abinit/tests/v3/Refs/t14.abo

733 lines
36 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h08 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v3_t14/t14.abi
- output file -> t14.abo
- root for input files -> t14i
- root for output files -> t14o
DATASET 8 : space group R-3 m (#166); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 8.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 9
lnmax = 9 mgfft = 12 mpssoang = 5 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 2
nsppol = 1 nsym = 12 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 65 nfft = 1728 nkpt = 2
================================================================================
P This job should need less than 1.393 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.022 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 10 : space group R-3 m (#166); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 10 (RF).
intxc = 0 iscf = 7 lmnmax = 9 lnmax = 9
mgfft = 12 mpssoang = 5 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 2 nsppol = 1
nsym = 12 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 65
nfft = 1728 nkpt = 4
================================================================================
P This job should need less than 1.407 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.042 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 9.0000000000E+00 9.0000000000E+00 9.0000000000E+00 Bohr
amu 2.08980370E+02
ecut 2.00000000E+00 Hartree
- fftalg 512
getwfk8 0
getwfk10 8
jdtset 8 10
kpt8 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt10 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt8 1
kptopt10 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.72466966E+01
P mkmem8 2
P mkmem10 4
P mkqmem8 2
P mkqmem10 4
P mk1mem8 2
P mk1mem10 4
natom 2
nband8 10
nband10 10
ndtset 2
ngfft 12 12 12
nkpt8 2
nkpt10 4
nqpt8 0
nqpt10 1
nspinor 2
nstep8 20
nstep10 15
nsym 12
ntypat 1
occ8 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ10 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
optdriver8 0
optdriver10 1
prtpot8 0
prtpot10 1
rfatpol 1 1
rfdir 1 0 0
rfphon8 0
rfphon10 1
rprim 5.5318805038E-01 0.0000000000E+00 8.3305640920E-01
-2.7659402519E-01 4.7907490470E-01 8.3305640920E-01
-2.7659402519E-01 -4.7907490470E-01 8.3305640920E-01
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 166
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
toldfe8 0.00000000E+00 Hartree
toldfe10 1.10000000E-12 Hartree
tolvrs8 1.00000000E-20
tolvrs10 0.00000000E+00
typat 1 1
wtk8 0.25000 0.75000
wtk10 0.25000 0.25000 0.25000 0.25000
xangst -1.3096941300E-18 -2.5642383897E-17 2.7494845596E+00
1.3096941300E-18 2.5642383897E-17 -2.7494845596E+00
xcart -2.4749632235E-18 -4.8457082961E-17 5.1957728242E+00
2.4749632235E-18 4.8457082961E-17 -5.1957728242E+00
xred 2.3100000000E-01 2.3100000000E-01 2.3100000000E-01
-2.3100000000E-01 -2.3100000000E-01 -2.3100000000E-01
znucl 83.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 10.
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 2, nkpt: 2, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 65, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.9786925 0.0000000 7.4975077 G(1)= 0.1339040 0.0000000 0.0444592
R(2)= -2.4893462 4.3116741 7.4975077 G(2)= -0.0669520 0.1159642 0.0444592
R(3)= -2.4893462 -4.3116741 7.4975077 G(3)= -0.0669520 -0.1159642 0.0444592
Unit cell volume ucvol= 4.8283574E+02 bohr^3
Angles (23,13,12)= 5.72500000E+01 5.72500000E+01 5.72500000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.09807
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/83bi.5.hgh
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosHGH_pwteter/83bi.5.hgh
- Hartwigsen-Goedecker-Hutter psp for Bi, from PRB58, 3641 (1998)
- 83.00000 5.00000 10605 znucl, zion, pspdat
3 1 2 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.6050000
cc1 = 6.6794370; cc2 = 0.0000000; cc3 = 0.0000000; cc4 = 0.0000000
rrs = 0.6788580; h11s= 1.3776340; h22s= -0.5136970; h33s= -0.4710280
rrp = 0.7986730; h11p= 0.6555780; h22p= -0.4029320; h33p= 0.0000000
k11p= 0.3053140; k22p= -0.0231340; k33p= 0.0000000
rrd = 0.9346830; h11d= 0.3784760; h22d= 0.0000000; h33d= 0.0000000
k11d= 0.0292170; k22d= 0.0000000; k33d= 0.0000000
- Local part computed in reciprocal space.
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 34.79471556
--- l ekb(1:nproj) -->
0 -0.901401 -0.217891 1.555038
1 -0.989901 1.571994
2 3.344673
spin-orbit 1 -0.053970 0.704109
spin-orbit 2 0.258197
pspatm: atomic psp has been read and splines computed
6.95894311E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 65.000 65.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-20, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -10.730690268626 -1.073E+01 5.672E-04 2.345E+00
ETOT 2 -10.742451743052 -1.176E-02 1.454E-06 1.769E-01
ETOT 3 -10.743264088558 -8.123E-04 7.194E-06 1.721E-03
ETOT 4 -10.743269453381 -5.365E-06 5.000E-08 2.095E-05
ETOT 5 -10.743269583890 -1.305E-07 3.166E-09 5.923E-07
ETOT 6 -10.743269590239 -6.349E-09 1.786E-10 8.925E-09
ETOT 7 -10.743269590415 -1.757E-10 1.063E-11 4.980E-10
ETOT 8 -10.743269590427 -1.208E-11 2.065E-13 6.631E-11
ETOT 9 -10.743269590428 -7.390E-13 2.678E-14 2.139E-12
ETOT 10 -10.743269590428 -1.066E-14 3.395E-16 7.980E-14
ETOT 11 -10.743269590428 3.553E-15 2.179E-17 8.945E-15
ETOT 12 -10.743269590428 0.000E+00 2.681E-19 1.701E-16
ETOT 13 -10.743269590428 7.105E-15 2.089E-20 2.891E-18
ETOT 14 -10.743269590428 -7.105E-15 4.082E-22 2.740E-20
ETOT 15 -10.743269590428 1.066E-14 3.170E-23 5.824E-22
At SCF step 15 vres2 = 5.82E-22 < tolvrs= 1.00E-20 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.12937927E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.12937927E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.03867893E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 8, }
comment : Summary of ground state results
lattice_vectors:
- [ 4.9786925, 0.0000000, 7.4975077, ]
- [ -2.4893462, 4.3116741, 7.4975077, ]
- [ -2.4893462, -4.3116741, 7.4975077, ]
lattice_lengths: [ 9.00000, 9.00000, 9.00000, ]
lattice_angles: [ 57.250, 57.250, 57.250, ] # degrees, (23, 13, 12)
lattice_volume: 4.8283574E+02
convergence: {deltae: 1.066E-14, res2: 5.824E-22, residm: 3.170E-23, diffor: null, }
etotal : -1.07432696E+01
entropy : 0.00000000E+00
fermie : 4.00443541E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 5.12937927E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.12937927E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.03867893E-03, ]
pressure_GPa: -2.0247E+01
xred :
- [ 2.3100E-01, 2.3100E-01, 2.3100E-01, Bi]
- [ -2.3100E-01, -2.3100E-01, -2.3100E-01, Bi]
cartesian_forces: # hartree/bohr
- [ -3.58378144E-20, -1.30968357E-19, 3.51107577E-03, ]
- [ 3.58378144E-20, 1.30968357E-19, -3.51107577E-03, ]
force_length_stats: {min: 3.51107577E-03, max: 3.51107577E-03, mean: 3.51107577E-03, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.26954871
2 2.00000 1.26954871
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 43.298E-25; max= 31.700E-24
reduced coordinates (array xred) for 2 atoms
0.231000000000 0.231000000000 0.231000000000
-0.231000000000 -0.231000000000 -0.231000000000
rms dE/dt= 2.6324E-02; max dE/dt= 2.6324E-02; dE/dt below (all hartree)
1 -0.026324317530 -0.026324317530 -0.026324317530
2 0.026324317530 0.026324317530 0.026324317530
cartesian coordinates (angstrom) at end:
1 -0.00000000000000 -0.00000000000000 2.74948455957311
2 0.00000000000000 0.00000000000000 -2.74948455957311
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 0.00351107576597
2 0.00000000000000 0.00000000000000 -0.00351107576597
frms,max,avg= 2.0271205E-03 3.5110758E-03 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 0.18054675991053
2 0.00000000000000 0.00000000000000 -0.18054675991053
frms,max,avg= 1.0423872E-01 1.8054676E-01 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 9.000000000000 9.000000000000 9.000000000000 bohr
= 4.762594877310 4.762594877310 4.762594877310 angstroms
prteigrs : about to open file t14o_DS8_EIG
Fermi (or HOMO) energy (hartree) = 0.04004 Average Vxc (hartree)= -0.30516
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 10, wtk= 0.25000, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.34812 -0.34812 -0.17241 -0.17241 -0.04200 -0.04200 0.03963 0.03963
0.04004 0.04004
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 8, }
comment : Components of total free energy in Hartree
kinetic : 2.88795197187430E+00
hartree : 4.21719232219104E-01
xc : -2.62158344338538E+00
Ewald energy : -1.13058438878511E+01
psp_core : 1.44126513565306E+00
local_psp : -2.04075469986577E+00
non_local_psp : 4.73976100927878E-01
total_energy : -1.07432695904279E+01
total_energy_eV : -2.92339232736598E+02
band_energy : -1.25083906481161E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 5.12937927E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.12937927E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.03867893E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.0247E+01 GPa]
- sigma(1 1)= 1.50911523E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.50911523E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 3.05589842E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 10 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 10, }
dimensions: {natom: 2, nkpt: 4, mband: 10, nsppol: 1, nspinor: 2, nspden: 1, mpw: 65, }
cutoff_energies: {ecut: 2.0, pawecutdg: -1.0, }
electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 8.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 4.9786925 0.0000000 7.4975077 G(1)= 0.1339040 0.0000000 0.0444592
R(2)= -2.4893462 4.3116741 7.4975077 G(2)= -0.0669520 0.1159642 0.0444592
R(3)= -2.4893462 -4.3116741 7.4975077 G(3)= -0.0669520 -0.1159642 0.0444592
Unit cell volume ucvol= 4.8283574E+02 bohr^3
Angles (23,13,12)= 5.72500000E+01 5.72500000E+01 5.72500000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.000 => boxcut(ratio)= 2.09807
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 3 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 10, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.10E-12, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 21.844881132889 -5.283E+01 7.048E-02 1.847E+03
ETOT 2 2.8225350217795 -1.902E+01 1.124E-02 3.357E+01
ETOT 3 2.4867810556876 -3.358E-01 2.475E-03 5.076E-01
ETOT 4 2.4817983886473 -4.983E-03 1.021E-05 2.323E-02
ETOT 5 2.4815739024065 -2.245E-04 9.984E-07 9.832E-04
ETOT 6 2.4815619706889 -1.193E-05 4.774E-08 6.927E-05
ETOT 7 2.4815612714046 -6.993E-07 3.136E-09 1.852E-06
ETOT 8 2.4815612476591 -2.375E-08 1.900E-10 6.368E-08
ETOT 9 2.4815612461921 -1.467E-09 1.473E-11 7.443E-09
ETOT 10 2.4815612460366 -1.555E-10 9.617E-13 5.777E-11
ETOT 11 2.4815612460325 -4.093E-12 7.486E-14 3.107E-12
ETOT 12 2.4815612460325 5.684E-14 2.755E-15 9.920E-13
ETOT 13 2.4815612460327 1.705E-13 3.119E-16 5.887E-15
At SCF step 13, etot is converged :
for the second time, diff in etot= 1.705E-13 < toldfe= 1.100E-12
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.481E-18; max= 31.185E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 8.04613032E+01 eigvalue= 5.68445105E+00 local= -4.51501580E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.03835567E+02 Hartree= 2.08396671E+01 xc= -8.01841384E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 1.83770308E+01 enl1= -4.05521941E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.21938803E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.81844649E+01 fr.nonlo= 1.96867758E+01 Ewald= 1.68042009E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2481561246E+01 Ha. Also 2DEtotal= 0.675267156379E+02 eV
(2DErelax= -7.2193880298E+01 Ha. 2DEnonrelax= 7.4675441544E+01 Ha)
( non-var. 2DEtotal : 2.4815612421E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 2.4815612421 0.0000000000
1 1 2 1 0.9970060171 0.0000000000
1 1 3 1 0.9970060171 0.0000000000
1 1 1 2 -2.4816332099 0.0000000000
1 1 2 2 -0.9970921507 0.0000000000
1 1 3 2 -0.9970921507 0.0000000000
2 1 1 1 0.9970060171 0.0000000000
2 1 2 1 2.4815612421 0.0000000000
2 1 3 1 0.9970060171 0.0000000000
2 1 1 2 -0.9970921507 0.0000000000
2 1 2 2 -2.4816332099 0.0000000000
2 1 3 2 -0.9970921507 0.0000000000
3 1 1 1 0.9970060171 0.0000000000
3 1 2 1 0.9970060171 0.0000000000
3 1 3 1 2.4815612421 0.0000000000
3 1 1 2 -0.9970921507 0.0000000000
3 1 2 2 -0.9970921507 0.0000000000
3 1 3 2 -2.4816332099 -0.0000000000
1 2 1 1 -2.4816332099 -0.0000000000
1 2 2 1 -0.9970921507 -0.0000000000
1 2 3 1 -0.9970921507 -0.0000000000
1 2 1 2 2.4815612421 0.0000000000
1 2 2 2 0.9970060171 0.0000000000
1 2 3 2 0.9970060171 0.0000000000
2 2 1 1 -0.9970921507 -0.0000000000
2 2 2 1 -2.4816332099 -0.0000000000
2 2 3 1 -0.9970921507 -0.0000000000
2 2 1 2 0.9970060171 0.0000000000
2 2 2 2 2.4815612421 0.0000000000
2 2 3 2 0.9970060171 0.0000000000
3 2 1 1 -0.9970921507 -0.0000000000
3 2 2 1 -0.9970921507 -0.0000000000
3 2 3 1 -2.4816332099 0.0000000000
3 2 1 2 0.9970060171 0.0000000000
3 2 2 2 0.9970060171 0.0000000000
3 2 3 2 2.4815612421 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0399273379 -0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
1 1 1 2 -0.0399273379 0.0000000000
1 1 2 2 0.0000000000 -0.0000000000
1 1 3 2 -0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.0399273379 0.0000000000
2 1 3 1 -0.0000000000 -0.0000000000
2 1 1 2 0.0000000000 -0.0000000000
2 1 2 2 -0.0399273379 -0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 -0.0000000000 -0.0000000000
3 1 3 1 0.0265409997 -0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.0265409997 0.0000000000
1 2 1 1 -0.0399273379 -0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
1 2 1 2 0.0399273379 0.0000000000
1 2 2 2 -0.0000000000 -0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 -0.0399273379 0.0000000000
2 2 3 1 0.0000000000 -0.0000000000
2 2 1 2 -0.0000000000 -0.0000000000
2 2 2 2 0.0399273379 -0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 0.0000000000 -0.0000000000
3 2 3 1 -0.0265409997 -0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 0.0265409997 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 3.732853E-04 4.578438E-04
4.578438E-04
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 8.192664E+01 1.004851E+02
- 1.004851E+02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 9.0000000000E+00 9.0000000000E+00 9.0000000000E+00 Bohr
amu 2.08980370E+02
ecut 2.00000000E+00 Hartree
etotal8 -1.0743269590E+01
etotal10 2.4815612460E+00
fcart8 -3.5837814445E-20 -1.3096835655E-19 3.5110757660E-03
3.5837814445E-20 1.3096835655E-19 -3.5110757660E-03
fcart10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getwfk8 0
getwfk10 8
jdtset 8 10
kpt8 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
kpt10 2.50000000E-01 2.50000000E-01 2.50000000E-01
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
kptopt8 1
kptopt10 2
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.72466966E+01
P mkmem8 2
P mkmem10 4
P mkqmem8 2
P mkqmem10 4
P mk1mem8 2
P mk1mem10 4
natom 2
nband8 10
nband10 10
ndtset 2
ngfft 12 12 12
nkpt8 2
nkpt10 4
nqpt8 0
nqpt10 1
nspinor 2
nstep8 20
nstep10 15
nsym 12
ntypat 1
occ8 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
occ10 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000
optdriver8 0
optdriver10 1
prtpot8 0
prtpot10 1
rfatpol 1 1
rfdir 1 0 0
rfphon8 0
rfphon10 1
rprim 5.5318805038E-01 0.0000000000E+00 8.3305640920E-01
-2.7659402519E-01 4.7907490470E-01 8.3305640920E-01
-2.7659402519E-01 -4.7907490470E-01 8.3305640920E-01
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 166
strten8 5.1293792728E-04 5.1293792728E-04 1.0386789347E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
toldfe8 0.00000000E+00 Hartree
toldfe10 1.10000000E-12 Hartree
tolvrs8 1.00000000E-20
tolvrs10 0.00000000E+00
typat 1 1
wtk8 0.25000 0.75000
wtk10 0.25000 0.25000 0.25000 0.25000
xangst -1.3096941300E-18 -2.5642383897E-17 2.7494845596E+00
1.3096941300E-18 2.5642383897E-17 -2.7494845596E+00
xcart -2.4749632235E-18 -4.8457082961E-17 5.1957728242E+00
2.4749632235E-18 4.8457082961E-17 -5.1957728242E+00
xred 2.3100000000E-01 2.3100000000E-01 2.3100000000E-01
-2.3100000000E-01 -2.3100000000E-01 -2.3100000000E-01
znucl 83.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 0.7 wall= 0.7
================================================================================
Calculation completed.
.Delivered 15 WARNINGs and 4 COMMENTs to log file.
+Overall time at end (sec) : cpu= 0.7 wall= 0.7