abinit/tests/v3/Refs/t18.abo

3076 lines
143 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h08 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v3_t18/t18.abi
- output file -> t18.abo
- root for input files -> t18i
- root for output files -> t18o
DATASET 1 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 2
- mband = 3 mffmem = 1 mkmem = 1
mpw = 52 nfft = 1728 nkpt = 1
================================================================================
P This job should need less than 1.738 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.004 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 2 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 2
- mband = 3 mffmem = 1 mkmem = 8
mpw = 52 nfft = 1728 nkpt = 8
================================================================================
P This job should need less than 1.550 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.021 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 3 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 2
- mband = 3 mffmem = 1 mkmem = 8
mpw = 52 nfft = 1728 nkpt = 8
================================================================================
P This job should need less than 1.761 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.021 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 4 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 2
- mband = 3 mffmem = 1 mkmem = 8
mpw = 52 nfft = 1728 nkpt = 8
================================================================================
P This job should need less than 1.550 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.021 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 5 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 8 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 2
- mband = 3 mffmem = 1 mkmem = 8
- mkqmem = 8 mk1mem = 8 mpw = 52
nfft = 1728 nkpt = 8
================================================================================
P This job should need less than 1.730 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.021 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 6 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 2
- mband = 6 mffmem = 1 mkmem = 1
mpw = 104 nfft = 3456 nkpt = 1
================================================================================
P This job should need less than 2.276 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 7 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 7.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 2
- mband = 6 mffmem = 1 mkmem = 1
mpw = 104 nfft = 3456 nkpt = 1
================================================================================
P This job should need less than 2.276 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 8 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 8 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 8 n1xccc = 0 ntypat = 1 occopt = 2
xclevel = 2
- mband = 3 mffmem = 1 mkmem = 8
- mkqmem = 8 mk1mem = 8 mpw = 52
nfft = 1728 nkpt = 8
================================================================================
P This job should need less than 0.993 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.021 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 9 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 9.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 2 xclevel = 2
- mband = 6 mffmem = 1 mkmem = 1
mpw = 104 nfft = 3456 nkpt = 1
================================================================================
P This job should need less than 1.543 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 10 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 10.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 2 xclevel = 2
- mband = 6 mffmem = 1 mkmem = 1
mpw = 104 nfft = 3456 nkpt = 1
================================================================================
P This job should need less than 1.543 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 11 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 11 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 24 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 8 n1xccc = 0 ntypat = 1 occopt = 2
xclevel = 2
- mband = 6 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 104
nfft = 3456 nkpt = 1
================================================================================
P This job should need less than 1.230 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.012 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell1 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell2 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell3 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell4 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell5 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell6 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell7 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell8 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell9 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell10 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell11 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
amu 2.69600000E+01
asr 0
chneut 0
ecut 4.00000000E+00 Hartree
enunit 2
- fftalg 512
getden1 0
getden2 1
getden3 0
getden4 3
getden5 3
getden6 0
getden7 0
getden8 3
getden9 0
getden10 0
getden11 0
getocc1 0
getocc2 0
getocc3 0
getocc4 0
getocc5 0
getocc6 0
getocc7 0
getocc8 3
getocc9 6
getocc10 6
getocc11 9
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 3
getwfk5 3
getwfk6 0
getwfk7 6
getwfk8 3
getwfk9 6
getwfk10 6
getwfk11 9
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 0
getwfq5 4
getwfq6 0
getwfq7 0
getwfq8 4
getwfq9 0
getwfq10 0
getwfq11 0
iscf1 7
iscf2 -2
iscf3 7
iscf4 -2
iscf5 7
iscf6 7
iscf7 7
iscf8 7
iscf9 7
iscf10 7
iscf11 7
ixc 11
jdtset 1 2 3 4 5 6 7 8 9 10
11
kpt1 2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt2 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt3 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt4 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt5 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt6 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt7 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt8 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt9 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt10 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt11 5.00000000E-01 2.50000000E-01 2.50000000E-01
kptopt1 1
kptopt2 3
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 0
kptopt7 0
kptopt8 3
kptopt9 0
kptopt10 0
kptopt11 0
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen1 1.01000000E+01
kptrlen2 1.01000000E+01
kptrlen3 1.01000000E+01
kptrlen4 1.01000000E+01
kptrlen5 1.01000000E+01
kptrlen6 3.00000000E+01
kptrlen7 3.00000000E+01
kptrlen8 1.01000000E+01
kptrlen9 3.00000000E+01
kptrlen10 3.00000000E+01
kptrlen11 3.00000000E+01
P mkmem1 1
P mkmem2 8
P mkmem3 8
P mkmem4 8
P mkmem5 8
P mkmem6 1
P mkmem7 1
P mkmem8 8
P mkmem9 1
P mkmem10 1
P mkmem11 1
P mkqmem1 1
P mkqmem2 8
P mkqmem3 8
P mkqmem4 8
P mkqmem5 8
P mkqmem6 1
P mkqmem7 1
P mkqmem8 8
P mkqmem9 1
P mkqmem10 1
P mkqmem11 1
P mk1mem1 1
P mk1mem2 8
P mk1mem3 8
P mk1mem4 8
P mk1mem5 8
P mk1mem6 1
P mk1mem7 1
P mk1mem8 8
P mk1mem9 1
P mk1mem10 1
P mk1mem11 1
natom1 1
natom2 1
natom3 1
natom4 1
natom5 1
natom6 2
natom7 2
natom8 1
natom9 2
natom10 2
natom11 2
nband1 3
nband2 3
nband3 3
nband4 3
nband5 3
nband6 6
nband7 6
nband8 3 3 3 3 3 3 3 3
nband9 6
nband10 6
nband11 6
ndtset 11
ngfft1 12 12 12
ngfft2 12 12 12
ngfft3 12 12 12
ngfft4 12 12 12
ngfft5 12 12 12
ngfft6 24 12 12
ngfft7 24 12 12
ngfft8 12 12 12
ngfft9 24 12 12
ngfft10 24 12 12
ngfft11 24 12 12
nkpt1 1
nkpt2 8
nkpt3 8
nkpt4 8
nkpt5 8
nkpt6 1
nkpt7 1
nkpt8 8
nkpt9 1
nkpt10 1
nkpt11 1
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 1
nqpt5 1
nqpt6 0
nqpt7 0
nqpt8 1
nqpt9 0
nqpt10 0
nqpt11 1
nstep 9
nsym 8
ntypat 1
occ1 2.000000 1.000000 0.000000
occ3 2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
occ5 2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
occ6 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000
occ7 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000
occ8 2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
2.000000 1.000000 0.000000
occ9 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000
occ10 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000
occ11 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000
occopt1 4
occopt2 4
occopt3 4
occopt4 4
occopt5 4
occopt6 4
occopt7 4
occopt8 2
occopt9 2
occopt10 2
occopt11 2
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 0
optdriver5 1
optdriver6 0
optdriver7 0
optdriver8 1
optdriver9 0
optdriver10 0
optdriver11 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 0
prtpot5 1
prtpot6 0
prtpot7 0
prtpot8 1
prtpot9 0
prtpot10 0
prtpot11 1
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt4 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt5 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt7 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt8 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt9 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt10 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt11 0.00000000E+00 0.00000000E+00 0.00000000E+00
rfatpol1 1 1
rfatpol2 1 1
rfatpol3 1 1
rfatpol4 1 1
rfatpol5 1 1
rfatpol6 1 2
rfatpol7 1 2
rfatpol8 1 1
rfatpol9 1 2
rfatpol10 1 2
rfatpol11 1 1
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 1 1
rfdir4 1 1 1
rfdir5 1 0 0
rfdir6 1 1 1
rfdir7 1 1 1
rfdir8 1 0 0
rfdir9 1 1 1
rfdir10 1 1 1
rfdir11 1 0 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 0
rfphon5 1
rfphon6 0
rfphon7 0
rfphon8 1
rfphon9 0
rfphon10 0
rfphon11 1
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 99
symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 1
1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 -1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1 0 1 0
1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 -1 0
toldfe1 0.00000000E+00 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 0.00000000E+00 Hartree
toldfe5 1.00000000E-08 Hartree
toldfe6 0.00000000E+00 Hartree
toldfe7 1.00000000E-12 Hartree
toldfe8 1.00000000E-08 Hartree
toldfe9 0.00000000E+00 Hartree
toldfe10 0.00000000E+00 Hartree
toldfe11 2.00000000E-12 Hartree
tolvrs1 1.00000000E-14
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-14
tolvrs4 0.00000000E+00
tolvrs5 0.00000000E+00
tolvrs6 1.00000000E-14
tolvrs7 0.00000000E+00
tolvrs8 0.00000000E+00
tolvrs9 1.00000000E-14
tolvrs10 1.00000000E-15
tolvrs11 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 0.00000000E+00
tolwfr4 1.00000000E-22
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
tolwfr7 0.00000000E+00
tolwfr8 0.00000000E+00
tolwfr9 0.00000000E+00
tolwfr10 0.00000000E+00
tolwfr11 0.00000000E+00
tsmear 4.00000000E-02 Hartree
typat1 1
typat2 1
typat3 1
typat4 1
typat5 1
typat6 1 1
typat7 1 1
typat8 1
typat9 1 1
typat10 1 1
typat11 1 1
wtk1 1.00000
wtk2 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk3 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk4 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk5 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk6 1.00000
wtk7 1.00000
wtk8 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk9 1.00000
wtk10 1.00000
wtk11 1.00000
xangst1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7517214847E+00 0.0000000000E+00 0.0000000000E+00
xangst7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7572249276E+00 0.0000000000E+00 0.0000000000E+00
xangst8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7517214847E+00 0.0000000000E+00 0.0000000000E+00
xangst10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7572249276E+00 0.0000000000E+00 0.0000000000E+00
xangst11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7517214847E+00 0.0000000000E+00 0.0000000000E+00
xcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2104000000E+00 0.0000000000E+00 0.0000000000E+00
xcart8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2104000000E+00 0.0000000000E+00 0.0000000000E+00
xcart11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2000000000E+00 0.0000000000E+00 0.0000000000E+00
xred1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
xred7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0100000000E-01 0.0000000000E+00 0.0000000000E+00
xred8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
xred10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0100000000E-01 0.0000000000E+00 0.0000000000E+00
xred11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
znucl 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 9.
chkinp: Checking input parameters for consistency, jdtset= 10.
chkinp: Checking input parameters for consistency, jdtset= 11.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 1, nkpt: 1, mband: 3, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 5.2000000 0.0000000 0.0000000 G(1)= 0.1923077 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 1.3261300E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- Aluminum, fhi98PP : Hamann-type, LDA CA PerdewWang, l=2 local
- 13.00000 3.00000 981214 znucl, zion, pspdat
6 7 2 2 493 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
No XC core correction.
1.024700 amesh (Hamman grid)
pspatm : epsatm= 1.36305739
--- l ekb(1:nproj) -->
0 1.768744
1 0.900554
pspatm: atomic psp has been read and splines computed
4.08917216E+00 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 52.000 52.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -2.0186006044063 -2.019E+00 2.065E-04 5.564E-01
ETOT 2 -2.0190944435884 -4.938E-04 7.400E-11 1.582E-02
ETOT 3 -2.0191027514343 -8.308E-06 3.394E-08 3.558E-04
ETOT 4 -2.0191030125170 -2.611E-07 6.088E-10 2.389E-06
ETOT 5 -2.0191030141662 -1.649E-09 1.019E-11 5.863E-08
ETOT 6 -2.0191030142187 -5.255E-11 2.950E-13 1.514E-09
ETOT 7 -2.0191030142208 -2.092E-12 3.774E-15 6.097E-12
ETOT 8 -2.0191030142208 5.862E-14 1.771E-17 9.382E-15
At SCF step 8 vres2 = 9.38E-15 < tolvrs= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936583E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04765727E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04765727E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 5.2000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 5.20000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.3261300E+02
convergence: {deltae: 5.862E-14, res2: 9.382E-15, residm: 1.771E-17, diffor: null, }
etotal : -2.01910301E+00
entropy : 0.00000000E+00
fermie : 2.91848217E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.12936583E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 7.04765727E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 7.04765727E-05, ]
pressure_GPa: 3.6480E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ 0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93965531
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 97.610E-19; max= 17.713E-18
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 3.5244E-10; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 -0.000000000610 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 1.174E-10 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 6.037E-09 0.000E+00 0.000E+00 e/A
length scales= 5.200000000000 5.050000000000 5.050000000000 bohr
= 2.751721484668 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.29185 Average Vxc (hartree)= -0.32248
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 3, wtk= 1.00000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.02043 0.29670 0.30528
occupation numbers for kpt# 1
2.00000 0.64434 0.35566
Fermi (or HOMO) energy (eV) = 7.94159 Average Vxc (eV)= -8.77508
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 3, wtk= 1.00000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.55580 8.07364 8.30708
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 8.93130972764201E-01
hartree : 1.99998718851368E-02
xc : -7.72543112802804E-01
Ewald energy : -2.50300929370761E+00
psp_core : 3.08353793252935E-02
local_psp : -1.21248290669830E-01
non_local_psp : 4.52782928247735E-01
internal : -2.00005154495788E+00
'-kT*entropy' : -1.90514692628852E-02
total_energy : -2.01910301422076E+00
total_energy_eV : -5.49425871728442E+01
band_energy : 2.58901232647310E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936583E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04765727E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04765727E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.6480E+00 GPa]
- sigma(1 1)= -1.50911128E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.07349201E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.07349201E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 1, nkpt: 8, mband: 3, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 5.2000000 0.0000000 0.0000000 G(1)= 0.1923077 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 1.3261300E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t18o_DS1_WFK
================================================================================
prteigrs : about to open file t18o_DS2_EIG
Non-SCF case, kpt 1 ( 0.25000 0.25000 0.25000), residuals and eigenvalues=
3.29E-23 3.89E-24 4.68E-23
-2.0425E-02 2.9670E-01 3.0528E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 5.2000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 5.20000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.3261300E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 4.676E-23, diffor: 0.000E+00, }
etotal : -2.01910301E+00
entropy : 0.00000000E+00
fermie : 2.91848217E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93965531
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.853E-24; max= 46.756E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 5.200000000000 5.050000000000 5.050000000000 bohr
= 2.751721484668 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS2_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 3, wtk= 0.12500, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.02043 0.29670 0.30528
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 3, wtk= 0.12500, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.55580 8.07364 8.30708
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 1, nkpt: 8, mband: 3, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 5.2000000 0.0000000 0.0000000 G(1)= 0.1923077 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 1.3261300E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t18o_DS2_WFK
_setup2: Arith. and geom. avg. npw (full set) are 52.000 52.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -2.0191030142208 -2.019E+00 5.704E-26 5.644E-18
At SCF step 1 vres2 = 5.64E-18 < tolvrs= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936566E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04765488E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04765488E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 5.2000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 5.20000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.3261300E+02
convergence: {deltae: -2.019E+00, res2: 5.644E-18, residm: 5.704E-26, diffor: null, }
etotal : -2.01910301E+00
entropy : 0.00000000E+00
fermie : 2.91848219E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.12936566E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 7.04765488E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 7.04765488E-05, ]
pressure_GPa: 3.6480E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ 0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93965531
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.958E-27; max= 57.043E-27
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 1.6800E-13; max dE/dt= 2.9098E-13; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 -5.596E-14 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 -2.877E-12 0.000E+00 0.000E+00 e/A
length scales= 5.200000000000 5.050000000000 5.050000000000 bohr
= 2.751721484668 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS3_EIG
Fermi (or HOMO) energy (hartree) = 0.29185 Average Vxc (hartree)= -0.32248
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 3, wtk= 0.12500, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.02043 0.29670 0.30528
occupation numbers for kpt# 1
2.00000 0.64434 0.35566
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 7.94159 Average Vxc (eV)= -8.77508
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 3, wtk= 0.12500, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.55580 8.07364 8.30708
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 8.93130974033949E-01
hartree : 1.99998722348081E-02
xc : -7.72543113065996E-01
Ewald energy : -2.50300929370761E+00
psp_core : 3.08353793252935E-02
local_psp : -1.21248293074625E-01
non_local_psp : 4.52782929330173E-01
internal : -2.00005154492401E+00
'-kT*entropy' : -1.90514692967831E-02
total_energy : -2.01910301422079E+00
total_energy_eV : -5.49425871728450E+01
band_energy : 2.58901239528613E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936566E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04765488E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04765488E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.6480E+00 GPa]
- sigma(1 1)= -1.50911123E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.07349130E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.07349130E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 1, nkpt: 8, mband: 3, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
mkfilename : getden/=0, take file _DEN from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 5.2000000 0.0000000 0.0000000 G(1)= 0.1923077 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 1.3261300E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t18o_DS3_WFK
================================================================================
prteigrs : about to open file t18o_DS4_EIG
Non-SCF case, kpt 1 ( 0.75000 0.25000 0.25000), residuals and eigenvalues=
1.94E-25 1.62E-25 9.79E-24
-2.0425E-02 2.9670E-01 3.0528E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 4, }
comment : Summary of ground state results
lattice_vectors:
- [ 5.2000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 5.20000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.3261300E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.787E-24, diffor: 0.000E+00, }
etotal : -2.01910301E+00
entropy : 0.00000000E+00
fermie : 2.91848219E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93965531
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 33.811E-25; max= 97.872E-25
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 5.200000000000 5.050000000000 5.050000000000 bohr
= 2.751721484668 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS4_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 3, wtk= 0.12500, kpt= 0.7500 0.2500 0.2500 (reduced coord)
-0.02043 0.29670 0.30528
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 3, wtk= 0.12500, kpt= 0.7500 0.2500 0.2500 (reduced coord)
-0.55580 8.07364 8.30708
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 1, nkpt: 8, mband: 3, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 4.
mkfilename : getden/=0, take file _DEN from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 5.2000000 0.0000000 0.0000000 G(1)= 0.1923077 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 1.3261300E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.34960
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.520627 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 2 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 402.80187179503 3.699E+02 7.946E-02 1.935E+05
ETOT 2 97.678970532932 -3.051E+02 9.043E-02 4.500E+04
ETOT 3 -3.8014619033245 -1.015E+02 9.962E-03 1.367E+02
ETOT 4 -4.0521284300765 -2.507E-01 2.934E-05 5.863E-01
ETOT 5 -4.0531132111971 -9.848E-04 1.365E-07 9.345E-04
ETOT 6 -4.0531152322817 -2.021E-06 7.766E-10 9.135E-06
ETOT 7 -4.0531152449772 -1.270E-08 2.400E-12 6.764E-08
ETOT 8 -4.0531152450776 -1.004E-10 3.368E-14 2.091E-09
ETOT 9 -4.0531152450820 -4.412E-12 1.084E-15 1.423E-11
At SCF step 9, etot is converged :
for the second time, diff in etot= 4.412E-12 < toldfe= 1.000E-08
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 49.015E-17; max= 10.840E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.20197903E+01 eigvalue= -1.85657509E+00 local= -8.65772945E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -6.57754392E+01 Hartree= 2.87157233E+01 xc= -6.74078185E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 5.99422050E+00 enl0= 7.45850262E+00 enl1= -8.09086054E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.69331493E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -7.16023606E-01 fr.nonlo= 8.49791843E+00 Ewald= 2.50981392E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= -0.4053115245E+01 Ha. Also 2DEtotal= -0.110290874763E+03 eV
(2DErelax= -3.6933149314E+01 Ha. 2DEnonrelax= 3.2880034069E+01 Ha)
( non-var. 2DEtotal : -4.0531157912E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -4.0531157912 0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.1498933355 0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.00000 0.00000
Phonon energies in Hartree :
-1.746430E-03 0.000000E+00 0.000000E+00
Phonon energies in meV :
- -4.752278E+01 0.000000E+00 0.000000E+00
Phonon frequencies in cm-1 :
- -3.832971E+02 0.000000E+00 0.000000E+00
Phonon frequencies in Thz :
- -1.149096E+01 0.000000E+00 0.000000E+00
Phonon energies in Kelvin :
- -5.514783E+02 0.000000E+00 0.000000E+00
chkph3 : WARNING -
Dynamical matrix incomplete, phonon frequencies may be wrong, see the log file for more explanations.
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 1, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 104, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 6.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.4000000 0.0000000 0.0000000 G(1)= 0.0961538 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 2.6522600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
1.63566886E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 104.000 104.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -4.0374935308072 -4.037E+00 2.029E-04 1.130E+00
ETOT 2 -4.0379995883126 -5.061E-04 6.556E-11 1.988E-01
ETOT 3 -4.0375323085351 4.673E-04 2.359E-06 6.003E-01
ETOT 4 -4.0382024128673 -6.701E-04 9.581E-07 3.299E-03
ETOT 5 -4.0382054709013 -3.058E-06 2.543E-08 5.105E-04
ETOT 6 -4.0382060254680 -5.546E-07 3.509E-09 2.857E-06
ETOT 7 -4.0382060283832 -2.915E-09 7.367E-12 5.246E-08
ETOT 8 -4.0382060284412 -5.794E-11 1.571E-13 4.141E-10
ETOT 9 -4.0382060284415 -2.984E-13 5.492E-16 1.456E-12
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936491E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04767055E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04767055E-05 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 9 was not enough SCF cycles to converge;
potential residual= 1.456E-12 exceeds tolvrs= 1.000E-14
--- !ResultsGS
iteration_state: {dtset: 6, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.4000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 10.40000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6522600E+02
convergence: {deltae: -2.984E-13, res2: 1.456E-12, residm: 5.492E-16, diffor: null, }
etotal : -4.03820603E+00
entropy : 0.00000000E+00
fermie : 2.91848212E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.12936491E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 7.04767055E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 7.04767055E-05, ]
pressure_GPa: 3.6480E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ 1.63244143E-09, -0.00000000E+00, -0.00000000E+00, ]
- [ -1.63244143E-09, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 1.63244143E-09, max: 1.63244143E-09, mean: 1.63244143E-09, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93965529
2 2.00000 0.93965527
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.958E-17; max= 54.916E-17
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.000000000000 0.000000000000
rms dE/dt= 9.8378E-09; max dE/dt= 1.8431E-08; dE/dt below (all hartree)
1 -0.000000015524 0.000000000000 0.000000000000
2 0.000000018431 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.75172148466800 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000163244 -0.00000000000000 -0.00000000000000
2 -0.00000000163244 -0.00000000000000 -0.00000000000000
frms,max,avg= 9.4249050E-10 1.6324414E-09 -1.398E-10 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000008394351 -0.00000000000000 -0.00000000000000
2 -0.00000008394351 -0.00000000000000 -0.00000000000000
frms,max,avg= 4.8464806E-08 8.3943506E-08 -7.187E-09 0.000E+00 0.000E+00 e/A
length scales= 10.400000000000 5.050000000000 5.050000000000 bohr
= 5.503442969336 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS6_EIG
Fermi (or HOMO) energy (hartree) = 0.29185 Average Vxc (hartree)= -0.32248
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.02043 -0.02043 0.29670 0.29670 0.30528 0.30528
occupation numbers for kpt# 1
2.00000 2.00000 0.64434 0.64434 0.35566 0.35566
Fermi (or HOMO) energy (eV) = 7.94159 Average Vxc (eV)= -8.77508
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.55580 -0.55580 8.07364 8.07364 8.30708 8.30708
--- !EnergyTerms
iteration_state : {dtset: 6, }
comment : Components of total free energy in Hartree
kinetic : 1.78626192594091E+00
hartree : 3.99997373194432E-02
xc : -1.54508622117132E+00
Ewald energy : -5.00601858741517E+00
psp_core : 6.16707586505871E-02
local_psp : -2.42496525410353E-01
non_local_psp : 9.05565821848121E-01
internal : -4.00010309023778E+00
'-kT*entropy' : -3.81029382037069E-02
total_energy : -4.03820602844149E+00
total_energy_eV : -1.09885174345687E+02
band_energy : 5.17802434656460E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936491E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04767055E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04767055E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.6480E+00 GPa]
- sigma(1 1)= -1.50911100E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.07349591E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.07349591E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 2, nkpt: 1, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 104, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 6.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 6.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.4000000 0.0000000 0.0000000 G(1)= 0.0961538 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 2.6522600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t18o_DS6_WFK
_setup2: Arith. and geom. avg. npw (full set) are 104.000 104.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 7, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-12, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -4.0378034171320 -4.038E+00 2.043E-11 3.869E-01
ETOT 2 -4.0381085427045 -3.051E-04 9.862E-12 8.983E-02
ETOT 3 -4.0382098135801 -1.013E-04 6.179E-07 2.838E-04
ETOT 4 -4.0382100704288 -2.568E-07 1.282E-09 5.265E-06
ETOT 5 -4.0382100686291 1.800E-09 7.954E-11 6.534E-06
ETOT 6 -4.0382100759396 -7.311E-09 2.516E-11 2.196E-09
ETOT 7 -4.0382100759419 -2.262E-12 1.295E-14 8.142E-12
ETOT 8 -4.0382100759421 -1.554E-13 4.918E-17 7.814E-14
ETOT 9 -4.0382100759420 7.550E-14 7.113E-19 1.741E-15
At SCF step 9, etot is converged :
for the second time, diff in etot= 7.550E-14 < toldfe= 1.000E-12
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12996904E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04805858E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04805858E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 7, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.4000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 10.40000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6522600E+02
convergence: {deltae: 7.550E-14, res2: 1.741E-15, residm: 7.113E-19, diffor: null, }
etotal : -4.03821008E+00
entropy : 0.00000000E+00
fermie : 2.91847533E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.12996904E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 7.04805858E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 7.04805858E-05, ]
pressure_GPa: 3.6486E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 5.0100E-01, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -7.79381726E-04, -0.00000000E+00, -0.00000000E+00, ]
- [ 7.79381726E-04, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 7.79381726E-04, max: 7.79381726E-04, mean: 7.79381726E-04, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93966591
2 2.00000 0.92325788
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 35.408E-20; max= 71.128E-20
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.501000000000 0.000000000000 0.000000000000
rms dE/dt= 4.6798E-03; max dE/dt= 8.1163E-03; dE/dt below (all hartree)
1 0.008116320972 0.000000000000 0.000000000000
2 -0.008094818929 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.75722492763734 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00077938172600 -0.00000000000000 -0.00000000000000
2 0.00077938172600 -0.00000000000000 -0.00000000000000
frms,max,avg= 4.4997625E-04 7.7938173E-04 -1.034E-06 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.04007741636542 -0.00000000000000 -0.00000000000000
2 0.04007741636542 -0.00000000000000 -0.00000000000000
frms,max,avg= 2.3138707E-02 4.0077416E-02 -5.316E-05 0.000E+00 0.000E+00 e/A
length scales= 10.400000000000 5.050000000000 5.050000000000 bohr
= 5.503442969336 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS7_EIG
Fermi (or HOMO) energy (hartree) = 0.29185 Average Vxc (hartree)= -0.32248
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.02066 -0.02019 0.29640 0.29700 0.30501 0.30555
occupation numbers for kpt# 1
2.00000 2.00000 0.65598 0.63266 0.36346 0.34790
Fermi (or HOMO) energy (eV) = 7.94158 Average Vxc (eV)= -8.77506
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.56220 -0.54939 8.06541 8.08191 8.29963 8.31456
--- !EnergyTerms
iteration_state : {dtset: 7, }
comment : Components of total free energy in Hartree
kinetic : 1.78626204571225E+00
hartree : 4.00278848889863E-02
xc : -1.54509211035212E+00
Ewald energy : -5.00599348924453E+00
psp_core : 6.16707586505871E-02
local_psp : -2.42561390282957E-01
non_local_psp : 9.05573792066568E-01
internal : -4.00011250856121E+00
'-kT*entropy' : -3.80975673807681E-02
total_energy : -4.03821007594198E+00
total_energy_eV : -1.09885284483777E+02
band_energy : 5.17794431515610E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12996904E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04805858E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04805858E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.6486E+00 GPa]
- sigma(1 1)= -1.50928874E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.07361008E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.07361008E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 1, nkpt: 8, mband: 3, nsppol: 1, nspinor: 1, nspden: 1, mpw: 52, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 4.
mkfilename : getden/=0, take file _DEN from output of DATASET 3.
find_getdtset : getocc/=0, take data from output of dataset with index 3.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 5.2000000 0.0000000 0.0000000 G(1)= 0.1923077 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 1.3261300E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.34960
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.520627 Hartrees makes boxcut=2
4.08917216E+00 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 2 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 69.812372721008 3.693E+01 7.946E-02 3.851E+04
ETOT 2 6.9117021718089 -6.290E+01 1.633E-02 9.820E+02
ETOT 3 5.4098625901284 -1.502E+00 3.531E-04 1.030E+01
ETOT 4 5.3945931894096 -1.527E-02 5.198E-06 1.701E-01
ETOT 5 5.3943660703084 -2.271E-04 7.868E-08 1.908E-04
ETOT 6 5.3943657615132 -3.088E-07 1.681E-10 6.975E-06
ETOT 7 5.3943657503955 -1.112E-08 5.289E-12 4.603E-09
ETOT 8 5.3943657503860 -9.514E-12 4.301E-15 3.585E-11
ETOT 9 5.3943657503862 2.345E-13 3.284E-17 6.616E-14
At SCF step 9, etot is converged :
for the second time, diff in etot= 2.345E-13 < toldfe= 1.000E-08
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.158E-18; max= 32.836E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.84551069E+01 eigvalue= -3.17334729E+00 local= -8.36412788E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -4.92678424E+01 Hartree= 1.53486517E+01 xc= -2.75086562E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.72323449E+00 enl0= 5.24701603E+00 enl1= -5.70349433E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.74856683E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -7.16023606E-01 fr.nonlo= 8.49791843E+00 Ewald= 2.50981392E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.5394365750E+01 Ha. Also 2DEtotal= 0.146788157115E+03 eV
(2DErelax= -2.7485668319E+01 Ha. 2DEnonrelax= 3.2880034069E+01 Ha)
( non-var. 2DEtotal : 5.3943657294E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 5.3943657294 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.1994957740 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 2.014776E-03
Phonon energies in meV :
- 0.000000E+00 0.000000E+00 5.482485E+01
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 4.421923E+02
Phonon frequencies in Thz :
- 0.000000E+00 0.000000E+00 1.325659E+01
Phonon energies in Kelvin :
- 0.000000E+00 0.000000E+00 6.362153E+02
chkph3 : WARNING -
Dynamical matrix incomplete, phonon frequencies may be wrong, see the log file for more explanations.
================================================================================
== DATASET 9 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 9, }
dimensions: {natom: 2, nkpt: 1, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 104, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 6.00000000E+00, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 6.
find_getdtset : getocc/=0, take data from output of dataset with index 6.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.4000000 0.0000000 0.0000000 G(1)= 0.0961538 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 2.6522600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
1.63566886E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t18o_DS6_WFK
_setup2: Arith. and geom. avg. npw (full set) are 104.000 104.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -4.0001030902378 -4.000E+00 6.242E-21 1.670E-12
ETOT 2 -4.0001030902378 -1.776E-15 2.609E-21 7.724E-14
ETOT 3 -4.0001030902378 -1.243E-14 7.598E-19 1.817E-13
ETOT 4 -4.0001030902378 7.994E-15 2.940E-19 8.102E-14
ETOT 5 -4.0001030902378 -7.994E-15 4.231E-19 1.721E-13
ETOT 6 -4.0001030902378 1.066E-14 8.861E-20 1.173E-13
ETOT 7 -4.0001030902378 0.000E+00 3.020E-20 8.849E-14
ETOT 8 -4.0001030902378 -3.553E-15 1.837E-19 1.218E-13
ETOT 9 -4.0001030902378 0.000E+00 1.701E-20 9.982E-14
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936619E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04765781E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04765781E-05 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 9 was not enough SCF cycles to converge;
potential residual= 9.982E-14 exceeds tolvrs= 1.000E-14
--- !ResultsGS
iteration_state: {dtset: 9, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.4000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 10.40000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6522600E+02
convergence: {deltae: 0.000E+00, res2: 9.982E-14, residm: 1.701E-20, diffor: null, }
etotal : -4.00010309E+00
entropy : 0.00000000E+00
fermie : 3.05279742E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.12936619E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 7.04765781E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 7.04765781E-05, ]
pressure_GPa: 3.6480E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -5.32177036E-10, -0.00000000E+00, -0.00000000E+00, ]
- [ 5.32177036E-10, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 5.32177036E-10, max: 5.32177036E-10, mean: 5.32177036E-10, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93965530
2 2.00000 0.93965531
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.239E-21; max= 17.014E-21
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.000000000000 0.000000000000
rms dE/dt= 3.1954E-09; max dE/dt= 5.5346E-09; dE/dt below (all hartree)
1 0.000000005535 0.000000000000 0.000000000000
2 -0.000000005535 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.75172148466800 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000053218 -0.00000000000000 -0.00000000000000
2 0.00000000053218 -0.00000000000000 -0.00000000000000
frms,max,avg= 3.0725255E-10 5.3217704E-10 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000002736564 -0.00000000000000 -0.00000000000000
2 0.00000002736564 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.5799560E-08 2.7365641E-08 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.400000000000 5.050000000000 5.050000000000 bohr
= 5.503442969336 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS9_EIG
Fermi (or HOMO) energy (hartree) = 0.30528 Average Vxc (hartree)= -0.32248
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.02043 -0.02043 0.29670 0.29670 0.30528 0.30528
Fermi (or HOMO) energy (eV) = 8.30708 Average Vxc (eV)= -8.77508
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.55580 -0.55580 8.07364 8.07364 8.30708 8.30708
--- !EnergyTerms
iteration_state : {dtset: 9, }
comment : Components of total free energy in Hartree
kinetic : 1.78626194722459E+00
hartree : 3.99997444257447E-02
xc : -1.54508622614822E+00
Ewald energy : -5.00601858741517E+00
psp_core : 6.16707586505871E-02
local_psp : -2.42496585438505E-01
non_local_psp : 9.05565858463173E-01
total_energy : -4.00010309023779E+00
total_energy_eV : -1.08848340668033E+02
band_energy : 5.17802478582127E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.12936619E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04765781E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04765781E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.6480E+00 GPa]
- sigma(1 1)= -1.50911138E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.07349216E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.07349216E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 10 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 10, }
dimensions: {natom: 2, nkpt: 1, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 104, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 6.00000000E+00, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 6.
find_getdtset : getocc/=0, take data from output of dataset with index 6.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.4000000 0.0000000 0.0000000 G(1)= 0.0961538 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 2.6522600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t18o_DS6_WFK
_setup2: Arith. and geom. avg. npw (full set) are 104.000 104.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 10, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-15, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -4.0000331610217 -4.000E+00 2.043E-11 7.716E-02
ETOT 2 -4.0000961747164 -6.301E-05 3.441E-13 1.963E-03
ETOT 3 -4.0000976746203 -1.500E-06 2.233E-08 2.096E-05
ETOT 4 -4.0000976902089 -1.559E-08 7.138E-11 3.017E-07
ETOT 5 -4.0000976904090 -2.001E-10 1.124E-12 6.450E-10
ETOT 6 -4.0000976904095 -4.574E-13 4.184E-15 9.554E-12
ETOT 7 -4.0000976904095 -8.882E-15 1.950E-16 1.134E-14
ETOT 8 -4.0000976904095 -5.329E-15 3.211E-19 3.056E-16
At SCF step 8 vres2 = 3.06E-16 < tolvrs= 1.00E-15 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.13014887E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04695038E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04695038E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 10, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.4000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 5.0500000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 5.0500000, ]
lattice_lengths: [ 10.40000, 5.05000, 5.05000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.6522600E+02
convergence: {deltae: -5.329E-15, res2: 3.056E-16, residm: 3.211E-19, diffor: null, }
etotal : -4.00009769E+00
entropy : 0.00000000E+00
fermie : 3.05775937E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -5.13014887E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 7.04695038E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 7.04695038E-05, ]
pressure_GPa: 3.6489E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 5.0100E-01, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ 1.03738302E-03, -0.00000000E+00, -0.00000000E+00, ]
- [ -1.03738302E-03, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 1.03738302E-03, max: 1.03738302E-03, mean: 1.03738302E-03, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.93966146
2 2.00000 0.92327422
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 14.792E-20; max= 32.110E-20
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.501000000000 0.000000000000 0.000000000000
rms dE/dt= 6.2289E-03; max dE/dt= 1.0800E-02; dE/dt below (all hartree)
1 -0.010777945784 0.000000000000 0.000000000000
2 0.010799621095 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.75722492763734 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.00103738302304 -0.00000000000000 -0.00000000000000
2 -0.00103738302304 -0.00000000000000 -0.00000000000000
frms,max,avg= 5.9893337E-04 1.0373830E-03 -1.042E-06 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.05334437536547 -0.00000000000000 -0.00000000000000
2 -0.05334437536547 -0.00000000000000 -0.00000000000000
frms,max,avg= 3.0798389E-02 5.3344375E-02 -5.359E-05 0.000E+00 0.000E+00 e/A
length scales= 10.400000000000 5.050000000000 5.050000000000 bohr
= 5.503442969336 2.672344903379 2.672344903379 angstroms
prteigrs : about to open file t18o_DS10_EIG
Fermi (or HOMO) energy (hartree) = 0.30578 Average Vxc (hartree)= -0.32248
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.02099 -0.01986 0.29622 0.29718 0.30478 0.30578
Fermi (or HOMO) energy (eV) = 8.32059 Average Vxc (eV)= -8.77508
Eigenvalues ( eV ) for nkpt= 1 k points:
kpt# 1, nband= 6, wtk= 1.00000, kpt= 0.5000 0.2500 0.2500 (reduced coord)
-0.57125 -0.54042 8.06062 8.08666 8.29351 8.32059
--- !EnergyTerms
iteration_state : {dtset: 10, }
comment : Components of total free energy in Hartree
kinetic : 1.78627072631392E+00
hartree : 4.00144668812281E-02
xc : -1.54508831918714E+00
Ewald energy : -5.00599348924453E+00
psp_core : 6.16707586505871E-02
local_psp : -2.42541756473022E-01
non_local_psp : 9.05569922649489E-01
total_energy : -4.00009769040947E+00
total_energy_eV : -1.08848193731231E+02
band_energy : 5.17796876021995E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -5.13014887E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 7.04695038E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 7.04695038E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.6489E+00 GPa]
- sigma(1 1)= -1.50934165E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.07328403E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.07328403E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 2, nkpt: 1, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 104, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 6.00000000E+00, charge: 0.00000000E+00, occopt: 2.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 9.
find_getdtset : getocc/=0, take data from output of dataset with index 9.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.4000000 0.0000000 0.0000000 G(1)= 0.0961538 0.0000000 0.0000000
R(2)= 0.0000000 5.0500000 0.0000000 G(2)= 0.0000000 0.1980198 0.0000000
R(3)= 0.0000000 0.0000000 5.0500000 G(3)= 0.0000000 0.0000000 0.1980198
Unit cell volume ucvol= 2.6522600E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 12 12
ecut(hartree)= 4.000 => boxcut(ratio)= 2.56320
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.570003 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 7, nstep: 9, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 2.00E-12, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 139.88489862532 5.856E+01 8.661E-02 7.717E+04
ETOT 2 13.836218039540 -1.260E+02 1.992E-02 1.964E+03
ETOT 3 10.830949797841 -3.005E+00 3.743E-04 2.071E+01
ETOT 4 10.800230971423 -3.072E-02 5.290E-06 3.387E-01
ETOT 5 10.799778314897 -4.527E-04 8.693E-08 4.653E-04
ETOT 6 10.799777596674 -7.182E-07 1.912E-10 1.181E-05
ETOT 7 10.799777578243 -1.843E-08 3.924E-12 1.597E-08
ETOT 8 10.799777578206 -3.710E-11 1.617E-14 3.628E-10
ETOT 9 10.799777578205 -6.679E-13 3.905E-16 3.776E-12
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 20.243E-17; max= 39.054E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.27304441E+01 eigvalue= -1.30868139E+01 local= -3.51641222E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -9.56989375E+01 Hartree= 3.24581232E+01 xc= -7.69801250E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 5.60200260E+00 enl0= 2.56824582E+01 enl1= -4.53492217E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.05240797E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -2.86409604E+00 fr.nonlo= 3.39916749E+01 Ewald= 5.01962785E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1079977758E+02 Ha. Also 2DEtotal= 0.293876893283E+03 eV
(2DErelax= -7.0524079747E+01 Ha. 2DEnonrelax= 8.1323857325E+01 Ha)
( non-var. 2DEtotal : 1.0799777719E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 10.7997777185 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -10.7776853325 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 1 1 -10.7776853325 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 2 4 0.0000000000 0.0000000000
1 4 3 4 0.0000000000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 0.0000000000 0.0000000000
2 4 3 4 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 1 4 0.0000000000 0.0000000000
3 4 2 4 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0998500159 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -0.0996457594 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
1 2 1 1 -0.0996457594 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.425391E-03
Phonon energies in meV :
- 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 3.878687E+01
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 3.128372E+02
Phonon frequencies in Thz :
- 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 9.378624E+00
Phonon energies in Kelvin :
- 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 4.501024E+02
chkph3 : WARNING -
Dynamical matrix incomplete, phonon frequencies may be wrong, see the log file for more explanations.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell1 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell2 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell3 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell4 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell5 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell6 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell7 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell8 5.2000000000E+00 5.0500000000E+00 5.0500000000E+00 Bohr
acell9 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell10 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
acell11 1.0400000000E+01 5.0500000000E+00 5.0500000000E+00 Bohr
amu 2.69600000E+01
asr 0
chneut 0
ecut 4.00000000E+00 Hartree
enunit 2
etotal1 -2.0191030142E+00
etotal3 -2.0191030142E+00
etotal5 -4.0531152451E+00
etotal6 -4.0382060284E+00
etotal7 -4.0382100759E+00
etotal8 5.3943657504E+00
etotal9 -4.0001030902E+00
etotal10 -4.0000976904E+00
etotal11 1.0799777578E+01
fcart1 0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart6 1.6324414259E-09 -0.0000000000E+00 -0.0000000000E+00
-1.6324414259E-09 -0.0000000000E+00 -0.0000000000E+00
fcart7 -7.7938172600E-04 -0.0000000000E+00 -0.0000000000E+00
7.7938172600E-04 -0.0000000000E+00 -0.0000000000E+00
fcart8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart9 -5.3217703556E-10 -0.0000000000E+00 -0.0000000000E+00
5.3217703556E-10 -0.0000000000E+00 -0.0000000000E+00
fcart10 1.0373830230E-03 -0.0000000000E+00 -0.0000000000E+00
-1.0373830230E-03 -0.0000000000E+00 -0.0000000000E+00
fcart11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 0
getden4 3
getden5 3
getden6 0
getden7 0
getden8 3
getden9 0
getden10 0
getden11 0
getocc1 0
getocc2 0
getocc3 0
getocc4 0
getocc5 0
getocc6 0
getocc7 0
getocc8 3
getocc9 6
getocc10 6
getocc11 9
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 3
getwfk5 3
getwfk6 0
getwfk7 6
getwfk8 3
getwfk9 6
getwfk10 6
getwfk11 9
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 0
getwfq5 4
getwfq6 0
getwfq7 0
getwfq8 4
getwfq9 0
getwfq10 0
getwfq11 0
iscf1 7
iscf2 -2
iscf3 7
iscf4 -2
iscf5 7
iscf6 7
iscf7 7
iscf8 7
iscf9 7
iscf10 7
iscf11 7
ixc 11
jdtset 1 2 3 4 5 6 7 8 9 10
11
kpt1 2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt2 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt3 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt4 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt5 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt6 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt7 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt8 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
kpt9 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt10 5.00000000E-01 2.50000000E-01 2.50000000E-01
kpt11 5.00000000E-01 2.50000000E-01 2.50000000E-01
kptopt1 1
kptopt2 3
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 0
kptopt7 0
kptopt8 3
kptopt9 0
kptopt10 0
kptopt11 0
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen1 1.01000000E+01
kptrlen2 1.01000000E+01
kptrlen3 1.01000000E+01
kptrlen4 1.01000000E+01
kptrlen5 1.01000000E+01
kptrlen6 3.00000000E+01
kptrlen7 3.00000000E+01
kptrlen8 1.01000000E+01
kptrlen9 3.00000000E+01
kptrlen10 3.00000000E+01
kptrlen11 3.00000000E+01
P mkmem1 1
P mkmem2 8
P mkmem3 8
P mkmem4 8
P mkmem5 8
P mkmem6 1
P mkmem7 1
P mkmem8 8
P mkmem9 1
P mkmem10 1
P mkmem11 1
P mkqmem1 1
P mkqmem2 8
P mkqmem3 8
P mkqmem4 8
P mkqmem5 8
P mkqmem6 1
P mkqmem7 1
P mkqmem8 8
P mkqmem9 1
P mkqmem10 1
P mkqmem11 1
P mk1mem1 1
P mk1mem2 8
P mk1mem3 8
P mk1mem4 8
P mk1mem5 8
P mk1mem6 1
P mk1mem7 1
P mk1mem8 8
P mk1mem9 1
P mk1mem10 1
P mk1mem11 1
natom1 1
natom2 1
natom3 1
natom4 1
natom5 1
natom6 2
natom7 2
natom8 1
natom9 2
natom10 2
natom11 2
nband1 3
nband2 3
nband3 3
nband4 3
nband5 3
nband6 6
nband7 6
nband8 3 3 3 3 3 3 3 3
nband9 6
nband10 6
nband11 6
ndtset 11
ngfft1 12 12 12
ngfft2 12 12 12
ngfft3 12 12 12
ngfft4 12 12 12
ngfft5 12 12 12
ngfft6 24 12 12
ngfft7 24 12 12
ngfft8 12 12 12
ngfft9 24 12 12
ngfft10 24 12 12
ngfft11 24 12 12
nkpt1 1
nkpt2 8
nkpt3 8
nkpt4 8
nkpt5 8
nkpt6 1
nkpt7 1
nkpt8 8
nkpt9 1
nkpt10 1
nkpt11 1
nqpt1 0
nqpt2 0
nqpt3 0
nqpt4 1
nqpt5 1
nqpt6 0
nqpt7 0
nqpt8 1
nqpt9 0
nqpt10 0
nqpt11 1
nstep 9
nsym 8
ntypat 1
occ1 2.000000 0.644339 0.355661
occ3 2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
occ5 2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
occ6 2.000000 2.000000 0.644339 0.644339 0.355661 0.355661
occ7 2.000000 2.000000 0.655979 0.632664 0.363458 0.347899
occ8 2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
2.000000 0.644339 0.355661
occ9 2.000000 2.000000 0.644339 0.644339 0.355661 0.355661
occ10 2.000000 2.000000 0.644339 0.644339 0.355661 0.355661
occ11 2.000000 2.000000 0.644339 0.644339 0.355661 0.355661
occopt1 4
occopt2 4
occopt3 4
occopt4 4
occopt5 4
occopt6 4
occopt7 4
occopt8 2
occopt9 2
occopt10 2
occopt11 2
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 0
optdriver5 1
optdriver6 0
optdriver7 0
optdriver8 1
optdriver9 0
optdriver10 0
optdriver11 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 0
prtpot5 1
prtpot6 0
prtpot7 0
prtpot8 1
prtpot9 0
prtpot10 0
prtpot11 1
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt4 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt5 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt6 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt7 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt8 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt9 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt10 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt11 0.00000000E+00 0.00000000E+00 0.00000000E+00
rfatpol1 1 1
rfatpol2 1 1
rfatpol3 1 1
rfatpol4 1 1
rfatpol5 1 1
rfatpol6 1 2
rfatpol7 1 2
rfatpol8 1 1
rfatpol9 1 2
rfatpol10 1 2
rfatpol11 1 1
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 1 1
rfdir4 1 1 1
rfdir5 1 0 0
rfdir6 1 1 1
rfdir7 1 1 1
rfdir8 1 0 0
rfdir9 1 1 1
rfdir10 1 1 1
rfdir11 1 0 0
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 0
rfphon5 1
rfphon6 0
rfphon7 0
rfphon8 1
rfphon9 0
rfphon10 0
rfphon11 1
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 99
strten1 -5.1293658310E-04 7.0476572650E-05 7.0476572650E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 -5.1293656618E-04 7.0476548811E-05 7.0476548811E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 -5.1293649093E-04 7.0476705476E-05 7.0476705476E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten7 -5.1299690357E-04 7.0480585788E-05 7.0480585788E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten9 -5.1293661871E-04 7.0476578071E-05 7.0476578071E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten10 -5.1301488683E-04 7.0469503822E-05 7.0469503822E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0 0 0 1
1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 -1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1 0 1 0
1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 -1 0
toldfe1 0.00000000E+00 Hartree
toldfe2 0.00000000E+00 Hartree
toldfe3 0.00000000E+00 Hartree
toldfe4 0.00000000E+00 Hartree
toldfe5 1.00000000E-08 Hartree
toldfe6 0.00000000E+00 Hartree
toldfe7 1.00000000E-12 Hartree
toldfe8 1.00000000E-08 Hartree
toldfe9 0.00000000E+00 Hartree
toldfe10 0.00000000E+00 Hartree
toldfe11 2.00000000E-12 Hartree
tolvrs1 1.00000000E-14
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-14
tolvrs4 0.00000000E+00
tolvrs5 0.00000000E+00
tolvrs6 1.00000000E-14
tolvrs7 0.00000000E+00
tolvrs8 0.00000000E+00
tolvrs9 1.00000000E-14
tolvrs10 1.00000000E-15
tolvrs11 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 0.00000000E+00
tolwfr4 1.00000000E-22
tolwfr5 0.00000000E+00
tolwfr6 0.00000000E+00
tolwfr7 0.00000000E+00
tolwfr8 0.00000000E+00
tolwfr9 0.00000000E+00
tolwfr10 0.00000000E+00
tolwfr11 0.00000000E+00
tsmear 4.00000000E-02 Hartree
typat1 1
typat2 1
typat3 1
typat4 1
typat5 1
typat6 1 1
typat7 1 1
typat8 1
typat9 1 1
typat10 1 1
typat11 1 1
wtk1 1.00000
wtk2 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk3 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk4 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk5 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk6 1.00000
wtk7 1.00000
wtk8 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
wtk9 1.00000
wtk10 1.00000
wtk11 1.00000
xangst1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7517214847E+00 0.0000000000E+00 0.0000000000E+00
xangst7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7572249276E+00 0.0000000000E+00 0.0000000000E+00
xangst8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xangst9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7517214847E+00 0.0000000000E+00 0.0000000000E+00
xangst10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7572249276E+00 0.0000000000E+00 0.0000000000E+00
xangst11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7517214847E+00 0.0000000000E+00 0.0000000000E+00
xcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2104000000E+00 0.0000000000E+00 0.0000000000E+00
xcart8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2104000000E+00 0.0000000000E+00 0.0000000000E+00
xcart11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.2000000000E+00 0.0000000000E+00 0.0000000000E+00
xred1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
xred7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0100000000E-01 0.0000000000E+00 0.0000000000E+00
xred8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
xred10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0100000000E-01 0.0000000000E+00 0.0000000000E+00
xred11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
znucl 13.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.6 wall= 2.6
================================================================================
Calculation completed.
.Delivered 84 WARNINGs and 52 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.6 wall= 2.6