.3193937229 -0.0000000000
Localisation tensor (bohr^2) for band 5, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0210350675 -0.0000000000
1 2 0.0012897965 0.0000000052
1 3 0.0000002812 0.0000000052
2 1 0.0012897965 -0.0000000052
2 2 -0.0215787388 -0.0000000000
2 3 -0.0012893974 -0.0000000034
3 1 0.0000002812 -0.0000000052
3 2 -0.0012893974 0.0000000034
3 3 -0.0221223350 0.0000000000
Localisation tensor (bohr^2) for band 5, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -28.1106980312 -0.0000000000
1 2 -0.0000000107 -0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 -0.0000000107 0.0000000000
2 2 -28.1106980252 0.0000000000
2 3 0.0000000107 -0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 0.0000000107 0.0000000000
3 3 -28.1106980192 -0.0000000000
Localisation tensor (bohr^2) for band 5, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 30.0818819443 0.0000000000
1 2 -0.1399122015 -0.0000000551
1 3 -0.0000305065 -0.0000000551
2 1 -0.1399122015 0.0000000551
2 2 30.1540039011 -0.0000000000
2 3 0.1398689000 0.0000000364
3 1 -0.0000305065 0.0000000551
3 2 0.1398689000 -0.0000000364
3 3 30.2261158950 0.0000000000
Localisation tensor (bohr^2) for band 5, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.5350627156 0.0000000000
1 2 0.0779904582 0.0000003144
1 3 0.0000170050 0.0000003143
2 1 0.0779904582 -0.0000003144
2 2 -0.5679370290 0.0000000000
2 3 -0.0779663208 -0.0000002075
3 1 0.0000170050 -0.0000003143
3 2 -0.0779663208 0.0000002075
3 3 -0.6008068013 0.0000000000
Localisation tensor (bohr^2) for band 5, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1987132661 0.0000000000
1 2 -0.0258039916 0.0000008199
1 3 -0.0292102746 -0.0000005794
2 1 -0.0258039916 -0.0000008199
2 2 -0.2368953439 0.0000000000
2 3 -0.0237491917 -0.0000021686
3 1 -0.0292102746 0.0000005794
3 2 -0.0237491917 0.0000021686
3 3 -0.1914410925 0.0000000000
Localisation tensor (bohr^2) for band 5, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0768796724 0.0000000000
1 2 -0.0072175367 -0.0000011109
1 3 0.0292030746 0.0000002885
2 1 -0.0072175367 0.0000011109
2 2 -0.0665358740 0.0000000000
2 3 0.0567605001 0.0000023607
3 1 0.0292030746 -0.0000002885
3 2 0.0567605001 -0.0000023607
3 3 -0.1398245594 0.0000000000
Localisation tensor (bohr^2) for band 6, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0923142021 0.0000000000
1 2 -0.0000000000 -0.0000000000
1 3 0.0000000000 -0.0000000000
2 1 -0.0000000000 0.0000000000
2 2 -0.0923142020 0.0000000000
2 3 0.0000000000 -0.0000000000
3 1 0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 -0.0923142019 -0.0000000000
Localisation tensor (bohr^2) for band 6, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0007125514 -0.0000000000
1 2 -0.0000000000 -0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 -0.0000000000 0.0000000000
2 2 -0.0007125514 -0.0000000000
2 3 0.0000000000 -0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 -0.0007125514 -0.0000000000
Localisation tensor (bohr^2) for band 6, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0659349504 -0.0000000000
1 2 0.0000000000 -0.0000000000
1 3 0.0000000000 -0.0000000000
2 1 0.0000000000 0.0000000000
2 2 -0.0659349504 0.0000000000
2 3 -0.0000000000 -0.0000000000
3 1 0.0000000000 0.0000000000
3 2 -0.0000000000 0.0000000000
3 3 -0.0659349504 0.0000000000
Localisation tensor (bohr^2) for band 6, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1873249850 0.0000000000
1 2 -0.0779904582 0.0000003144
1 3 -0.0000170050 0.0000003143
2 1 -0.0779904582 -0.0000003144
2 2 -0.1544506713 0.0000000000
2 3 0.0779663208 -0.0000002075
3 1 -0.0000170050 -0.0000003143
3 2 0.0779663208 0.0000002075
3 3 -0.1215808987 0.0000000000
Localisation tensor (bohr^2) for band 6, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.5350627156 0.0000000000
1 2 0.0779904582 -0.0000003144
1 3 0.0000170050 -0.0000003143
2 1 0.0779904582 0.0000003144
2 2 -0.5679370290 0.0000000000
2 3 -0.0779663208 0.0000002075
3 1 0.0000170050 0.0000003143
3 2 -0.0779663208 -0.0000002075
3 3 -0.6008068013 0.0000000000
Localisation tensor (bohr^2) for band 6, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 246.0154474138 -0.0000000000
1 2 0.0000001186 -0.0000000000
1 3 0.0000000000 -0.0000000000
2 1 0.0000001186 0.0000000000
2 2 246.0154472665 -0.0000000000
2 3 -0.0000001185 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 -0.0000001185 -0.0000000000
3 3 246.0154471194 -0.0000000000
Localisation tensor (bohr^2) for band 6, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -197.9727617993 0.0000000000
1 2 -37.4245332239 -0.0005205636
1 3 -0.0032550128 -0.0001603563
2 1 -37.4245332239 0.0005205636
2 2 -176.7726575705 -0.0000000000
2 3 37.4020261311 0.0010361595
3 1 -0.0032550128 0.0001603563
3 2 37.4020261311 -0.0010361595
3 3 -155.6001224223 -0.0000000000
Localisation tensor (bohr^2) for band 6, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -46.1061886234 0.0000000000
1 2 37.4245331052 0.0005205636
1 3 0.0032550128 0.0001603563
2 1 37.4245331052 -0.0005205636
2 2 -67.3062927055 0.0000000000
2 3 -37.4020260127 -0.0010361595
3 1 0.0032550128 -0.0001603563
3 2 -37.4020260127 0.0010361595
3 3 -88.4788277071 -0.0000000000
Localisation tensor (bohr^2) for band 7, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1090693222 0.0000000000
1 2 -0.0154960829 0.0000002155
1 3 -0.0000013478 0.0000000664
2 1 -0.0154960829 -0.0000002155
2 2 -0.1002911614 -0.0000000000
2 3 0.0154867636 -0.0000004290
3 1 -0.0000013478 -0.0000000664
3 2 0.0154867636 0.0000004290
3 3 -0.0915244160 -0.0000000000
Localisation tensor (bohr^2) for band 7, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0007954695 -0.0000000000
1 2 -0.0003525230 0.0000000049
1 3 -0.0000000307 0.0000000015
2 1 -0.0003525230 -0.0000000049
2 2 -0.0005957736 -0.0000000000
2 3 0.0003523110 -0.0000000098
3 1 -0.0000000307 -0.0000000015
3 2 0.0003523110 0.0000000098
3 3 -0.0003963374 -0.0000000000
Localisation tensor (bohr^2) for band 7, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0802137009 0.0000000000
1 2 -0.0288825277 0.0000004017
1 3 -0.0000025121 0.0000001238
2 1 -0.0288825277 -0.0000004017
2 2 -0.0638524387 0.0000000000
2 3 0.0288651578 -0.0000007997
3 1 -0.0000025121 -0.0000001238
3 2 0.0288651578 0.0000007997
3 3 -0.0475124532 0.0000000000
Localisation tensor (bohr^2) for band 7, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.3215523034 -0.0000000000
1 2 0.0567907144 -0.0000001222
1 3 0.0292129697 -0.0000008696
2 1 0.0567907144 0.0000001222
2 2 -0.2482637489 0.0000000000
2 3 -0.0072188959 -0.0000002933
3 1 0.0292129697 0.0000008696
3 2 -0.0072188959 0.0000002933
3 3 -0.2586571770 -0.0000000000
Localisation tensor (bohr^2) for band 7, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1987132661 0.0000000000
1 2 -0.0258039916 -0.0000008199
1 3 -0.0292102746 0.0000005794
2 1 -0.0258039916 0.0000008199
2 2 -0.2368953439 0.0000000000
2 3 -0.0237491917 0.0000021686
3 1 -0.0292102746 -0.0000005794
3 2 -0.0237491917 -0.0000021686
3 3 -0.1914410925 -0.0000000000
Localisation tensor (bohr^2) for band 7, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -197.9727617993 0.0000000000
1 2 -37.4245332239 0.0005205636
1 3 -0.0032550128 0.0001603563
2 1 -37.4245332239 -0.0005205636
2 2 -176.7726575705 -0.0000000000
2 3 37.4020261311 -0.0010361595
3 1 -0.0032550128 -0.0001603563
3 2 37.4020261311 0.0010361595
3 3 -155.6001224223 0.0000000000
Localisation tensor (bohr^2) for band 7, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 209.6981839587 0.0000000000
1 2 37.4965339846 0.0005197483
1 3 0.0032612751 0.0001601051
2 1 37.4965339846 -0.0005197483
2 2 188.3901664278 0.0000000000
2 3 -37.4739835908 -0.0010345367
3 1 0.0032612751 -0.0001601051
3 2 -37.4739835908 0.0010345367
3 3 167.1098583107 -0.0000000000
Localisation tensor (bohr^2) for band 7, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -9.0778045868 -0.0000000000
1 2 0.0000000048 0.0000000000
1 3 -0.0000000000 -0.0000000000
2 1 0.0000000048 -0.0000000000
2 2 -9.0778045980 -0.0000000000
2 3 -0.0000000047 -0.0000000000
3 1 -0.0000000000 0.0000000000
3 2 -0.0000000047 0.0000000000
3 3 -9.0778046091 0.0000000000
Localisation tensor (bohr^2) for band 8, 1 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0811872932 0.0000000000
1 2 0.0154960829 -0.0000002155
1 3 0.0000013478 -0.0000000664
2 1 0.0154960829 0.0000002155
2 2 -0.0899654540 -0.0000000000
2 3 -0.0154867636 0.0000004290
3 1 0.0000013478 0.0000000664
3 2 -0.0154867636 -0.0000004290
3 3 -0.0987321995 -0.0000000000
Localisation tensor (bohr^2) for band 8, 2 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0021512975 0.0000000000
1 2 0.0003525230 -0.0000000049
1 3 0.0000000307 -0.0000000015
2 1 0.0003525230 0.0000000049
2 2 -0.0023509933 -0.0000000000
2 3 -0.0003523110 0.0000000098
3 1 0.0000000307 0.0000000015
3 2 -0.0003523110 -0.0000000098
3 3 -0.0025504295 0.0000000000
Localisation tensor (bohr^2) for band 8, 3 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1785574610 0.0000000000
1 2 0.0288825277 -0.0000004017
1 3 0.0000025121 -0.0000001238
2 1 0.0288825277 0.0000004017
2 2 -0.1949187231 -0.0000000000
2 3 -0.0288651578 0.0000007997
3 1 0.0000025121 0.0000001238
3 2 -0.0288651578 -0.0000007997
3 3 -0.2112587086 0.0000000000
Localisation tensor (bohr^2) for band 8, 4 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.1333857894 0.0000000000
1 2 -0.0237691863 -0.0000001687
1 3 -0.0292057697 0.0000005787
2 1 -0.0237691863 0.0000001687
2 2 -0.1788360648 0.0000000000
2 3 -0.0257924124 0.0000004853
3 1 -0.0292057697 -0.0000005787
3 2 -0.0257924124 -0.0000004853
3 3 -0.1406082032 0.0000000000
Localisation tensor (bohr^2) for band 8, 5 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -0.0768796724 -0.0000000000
1 2 -0.0072175367 0.0000011109
1 3 0.0292030746 -0.0000002885
2 1 -0.0072175367 -0.0000011109
2 2 -0.0665358740 0.0000000000
2 3 0.0567605001 -0.0000023607
3 1 0.0292030746 0.0000002885
3 2 0.0567605001 0.0000023607
3 3 -0.1398245594 0.0000000000
Localisation tensor (bohr^2) for band 8, 6 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -46.1061886234 0.0000000000
1 2 37.4245331052 -0.0005205636
1 3 0.0032550128 -0.0001603563
2 1 37.4245331052 0.0005205636
2 2 -67.3062927055 0.0000000000
2 3 -37.4020260127 0.0010361595
3 1 0.0032550128 0.0001603563
3 2 -37.4020260127 -0.0010361595
3 3 -88.4788277071 0.0000000000
Localisation tensor (bohr^2) for band 8, 7 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 -9.0778045868 -0.0000000000
1 2 0.0000000048 -0.0000000000
1 3 -0.0000000000 0.0000000000
2 1 0.0000000048 0.0000000000
2 2 -9.0778045980 -0.0000000000
2 3 -0.0000000047 0.0000000000
3 1 -0.0000000000 -0.0000000000
3 2 -0.0000000047 -0.0000000000
3 3 -9.0778046091 -0.0000000000
Localisation tensor (bohr^2) for band 8, 8 in cartesian coordinates
direction matrix element
alpha beta real part imaginary part
1 1 57.2073798416 -0.0000000000
1 2 -37.4965338755 -0.0005197483
1 3 -0.0032612750 -0.0001601051
2 1 -37.4965338755 0.0005197483
2 2 78.5153972486 0.0000000000
2 3 37.4739834819 0.0010345367
3 1 -0.0032612750 0.0001601051
3 2 37.4739834819 -0.0010345367
3 3 99.7957052420 0.0000000000
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 0.8635373608 -0.0000000000
1 2 -0.0000000000 -0.0000000000
1 3 0.0000000000 -0.0000000000
2 1 -0.0000000000 0.0000000000
2 2 0.8635373608 0.0000000000
2 3 0.0000000000 -0.0000000000
3 1 0.0000000000 0.0000000000
3 2 0.0000000000 0.0000000000
3 3 0.8635373608 -0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 16, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 150, }
cutoff_energies: {ecut: 5.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1672278 5.1672278 G(1)= -0.0967637 0.0967637 0.0967637
R(2)= 5.1672278 0.0000000 5.1672278 G(2)= 0.0967637 -0.0967637 0.0967637
R(3)= 5.1672278 5.1672278 0.0000000 G(3)= 0.0967637 0.0967637 -0.0967637
Unit cell volume ucvol= 2.7593248E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 5.000 => boxcut(ratio)= 2.17519
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 129.32375182727 -4.432E+02 9.984E-01 3.351E+04
ETOT 2 9.2654313239143 -1.201E+02 3.044E-01 9.712E+02
ETOT 3 4.7357817761408 -4.530E+00 4.860E-03 9.519E+00
ETOT 4 4.7113142005512 -2.447E-02 3.201E-05 3.746E-02
ETOT 5 4.7111709450329 -1.433E-04 5.063E-07 1.130E-03
ETOT 6 4.7111667167017 -4.228E-06 2.139E-08 3.129E-05
ETOT 7 4.7111666201345 -9.657E-08 5.482E-10 2.537E-07
ETOT 8 4.7111666189446 -1.190E-09 2.159E-12 2.441E-09
ETOT 9 4.7111666189323 -1.228E-11 1.086E-13 6.323E-12
ETOT 10 4.7111666189325 1.137E-13 8.238E-16 2.452E-13
At SCF step 10, etot is converged :
for the second time, diff in etot= 1.137E-13 < toldfe= 1.000E-10
-open ddk wf file :t77o_DS3_1WF7
-open ddk wf file :t77o_DS3_1WF8
-open ddk wf file :t77o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 67.017E-18; max= 82.383E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.71491566E+02 eigvalue= 4.52641368E+01 local= -4.06668248E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 5.40504358E+01 Hartree= 1.23821440E+02 xc= -4.15430725E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.75491833E+02 enl1= -1.18976575E+03
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.67857656E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -7.27634545E+01 fr.nonlo= 5.96693544E+02 Ewald= 4.86387329E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.4711166619E+01 Ha. Also 2DEtotal= 0.128197363296E+03 eV
(2DErelax= -5.6785765566E+02 Ha. 2DEnonrelax= 5.7256882227E+02 Ha)
( non-var. 2DEtotal : 4.7111667321E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 6 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 301.98219114142 -2.764E+02 1.979E+00 5.507E+04
ETOT 2 80.742101063243 -2.212E+02 6.370E-01 1.134E+03
ETOT 3 75.069915912930 -5.672E+00 7.126E-03 5.319E+00
ETOT 4 75.051743672858 -1.817E-02 1.675E-04 9.825E-02
ETOT 5 75.051383814410 -3.599E-04 2.853E-06 9.913E-04
ETOT 6 75.051379407893 -4.407E-06 3.888E-08 6.109E-05
ETOT 7 75.051379183399 -2.245E-07 4.014E-10 1.345E-07
ETOT 8 75.051379182551 -8.476E-10 1.370E-11 3.534E-09
ETOT 9 75.051379182528 -2.296E-11 1.596E-13 8.293E-11
ETOT 10 75.051379182527 -1.023E-12 3.109E-15 4.704E-12
At SCF step 10, etot is converged :
for the second time, diff in etot= 1.023E-12 < toldfe= 1.000E-10
-open ddk wf file :t77o_DS3_1WF7
-open ddk wf file :t77o_DS3_1WF8
-open ddk wf file :t77o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.310E-17; max= 31.094E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.94598929E+02 eigvalue= -1.54308087E+01 local= -1.76413783E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.14471260E+03 Hartree= 2.32471918E+02 xc= -5.17449376E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.98932082E+01 enl1= 1.37963551E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.03374528E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 5.26024901E+02 fr.nonlo= -7.07575364E+01 Ewald= 4.86387329E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.40267351E+01 frxc 2 = 8.85465447E+01
Resulting in :
2DEtotal= 0.7505137918E+02 Ha. Also 2DEtotal= 0.204225188816E+04 eV
(2DErelax= -5.0337452800E+02 Ha. 2DEnonrelax= 5.7842590718E+02 Ha)
( non-var. 2DEtotal : 7.5051380679E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t77o_DS3_1WF7
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -64.935586511525 -6.494E+01 6.210E-01 1.524E+03
ETOT 2 -72.241139329089 -7.306E+00 1.621E-02 3.014E+01
ETOT 3 -72.416176511823 -1.750E-01 1.884E-04 3.417E-01
ETOT 4 -72.417260884800 -1.084E-03 2.722E-06 7.786E-03
ETOT 5 -72.417283189856 -2.231E-05 8.214E-08 1.634E-04
ETOT 6 -72.417283659680 -4.698E-07 9.839E-10 8.625E-07
ETOT 7 -72.417283663957 -4.277E-09 6.188E-11 4.321E-09
ETOT 8 -72.417283664001 -4.393E-11 5.246E-13 1.523E-10
ETOT 9 -72.417283664002 -1.009E-12 1.203E-14 2.013E-12
At SCF step 9, etot is converged :
for the second time, diff in etot= 1.009E-12 < toldfe= 1.000E-10
-open ddk wf file :t77o_DS3_1WF7
-open ddk wf file :t77o_DS3_1WF8
-open ddk wf file :t77o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 93.079E-17; max= 12.029E-15
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.06358563E+02 eigvalue= -4.24360270E+01 local= -1.03358954E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -1.44834568E+02 Hartree= 1.24390474E+01 xc= -5.22855161E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.64320608E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.24172837E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.7241728366E+02 Ha. Also 2DEtotal= -0.197057450388E+04 eV
( non-var. 2DEtotal : -7.2417283990E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 4.7111667321 0.0000000000
1 1 2 1 2.3555833660 0.0000000000
1 1 3 1 2.3555833660 0.0000000000
1 1 1 2 -4.6516658981 0.0000000000
1 1 2 2 -2.3258329490 0.0000000000
1 1 3 2 -2.3258329490 0.0000000000
1 1 1 4 -40.8852961424 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
2 1 1 1 2.3555833660 0.0000000000
2 1 2 1 4.7111667321 0.0000000000
2 1 3 1 2.3555833660 0.0000000000
2 1 1 2 -2.3258329490 0.0000000000
2 1 2 2 -4.6516658981 0.0000000000
2 1 3 2 -2.3258329490 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -40.8852961424 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 1 1 2.3555833660 0.0000000000
3 1 2 1 2.3555833660 0.0000000000
3 1 3 1 4.7111667321 0.0000000000
3 1 1 2 -2.3258329490 0.0000000000
3 1 2 2 -2.3258329490 0.0000000000
3 1 3 2 -4.6516658981 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -40.8852961424 0.0000000000
1 2 1 1 -4.6516661673 0.0000000000
1 2 2 1 -2.3258330837 0.0000000000
1 2 3 1 -2.3258330837 0.0000000000
1 2 1 2 75.0513806793 0.0000000000
1 2 2 2 37.5256903397 0.0000000000
1 2 3 2 37.5256903397 0.0000000000
1 2 1 4 -41.8247013980 0.0000000000
1 2 2 4 -0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 -2.3258330837 0.0000000000
2 2 2 1 -4.6516661673 0.0000000000
2 2 3 1 -2.3258330837 0.0000000000
2 2 1 2 37.5256903397 0.0000000000
2 2 2 2 75.0513806793 0.0000000000
2 2 3 2 37.5256903397 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
2 2 2 4 -41.8247013980 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -2.3258330837 0.0000000000
3 2 2 1 -2.3258330837 0.0000000000
3 2 3 1 -4.6516661673 0.0000000000
3 2 1 2 37.5256903397 0.0000000000
3 2 2 2 37.5256903397 0.0000000000
3 2 3 2 75.0513806793 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
3 2 3 4 -41.8247013980 0.0000000000
1 4 1 1 -40.8852953390 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 2 -41.8247013334 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
1 4 1 4 -72.4172839898 0.0000000000
1 4 2 4 24.1390946633 0.0000000000
1 4 3 4 24.1390946633 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
2 4 2 1 -40.8852953390 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 -0.0000000000 0.0000000000
2 4 2 2 -41.8247013334 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 24.1390946633 0.0000000000
2 4 2 4 -72.4172839898 0.0000000000
2 4 3 4 24.1390946633 0.0000000000
3 4 1 1 -0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 -40.8852953390 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -41.8247013334 0.0000000000
3 4 1 4 24.1390946633 0.0000000000
3 4 2 4 24.1390946633 0.0000000000
3 4 3 4 -72.4172839898 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0882232929 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -0.0871090553 0.0000000000
1 1 2 2 -0.0000000000 0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.0882232929 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 0.0000000000
2 1 2 2 -0.0871090553 0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 3 1 0.0882232929 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 3 2 -0.0871090553 0.0000000000
1 2 1 1 -0.0871090603 0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 0.0000000000
1 2 1 2 1.4054437722 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 -0.0871090603 0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 1.4054437722 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 -0.0871090603 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 1.4054437722 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 3.9740173191 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 3.9740173191 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 3.9740173191 -0.0000000000
Band by band decomposition of the dielectric tensor
Vacuum polarization
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 1.0000000000 0.0000000000
1 4 2 4 0.0000000000 0.0000000000
1 4 3 4 0.0000000000 0.0000000000
2 4 1 4 0.0000000000 0.0000000000
2 4 2 4 1.0000000000 0.0000000000
2 4 3 4 0.0000000000 0.0000000000
3 4 1 4 0.0000000000 0.0000000000
3 4 2 4 0.0000000000 0.0000000000
3 4 3 4 1.0000000000 0.0000000000
Dielectric tensor, in cartesian coordinates, for band 1
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.0405762218 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 -0.0405762218 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 -0.0405762218 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 2
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 -0.1417375696 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 -0.1417375696 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 -0.1417375696 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 3
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.1290074752 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 0.1290074752 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 0.1290074752 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 4
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.0996829105 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 0.0996829105 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 0.0996829105 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 5
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.4095990468 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 0.4095990468 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 0.4095990468 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 6
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.1415514756 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 0.1415514756 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 0.1415514756 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 7
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 2.1363201201 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 2.1363201201 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 2.1363201201 -0.0000000000
Dielectric tensor, in cartesian coordinates, for band 8
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 0.2401700824 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 0.2401700824 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 0.2401700824 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 3.4929030192 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
1 2 1 4 -0.6566079708 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 3.4929030192 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -0.6566079708 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 3.4929030192 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 -0.6566079708 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 3.4929031470 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
3 4 1 1 -0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 3.4929031470 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 3.4929031470 0.0000000000
1 4 1 2 -0.6566079606 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -0.6566079606 0.0000000000
3 4 2 2 -0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
3 4 3 2 -0.6566079606 0.0000000000
Band by band decomposition of the Born effective charges
Ionic charges in cartesian coordinates
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 10.0000000000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 10.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 10.0000000000 0.0000000000
1 4 1 2 6.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 6.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 6.0000000000 0.0000000000
Effective charges, in cartesian coordinates, for band 1
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 0.1004258939 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 0.1004258939 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 0.1004258939 0.0000000000
1 4 1 2 -1.9244308354 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -1.9244308354 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -1.9244308354 0.0000000000
Effective charges, in cartesian coordinates, for band 2
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -1.9152498564 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -1.9152498564 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -1.9152498564 0.0000000000
1 4 1 2 0.1369076177 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 0.1369076177 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 0.1369076177 0.0000000000
Effective charges, in cartesian coordinates, for band 3
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -1.1105666820 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -1.1105666820 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -1.1105666820 0.0000000000
1 4 1 2 -0.7165496085 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -0.7165496085 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -0.7165496085 0.0000000000
Effective charges, in cartesian coordinates, for band 4
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -2.4345259088 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -2.4345259088 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -2.4345259088 0.0000000000
1 4 1 2 -0.3242345736 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -0.3242345736 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -0.3242345736 0.0000000000
Effective charges, in cartesian coordinates, for band 5
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -2.8863071869 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -2.8863071869 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -2.8863071869 0.0000000000
1 4 1 2 1.5932952891 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 1.5932952891 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 1.5932952891 0.0000000000
Effective charges, in cartesian coordinates, for band 6
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 176.5298821916 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 176.5298821916 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 176.5298821916 0.0000000000
1 4 1 2 -185.8842816832 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -185.8842816832 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -185.8842816832 0.0000000000
Effective charges, in cartesian coordinates, for band 7
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -95.6134209352 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -95.6134209352 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -95.6134209352 0.0000000000
1 4 1 2 99.5292621092 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 99.5292621092 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 99.5292621092 0.0000000000
Effective charges, in cartesian coordinates, for band 8
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 -79.1773343549 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 -79.1773343549 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 -79.1773343549 0.0000000000
1 4 1 2 80.9334237114 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 80.9334237114 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 80.9334237114 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
5.750731E-04 5.750731E-04 5.750731E-04 6.943408E-03 6.943408E-03
6.943408E-03
Phonon frequencies in cm-1 :
- 1.262139E+02 1.262139E+02 1.262139E+02 1.523902E+03 1.523902E+03
- 1.523902E+03
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
5.750731E-04 5.750731E-04 9.348006E-04 6.943408E-03 6.943408E-03
6.956701E-03
Phonon frequencies in cm-1 :
- 1.262139E+02 1.262139E+02 2.051650E+02 1.523902E+03 1.523902E+03
- 1.526819E+03
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
5.750731E-04 5.750731E-04 9.348006E-04 6.943408E-03 6.943408E-03
6.956701E-03
Phonon frequencies in cm-1 :
- 1.262139E+02 1.262139E+02 2.051650E+02 1.523902E+03 1.523902E+03
- 1.526819E+03
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
5.750731E-04 5.750731E-04 9.348006E-04 6.943408E-03 6.943408E-03
6.956701E-03
Phonon frequencies in cm-1 :
- 1.262139E+02 1.262139E+02 2.051650E+02 1.523902E+03 1.523902E+03
- 1.526819E+03
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0334455587E+01 1.0334455587E+01 1.0334455587E+01 Bohr
amu 1.37327000E+02 1.59994000E+01
asr 0
chneut 0
diemac 1.20000000E+01
ecut 5.00000000E+00 Hartree
etotal1 -3.9297056234E+01
etotal3 -1.5468245494E+01
etotal4 -7.2417283664E+01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddk1 0
getddk2 0
getddk3 3
getddk4 3
getden1 0
getden2 -1
getden3 0
getden4 0
getwfk1 0
getwfk2 -1
getwfk3 2
getwfk4 2
iscf1 7
iscf2 -2
iscf3 7
iscf4 7
ixc 3
jdtset 1 2 3 4
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.06689112E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 16
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 16
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 16
natom 2
nband1 9
nband2 8
nband3 8
nband4 8
ndtset 4
ngfft 16 16 16
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 16
nstep 100
nsym 48
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
prtbbb 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 3
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
strten1 5.2391707296E-03 5.2391707296E-03 5.2391707296E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
toldfe1 1.00000000E-10 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 1.00000000E-10 Hartree
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-20
tolwfr3 1.00000000E-20
tolwfr4 0.00000000E+00
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7343791799E+00 2.7343791799E+00 2.7343791799E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.1672277935E+00 5.1672277935E+00 5.1672277935E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
znucl 56.00000 8.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 3.1 wall= 3.1
================================================================================
Calculation completed.
.Delivered 3 WARNINGs and 12 COMMENTs to log file.
+Overall time at end (sec) : cpu= 3.1 wall= 3.1