abinit/tests/v3/Refs/t12.abo

1982 lines
102 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h08 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v3_t12/t12.abi
- output file -> t12.abo
- root for input files -> t12i
- root for output files -> t12o
DATASET 1 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 24 mpssoang = 1 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 8 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 1 mffmem = 1 mkmem = 1
mpw = 280 nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 4.776 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.011 Mbytes ; DEN or POT disk file : 0.148 Mbytes.
================================================================================
DATASET 2 : space group P4 m m (# 99); Bravais tP (primitive tetrag.)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 24 mpssoang = 1 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 2 nspinor = 1 nsppol = 2
nsym = 8 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 1 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 559
nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 2.930 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.019 Mbytes ; DEN or POT disk file : 0.148 Mbytes.
================================================================================
DATASET 3 : magnetic group, Shubnikov type III
Fedorov space group P4/m m m (#123); Bravais tP (primitive tetrag.)
Magnetic point group 4/m'mm (# 26)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 24 mpssoang = 1 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 1 nsym = 16 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 1 mffmem = 1 mkmem = 1
mpw = 280 nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 4.991 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.006 Mbytes ; DEN or POT disk file : 0.075 Mbytes.
================================================================================
DATASET 4 : magnetic group, Shubnikov type III
Fedorov space group P4/m m m (#123); Bravais tP (primitive tetrag.)
Magnetic point group 4/m'mm (# 26)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 24 mpssoang = 1 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 1 nsym = 16 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 1 mffmem = 1 mkmem = 1
mpw = 280 nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 4.991 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.006 Mbytes ; DEN or POT disk file : 0.075 Mbytes.
================================================================================
DATASET 5 : magnetic group, Shubnikov type III
Fedorov space group P4/m m m (#123); Bravais tP (primitive tetrag.)
Magnetic point group 4/m'mm (# 26)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 24 mpssoang = 1 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 1 nsym = 16 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 1 mffmem = 1 mkmem = 1
mpw = 280 nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 4.991 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.006 Mbytes ; DEN or POT disk file : 0.075 Mbytes.
================================================================================
DATASET 6 : magnetic group, Shubnikov type III
Fedorov space group P4/m m m (#123); Bravais tP (primitive tetrag.)
Magnetic point group 4/m'mm (# 26)
================================================================================
Values of the parameters that define the memory need for DATASET 6 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 24 mpssoang = 1 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 2 nspinor = 1 nsppol = 2
nsym = 16 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 1 mffmem = 1 mkmem = 1
- mkqmem = 1 mk1mem = 1 mpw = 559
nfft = 9600 nkpt = 1
================================================================================
P This job should need less than 2.931 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.019 Mbytes ; DEN or POT disk file : 0.148 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.2000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.00794000E+00
asr 0
bs_loband1 0 0
bs_loband2 0 0
bs_loband3 0
bs_loband4 0
bs_loband5 0
bs_loband6 0 0
chksymtnons 0
chneut 0
diemac 1.00000000E+00
diemix 5.00000000E-01
ecut 4.50000000E+00 Hartree
- fftalg 512
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
getwfk6 3
istwfk1 2
istwfk2 1
istwfk3 2
istwfk4 2
istwfk5 2
istwfk6 1
jdtset 1 2 3 4 5 6
kptopt 0
P mkmem 1
P mkqmem 1
P mk1mem 1
natom 2
nband1 1
nband2 1
nband3 1
nband4 1
nband5 1
nband6 1
ndtset 6
ngfft 24 20 20
nkpt 1
nqpt1 0
nqpt2 1
nqpt3 0
nqpt4 0
nqpt5 0
nqpt6 1
nspden 2
nsppol1 2
nsppol2 2
nsppol3 1
nsppol4 1
nsppol5 1
nsppol6 2
nstep 40
nsym1 8
nsym2 8
nsym3 16
nsym4 16
nsym5 16
nsym6 16
ntypat 1
occ1 1.000000
1.000000
occ2 1.000000
1.000000
occ3 2.000000
occ4 2.000000
occ5 2.000000
occ6 1.000000
1.000000
optdriver1 0
optdriver2 1
optdriver3 0
optdriver4 0
optdriver5 0
optdriver6 1
prtpot1 0
prtpot2 1
prtpot3 0
prtpot4 0
prtpot5 0
prtpot6 1
ptgroupma1 0
ptgroupma2 0
ptgroupma3 26
ptgroupma4 26
ptgroupma5 26
ptgroupma6 26
rfdir 1 0 0
rfphon1 0
rfphon2 1
rfphon3 0
rfphon4 0
rfphon5 0
rfphon6 1
spgroup1 99
spgroup2 99
spgroup3 123
spgroup4 123
spgroup5 123
spgroup6 123
spinat1 0.0000000000E+00 0.0000000000E+00 9.9000000000E-01
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat2 0.0000000000E+00 0.0000000000E+00 9.9000000000E-01
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat3 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat4 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat5 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat6 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinmagntarget1 0.00000000E+00
spinmagntarget2 0.00000000E+00
spinmagntarget3 -9.99900000E+01
spinmagntarget4 -9.99900000E+01
spinmagntarget5 -9.99900000E+01
spinmagntarget6 0.00000000E+00
symafm1 1 1 1 1 1 1 1 1
symafm2 1 1 1 1 1 1 1 1
symafm3 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symafm4 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symafm5 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symafm6 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symrel1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel2 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel3 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel4 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel5 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel6 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons4 0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons5 0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tolvrs1 1.00000000E-14
tolvrs2 1.00000000E-08
tolvrs3 1.00000000E-14
tolvrs4 1.00000000E-14
tolvrs5 1.00000000E-14
tolvrs6 1.00000000E-08
typat 1 1
xangst1 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst2 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst3 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst4 -1.0588835944E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst5 -1.0578252400E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst6 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xcart1 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart2 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart3 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart4 -2.0010000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart5 -1.9990000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart6 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred1 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred2 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred3 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred4 -1.6675000000E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred5 -1.6658333333E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred6 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
znucl 1.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 2.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 1, nsppol: 2, nspinor: 1, nspden: 2, mpw: 280, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 2.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/1h.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/1h.pspnc
- Troullier-Martins psp for element H Thu Oct 27 17:28:54 EDT 1994
- 1.00000 1.00000 940714 znucl, zion, pspdat
1 1 0 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 7.740 11.990 0 1.5855604 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
Note: local psp for atom with Z= 1.0
pspatm : epsatm= 0.04198703
--- l ekb(1:nproj) -->
pspatm: atomic psp has been read and splines computed
1.67948119E-01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 559.000 559.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -0.94128102807794 -9.413E-01 3.085E-04 4.513E+00
ETOT 2 -0.94290179672930 -1.621E-03 2.772E-10 1.394E+00
ETOT 3 -0.94451773845359 -1.616E-03 4.817E-06 7.457E-02
ETOT 4 -0.94476176945666 -2.440E-04 7.503E-07 2.372E-02
ETOT 5 -0.94480614399002 -4.437E-05 1.431E-07 1.177E-02
ETOT 6 -0.94485743654478 -5.129E-05 3.609E-07 2.512E-04
ETOT 7 -0.94485839188760 -9.553E-07 1.233E-08 1.901E-04
ETOT 8 -0.94485867172475 -2.798E-07 1.673E-09 4.056E-06
ETOT 9 -0.94485867727432 -5.550E-09 3.470E-11 8.589E-07
ETOT 10 -0.94485867828084 -1.007E-09 5.521E-12 3.499E-09
ETOT 11 -0.94485867830012 -1.928E-11 1.159E-13 1.354E-10
ETOT 12 -0.94485867830016 -4.152E-14 1.360E-15 6.640E-12
ETOT 13 -0.94485867830017 -1.443E-14 1.809E-16 7.360E-13
ETOT 14 -0.94485867830016 1.554E-14 5.344E-18 2.732E-14
ETOT 15 -0.94485867830015 7.994E-15 8.586E-20 2.689E-15
At SCF step 15 vres2 = 2.69E-15 < tolvrs= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46229850E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18750563E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18750563E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 12.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 12.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2000000E+03
convergence: {deltae: 7.994E-15, res2: 2.689E-15, residm: 8.586E-20, diffor: null, }
etotal : -9.44858678E-01
entropy : 0.00000000E+00
fermie : -2.65308024E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.46229850E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.18750563E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 5.18750563E-05, ]
pressure_GPa: -2.4516E+00
xred :
- [ -1.6667E-01, 0.0000E+00, 0.0000E+00, H]
- [ 1.6667E-01, 0.0000E+00, 0.0000E+00, H]
cartesian_forces: # hartree/bohr
- [ 2.67229629E-02, -0.00000000E+00, -0.00000000E+00, ]
- [ -2.67229629E-02, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 2.67229629E-02, max: 2.67229629E-02, mean: 2.67229629E-02, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.574120 0.102786 0.676905 0.471334
2 2.00000 0.102786 0.574120 0.676905 -0.471334
---------------------------------------------------------------------
Sum: 0.676905 0.676905 1.353811 0.000000
Total magnetization (from the atomic spheres): 0.000000
Total magnetization (exact up - dn): 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 71.601E-21; max= 85.863E-21
reduced coordinates (array xred) for 2 atoms
-0.166666666667 0.000000000000 0.000000000000
0.166666666667 0.000000000000 0.000000000000
rms dE/dt= 1.8514E-01; max dE/dt= 3.2068E-01; dE/dt below (all hartree)
1 -0.320675555987 0.000000000000 0.000000000000
2 0.320675553621 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -1.05835441718000 0.00000000000000 0.00000000000000
2 1.05835441718000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.02672296290033 -0.00000000000000 -0.00000000000000
2 -0.02672296290033 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.5428510E-02 2.6722963E-02 9.855E-11 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 1.37414988694441 -0.00000000000000 -0.00000000000000
2 -1.37414988694441 -0.00000000000000 -0.00000000000000
frms,max,avg= 7.9336581E-01 1.3741499E+00 5.068E-09 0.000E+00 0.000E+00 e/A
length scales= 12.000000000000 10.000000000000 10.000000000000 bohr
= 6.350126503080 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t12o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.26531 Average Vxc (hartree)= -0.09436
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.26531
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.26531
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 6.44892412426311E-01
hartree : 3.01931979821635E-01
xc : -4.74903723031251E-01
Ewald energy : -2.59505324422668E-01
psp_core : 1.39956766170961E-04
local_psp : -1.15741397986035E+00
non_local_psp : 0.00000000000000E+00
total_energy : -9.44858678300149E-01
total_energy_eV : -2.57109121886776E+01
band_energy : -5.30616048807367E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46229850E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18750563E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18750563E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.4516E+00 GPa]
- sigma(1 1)= 4.30222999E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.52621659E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.52621659E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 1, nsppol: 2, nspinor: 1, nspden: 2, mpw: 559, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 2.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -2.1168713656887 -5.560E+01 1.316E-01 2.423E+03
ETOT 2 -5.2278064444307 -3.111E+00 1.563E-02 3.486E+02
ETOT 3 -5.8647142798309 -6.369E-01 1.394E-03 1.007E+02
ETOT 4 -6.1165819182757 -2.519E-01 1.192E-03 2.056E+01
ETOT 5 -6.2520817065010 -1.355E-01 2.944E-04 1.879E+00
ETOT 6 -6.2749966544217 -2.291E-02 3.988E-05 5.344E-01
ETOT 7 -6.2829583907506 -7.962E-03 3.463E-05 3.330E-03
ETOT 8 -6.2829668880391 -8.497E-06 2.994E-08 5.465E-04
ETOT 9 -6.2829676551550 -7.671E-07 1.396E-08 3.905E-05
ETOT 10 -6.2829677243942 -6.924E-08 7.476E-10 4.695E-06
ETOT 11 -6.2829677265308 -2.137E-09 1.173E-11 3.319E-07
ETOT 12 -6.2829677265705 -3.972E-11 7.058E-13 3.505E-08
ETOT 13 -6.2829677266139 -4.334E-11 1.175E-13 3.886E-09
At SCF step 13 vres2 = 3.89E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.915E-14; max= 11.748E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 9.22414884E+01 eigvalue= 3.27570662E+01 local= -6.53920618E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.19523203E+02 Hartree= 1.79488728E+01 xc= -1.77937546E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.97615924E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 4.81858263E+01 fr.nonlo= 0.00000000E+00 Ewald= 5.29279845E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= -0.6282967727E+01 Ha. Also 2DEtotal= -0.170968246589E+03 eV
(2DErelax= -5.9761592439E+01 Ha. 2DEnonrelax= 5.3478624713E+01 Ha)
( non-var. 2DEtotal : -6.2829769636E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -2.1168712746191 -5.560E+01 1.316E-01 2.423E+03
ETOT 2 -5.2278063709330 -3.111E+00 1.563E-02 3.486E+02
ETOT 3 -5.8647142083254 -6.369E-01 1.394E-03 1.007E+02
ETOT 4 -6.1165818478537 -2.519E-01 1.192E-03 2.056E+01
ETOT 5 -6.2520816367509 -1.355E-01 2.944E-04 1.879E+00
ETOT 6 -6.2749965848552 -2.291E-02 3.988E-05 5.344E-01
ETOT 7 -6.2829583212234 -7.962E-03 3.463E-05 3.330E-03
ETOT 8 -6.2829668185121 -8.497E-06 2.994E-08 5.465E-04
ETOT 9 -6.2829675856278 -7.671E-07 1.396E-08 3.905E-05
ETOT 10 -6.2829676548713 -6.924E-08 7.476E-10 4.695E-06
ETOT 11 -6.2829676570069 -2.136E-09 1.173E-11 3.319E-07
ETOT 12 -6.2829676570449 -3.796E-11 7.058E-13 3.505E-08
ETOT 13 -6.2829676570907 -4.582E-11 1.175E-13 3.886E-09
At SCF step 13 vres2 = 3.89E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.915E-14; max= 11.748E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 9.22414886E+01 eigvalue= 3.27570663E+01 local= -6.53920620E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.19523204E+02 Hartree= 1.79488729E+01 xc= -1.77937547E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.97615926E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 4.81858265E+01 fr.nonlo= 0.00000000E+00 Ewald= 5.29279845E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= -0.6282967657E+01 Ha. Also 2DEtotal= -0.170968244697E+03 eV
(2DErelax= -5.9761592575E+01 Ha. 2DEnonrelax= 5.3478624918E+01 Ha)
( non-var. 2DEtotal : -6.2829768941E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -6.2829769636 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 6.2829702264 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 0.0000000000 -0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 1 2 0.0000000000 -0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 1 1 6.2829702264 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 -6.2829768941 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 2 4 0.0000000000 0.0000000000
1 4 3 4 0.0000000000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 0.0000000000 0.0000000000
2 4 3 4 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 1 4 0.0000000000 0.0000000000
3 4 2 4 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0436317845 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0436317377 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 0.0000000000 -0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 1 2 0.0000000000 -0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
1 2 1 1 0.0436317377 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 -0.0436317840 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.891583E-03 -5.033131E-06 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
Phonon frequencies in cm-1 :
- -1.512528E+03 -1.104645E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 0.000000E+00
chkph3 : WARNING -
Dynamical matrix incomplete, phonon frequencies may be wrong, see the log file for more explanations.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 1, mband: 1, nsppol: 1, nspinor: 1, nspden: 2, mpw: 280, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 2.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t12o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 559.000 559.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -0.94485867830017 -9.449E-01 2.168E-23 2.074E-17
At SCF step 1 vres2 = 2.07E-17 < tolvrs= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46229850E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18750563E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18750563E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 12.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 12.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2000000E+03
convergence: {deltae: -9.449E-01, res2: 2.074E-17, residm: 2.168E-23, diffor: null, }
etotal : -9.44858678E-01
entropy : 0.00000000E+00
fermie : -2.65308025E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.46229850E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.18750563E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 5.18750563E-05, ]
pressure_GPa: -2.4516E+00
xred :
- [ -1.6667E-01, 0.0000E+00, 0.0000E+00, H]
- [ 1.6667E-01, 0.0000E+00, 0.0000E+00, H]
cartesian_forces: # hartree/bohr
- [ 2.67229630E-02, -0.00000000E+00, -0.00000000E+00, ]
- [ -2.67229630E-02, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 2.67229630E-02, max: 2.67229630E-02, mean: 2.67229630E-02, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.574120 0.102786 0.676905 0.471334
2 2.00000 0.102786 0.574120 0.676905 -0.471334
---------------------------------------------------------------------
Sum: 0.676905 0.676905 1.353811 -0.000000
Total magnetization (from the atomic spheres): -0.000000
Total magnetization (exact up - dn): -0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.679E-24; max= 21.679E-24
reduced coordinates (array xred) for 2 atoms
-0.166666666667 0.000000000000 0.000000000000
0.166666666667 0.000000000000 0.000000000000
rms dE/dt= 1.8514E-01; max dE/dt= 3.2068E-01; dE/dt below (all hartree)
1 -0.320675556491 0.000000000000 0.000000000000
2 0.320675556491 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -1.05835441718000 0.00000000000000 0.00000000000000
2 1.05835441718000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.02672296304094 -0.00000000000000 -0.00000000000000
2 -0.02672296304094 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.5428510E-02 2.6722963E-02 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 1.37414989417483 -0.00000000000000 -0.00000000000000
2 -1.37414989417483 -0.00000000000000 -0.00000000000000
frms,max,avg= 7.9336581E-01 1.3741499E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 12.000000000000 10.000000000000 10.000000000000 bohr
= 6.350126503080 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t12o_DS3_EIG
Fermi (or HOMO) energy (hartree) = -0.26531 Average Vxc (hartree)= -0.09436
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.26531
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 6.44892411768824E-01
hartree : 3.01931979734790E-01
xc : -4.74903722797834E-01
Ewald energy : -2.59505324422668E-01
psp_core : 1.39956766170961E-04
local_psp : -1.15741397934945E+00
non_local_psp : 0.00000000000000E+00
total_energy : -9.44858678300171E-01
total_energy_eV : -2.57109121886782E+01
band_energy : -5.30616049077260E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46229850E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18750563E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18750563E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.4516E+00 GPa]
- sigma(1 1)= 4.30223001E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.52621659E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.52621659E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 1, mband: 1, nsppol: 1, nspinor: 1, nspden: 2, mpw: 280, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 2.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t12o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 559.000 559.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -0.94483196516657 -9.448E-01 1.232E-11 2.214E-05
ETOT 2 -0.94483197378156 -8.615E-09 1.290E-13 4.364E-06
ETOT 3 -0.94483197637630 -2.595E-09 2.749E-11 1.184E-07
ETOT 4 -0.94483197701502 -6.387E-10 3.829E-12 1.277E-08
ETOT 5 -0.94483197709069 -7.567E-11 1.976E-13 5.411E-09
ETOT 6 -0.94483197714253 -5.184E-11 4.305E-13 7.698E-11
ETOT 7 -0.94483197714264 -1.142E-13 1.782E-15 1.529E-11
ETOT 8 -0.94483197714265 -1.121E-14 3.394E-16 1.176E-12
ETOT 9 -0.94483197714264 1.066E-14 2.260E-19 3.978E-14
ETOT 10 -0.94483197714265 -5.329E-15 6.179E-20 5.115E-15
At SCF step 10 vres2 = 5.11E-15 < tolvrs= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46133911E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18774731E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18774731E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 4, }
comment : Summary of ground state results
lattice_vectors:
- [ 12.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 12.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2000000E+03
convergence: {deltae: -5.329E-15, res2: 5.115E-15, residm: 6.179E-20, diffor: null, }
etotal : -9.44831977E-01
entropy : 0.00000000E+00
fermie : -2.65301775E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.46133911E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.18774731E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 5.18774731E-05, ]
pressure_GPa: -2.4507E+00
xred :
- [ -1.6675E-01, 0.0000E+00, 0.0000E+00, H]
- [ 1.6667E-01, 0.0000E+00, 0.0000E+00, H]
cartesian_forces: # hartree/bohr
- [ 2.66793629E-02, -0.00000000E+00, -0.00000000E+00, ]
- [ -2.66793629E-02, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 2.66793629E-02, max: 2.66793629E-02, mean: 2.66793629E-02, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.570917 0.101148 0.672065 0.469769
2 2.00000 0.102609 0.574281 0.676890 -0.471672
---------------------------------------------------------------------
Sum: 0.673526 0.675429 1.348955 -0.001903
Total magnetization (from the atomic spheres): -0.001903
Total magnetization (exact up - dn): 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 61.793E-21; max= 61.793E-21
reduced coordinates (array xred) for 2 atoms
-0.166750000000 0.000000000000 0.000000000000
0.166666666667 0.000000000000 0.000000000000
rms dE/dt= 1.8484E-01; max dE/dt= 3.2015E-01; dE/dt below (all hartree)
1 -0.320152355385 0.000000000000 0.000000000000
2 0.320152355385 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -1.05888359438859 0.00000000000000 0.00000000000000
2 1.05835441718000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.02667936294876 -0.00000000000000 -0.00000000000000
2 -0.02667936294876 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.5403337E-02 2.6679363E-02 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 1.37190788747920 -0.00000000000000 -0.00000000000000
2 -1.37190788747920 -0.00000000000000 -0.00000000000000
frms,max,avg= 7.9207139E-01 1.3719079E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 12.000000000000 10.000000000000 10.000000000000 bohr
= 6.350126503080 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t12o_DS4_EIG
Fermi (or HOMO) energy (hartree) = -0.26530 Average Vxc (hartree)= -0.09436
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.26530
--- !EnergyTerms
iteration_state : {dtset: 4, }
comment : Components of total free energy in Hartree
kinetic : 6.44987498911861E-01
hartree : 3.01882790595662E-01
xc : -4.74938956744598E-01
Ewald energy : -2.59556025206874E-01
psp_core : 1.39956766170961E-04
local_psp : -1.15734724146487E+00
non_local_psp : 0.00000000000000E+00
total_energy : -9.44831977142646E-01
total_energy_eV : -2.57101856132313E+01
band_energy : -5.30603549698000E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46133911E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18774731E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18774731E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.4507E+00 GPa]
- sigma(1 1)= 4.29940736E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.52628770E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.52628770E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 1, mband: 1, nsppol: 1, nspinor: 1, nspden: 2, mpw: 280, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 2.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t12o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 559.000 559.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-14, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -0.94488541110217 -9.449E-01 1.230E-11 2.214E-05
ETOT 2 -0.94488541972236 -8.620E-09 1.293E-13 4.365E-06
ETOT 3 -0.94488542231946 -2.597E-09 2.752E-11 1.185E-07
ETOT 4 -0.94488542296067 -6.412E-10 3.848E-12 1.281E-08
ETOT 5 -0.94488542303680 -7.613E-11 1.992E-13 5.442E-09
ETOT 6 -0.94488542308927 -5.247E-11 4.366E-13 7.781E-11
ETOT 7 -0.94488542308937 -1.028E-13 1.757E-15 1.548E-11
ETOT 8 -0.94488542308937 -2.665E-15 3.389E-16 1.191E-12
ETOT 9 -0.94488542308940 -2.687E-14 1.744E-19 4.069E-14
ETOT 10 -0.94488542308939 1.243E-14 6.242E-20 5.169E-15
At SCF step 10 vres2 = 5.17E-15 < tolvrs= 1.00E-14 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46325878E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18726413E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18726413E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 5, }
comment : Summary of ground state results
lattice_vectors:
- [ 12.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 12.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.2000000E+03
convergence: {deltae: 1.243E-14, res2: 5.169E-15, residm: 6.242E-20, diffor: null, }
etotal : -9.44885423E-01
entropy : 0.00000000E+00
fermie : -2.65314280E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.46325878E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 5.18726413E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 5.18726413E-05, ]
pressure_GPa: -2.4524E+00
xred :
- [ -1.6658E-01, 0.0000E+00, 0.0000E+00, H]
- [ 1.6667E-01, 0.0000E+00, 0.0000E+00, H]
cartesian_forces: # hartree/bohr
- [ 2.67666252E-02, -0.00000000E+00, -0.00000000E+00, ]
- [ -2.67666252E-02, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 2.67666252E-02, max: 2.67666252E-02, mean: 2.67666252E-02, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.571070 0.102434 0.673504 0.468636
2 2.00000 0.102963 0.573958 0.676920 -0.470995
---------------------------------------------------------------------
Sum: 0.674032 0.676392 1.350424 -0.002359
Total magnetization (from the atomic spheres): -0.002359
Total magnetization (exact up - dn): -0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 62.417E-21; max= 62.417E-21
reduced coordinates (array xred) for 2 atoms
-0.166583333333 0.000000000000 0.000000000000
0.166666666667 0.000000000000 0.000000000000
rms dE/dt= 1.8544E-01; max dE/dt= 3.2120E-01; dE/dt below (all hartree)
1 -0.321199502692 0.000000000000 0.000000000000
2 0.321199502692 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 -1.05782523997141 0.00000000000000 0.00000000000000
2 1.05835441718000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 0.02676662522432 -0.00000000000000 -0.00000000000000
2 -0.02676662522432 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.5453718E-02 2.6766625E-02 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 1.37639509372765 -0.00000000000000 -0.00000000000000
2 -1.37639509372765 -0.00000000000000 -0.00000000000000
frms,max,avg= 7.9466208E-01 1.3763951E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 12.000000000000 10.000000000000 10.000000000000 bohr
= 6.350126503080 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t12o_DS5_EIG
Fermi (or HOMO) energy (hartree) = -0.26531 Average Vxc (hartree)= -0.09436
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.26531
--- !EnergyTerms
iteration_state : {dtset: 5, }
comment : Components of total free energy in Hartree
kinetic : 6.44797240054537E-01
hartree : 3.01981221906536E-01
xc : -4.74868451724990E-01
Ewald energy : -2.59454586882920E-01
psp_core : 1.39956766170961E-04
local_psp : -1.15748080320872E+00
non_local_psp : 0.00000000000000E+00
total_energy : -9.44885423089388E-01
total_energy_eV : -2.57116399514039E+01
band_energy : -5.30628559100648E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.46325878E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 5.18726413E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 5.18726413E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.4524E+00 GPa]
- sigma(1 1)= 4.30505524E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.52614554E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.52614554E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 1, mband: 1, nsppol: 2, nspinor: 1, nspden: 2, mpw: 559, }
cutoff_energies: {ecut: 4.5, pawecutdg: -1.0, }
electrons: {nelect: 2.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 12.0000000 0.0000000 0.0000000 G(1)= 0.0833333 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.2000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 20 20
ecut(hartree)= 4.500 => boxcut(ratio)= 2.09440
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
The perturbation idir= 1 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 8 symmetries that leave the perturbation invariant.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 40, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -2.1168713338926 -5.560E+01 1.316E-01 2.423E+03
ETOT 2 -5.2278064215378 -3.111E+00 1.563E-02 3.486E+02
ETOT 3 -5.8647142622310 -6.369E-01 1.394E-03 1.007E+02
ETOT 4 -6.1165819033352 -2.519E-01 1.192E-03 2.056E+01
ETOT 5 -6.2520816935034 -1.355E-01 2.944E-04 1.879E+00
ETOT 6 -6.2749966419925 -2.291E-02 3.988E-05 5.344E-01
ETOT 7 -6.2829583785310 -7.962E-03 3.463E-05 3.330E-03
ETOT 8 -6.2829668758210 -8.497E-06 2.994E-08 5.465E-04
ETOT 9 -6.2829676429353 -7.671E-07 1.396E-08 3.905E-05
ETOT 10 -6.2829677121773 -6.924E-08 7.476E-10 4.695E-06
ETOT 11 -6.2829677143140 -2.137E-09 1.173E-11 3.319E-07
ETOT 12 -6.2829677143529 -3.886E-11 7.058E-13 3.505E-08
ETOT 13 -6.2829677143963 -4.341E-11 1.175E-13 3.886E-09
At SCF step 13 vres2 = 3.89E-09 < tolvrs= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.915E-14; max= 11.748E-14
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 9.22414885E+01 eigvalue= 3.27570663E+01 local= -6.53920620E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.19523203E+02 Hartree= 1.79488728E+01 xc= -1.77937547E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 0.00000000E+00 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -5.97615925E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 4.81858263E+01 fr.nonlo= 0.00000000E+00 Ewald= 5.29279845E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= -0.6282967714E+01 Ha. Also 2DEtotal= -0.170968246256E+03 eV
(2DErelax= -5.9761592466E+01 Ha. 2DEnonrelax= 5.3478624752E+01 Ha)
( non-var. 2DEtotal : -6.2829769514E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -6.2829769514 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 6.2829702323 0.0000000000
1 1 2 2 0.0000000000 -0.0000000000
1 1 3 2 -0.0000000000 -0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 -0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 1 2 -0.0000000000 -0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 1 1 6.2829702323 -0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 0.0000000000
1 2 1 2 -6.2829769514 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 2 4 0.0000000000 0.0000000000
1 4 3 4 0.0000000000 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 0.0000000000 0.0000000000
2 4 3 4 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 1 4 0.0000000000 0.0000000000
3 4 2 4 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -0.0436317844 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 0.0436317377 0.0000000000
1 1 2 2 0.0000000000 -0.0000000000
1 1 3 2 -0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 -0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 1 2 -0.0000000000 -0.0000000000
3 1 2 2 -0.0000000000 0.0000000000
1 2 1 1 0.0436317377 -0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 0.0000000000
1 2 1 2 -0.0436317844 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.891583E-03 -5.039384E-06 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00
Phonon frequencies in cm-1 :
- -1.512528E+03 -1.106017E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 0.000000E+00
chkph3 : WARNING -
Dynamical matrix incomplete, phonon frequencies may be wrong, see the log file for more explanations.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.2000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.00794000E+00
asr 0
bs_loband1 0 0
bs_loband2 0 0
bs_loband3 0
bs_loband4 0
bs_loband5 0
bs_loband6 0 0
chksymtnons 0
chneut 0
diemac 1.00000000E+00
diemix 5.00000000E-01
ecut 4.50000000E+00 Hartree
etotal1 -9.4485867830E-01
etotal2 -6.2829676571E+00
etotal3 -9.4485867830E-01
etotal4 -9.4483197714E-01
etotal5 -9.4488542309E-01
etotal6 -6.2829677144E+00
fcart1 2.6722962900E-02 -0.0000000000E+00 -0.0000000000E+00
-2.6722962900E-02 -0.0000000000E+00 -0.0000000000E+00
fcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart3 2.6722963041E-02 -0.0000000000E+00 -0.0000000000E+00
-2.6722963041E-02 -0.0000000000E+00 -0.0000000000E+00
fcart4 2.6679362949E-02 -0.0000000000E+00 -0.0000000000E+00
-2.6679362949E-02 -0.0000000000E+00 -0.0000000000E+00
fcart5 2.6766625224E-02 -0.0000000000E+00 -0.0000000000E+00
-2.6766625224E-02 -0.0000000000E+00 -0.0000000000E+00
fcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getwfk1 0
getwfk2 1
getwfk3 1
getwfk4 1
getwfk5 1
getwfk6 3
istwfk1 2
istwfk2 1
istwfk3 2
istwfk4 2
istwfk5 2
istwfk6 1
jdtset 1 2 3 4 5 6
kptopt 0
P mkmem 1
P mkqmem 1
P mk1mem 1
natom 2
nband1 1
nband2 1
nband3 1
nband4 1
nband5 1
nband6 1
ndtset 6
ngfft 24 20 20
nkpt 1
nqpt1 0
nqpt2 1
nqpt3 0
nqpt4 0
nqpt5 0
nqpt6 1
nspden 2
nsppol1 2
nsppol2 2
nsppol3 1
nsppol4 1
nsppol5 1
nsppol6 2
nstep 40
nsym1 8
nsym2 8
nsym3 16
nsym4 16
nsym5 16
nsym6 16
ntypat 1
occ1 1.000000
1.000000
occ2 1.000000
1.000000
occ3 2.000000
occ4 2.000000
occ5 2.000000
occ6 1.000000
1.000000
optdriver1 0
optdriver2 1
optdriver3 0
optdriver4 0
optdriver5 0
optdriver6 1
prtpot1 0
prtpot2 1
prtpot3 0
prtpot4 0
prtpot5 0
prtpot6 1
ptgroupma1 0
ptgroupma2 0
ptgroupma3 26
ptgroupma4 26
ptgroupma5 26
ptgroupma6 26
rfdir 1 0 0
rfphon1 0
rfphon2 1
rfphon3 0
rfphon4 0
rfphon5 0
rfphon6 1
spgroup1 99
spgroup2 99
spgroup3 123
spgroup4 123
spgroup5 123
spgroup6 123
spinat1 0.0000000000E+00 0.0000000000E+00 9.9000000000E-01
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat2 0.0000000000E+00 0.0000000000E+00 9.9000000000E-01
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat3 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat4 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat5 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinat6 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0000000000E+00
spinmagntarget1 0.00000000E+00
spinmagntarget2 0.00000000E+00
spinmagntarget3 -9.99900000E+01
spinmagntarget4 -9.99900000E+01
spinmagntarget5 -9.99900000E+01
spinmagntarget6 0.00000000E+00
strten1 1.4622984988E-04 5.1875056302E-05 5.1875056302E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 1.4622985031E-04 5.1875056344E-05 5.1875056344E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 1.4613391054E-04 5.1877473117E-05 5.1877473117E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 1.4632587792E-04 5.1872641297E-05 5.1872641297E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symafm1 1 1 1 1 1 1 1 1
symafm2 1 1 1 1 1 1 1 1
symafm3 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symafm4 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symafm5 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symafm6 1 -1 -1 1 1 -1 -1 1 1 -1
-1 1 1 -1 -1 1
symrel1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel2 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel3 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel4 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel5 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
symrel6 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons4 0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000833 0.0000000 0.0000000
-0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons5 0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000833 0.0000000 0.0000000
0.0000833 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons6 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tolvrs1 1.00000000E-14
tolvrs2 1.00000000E-08
tolvrs3 1.00000000E-14
tolvrs4 1.00000000E-14
tolvrs5 1.00000000E-14
tolvrs6 1.00000000E-08
typat 1 1
xangst1 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst2 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst3 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst4 -1.0588835944E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst5 -1.0578252400E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xangst6 -1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
1.0583544172E+00 0.0000000000E+00 0.0000000000E+00
xcart1 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart2 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart3 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart4 -2.0010000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart5 -1.9990000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart6 -2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xred1 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred2 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred3 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred4 -1.6675000000E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred5 -1.6658333333E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
xred6 -1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
1.6666666667E-01 0.0000000000E+00 0.0000000000E+00
znucl 1.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 1.4 wall= 1.4
================================================================================
Calculation completed.
.Delivered 63 WARNINGs and 19 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.4 wall= 1.4