abinit/tests/v3/Input/t55.abi

133 lines
4.0 KiB
Plaintext

# N2 system.
# Excited state computation, using LDA/TDLDA
# with different XC kernels
ndtset 4
#DATASET 1 SCF
nband1 5
prtden1 1
getden1 0
getwfk1 0
tolwfr1 1.0d-15
#DATASET 2 TDDFT
getden2 1
tolwfr2 1.0d-9
iscf2 -1
getwfk2 1
nband2 12
#DATASET 3 SCF with another ixc
nband3 5
prtden3 1
getwfk3 1
tolwfr3 1.0d-15
ixc3 7
#DATASET 4 TDDFT
getden4 3
tolwfr4 1.0d-9
iscf4 -1
getwfk4 3
nband4 12
ixc4 7
#Common
acell 6 2*5 Angstrom
boxcenter 3*0.0d0
diemac 1.0d0 diemix 0.5d0
ecut 25
ixc 1
kptopt 0
natom 2
nbdbuf 0
nstep 25
ntypat 1
typat 1 1
xcart -0.54885 0 0 0.54885 0 0 Angstrom ! Distance 1.0977 Angstrom
znucl 7
pp_dirpath "$ABI_PSPDIR"
pseudos "PseudosHGH_pwteter/7n.5.hgh"
#%%<BEGIN TEST_INFO>
#%% [setup]
#%% executable = abinit
#%% [files]
#%% files_to_test =
#%% t55.abo, tolnlines = 10, tolabs = 1.000e-02, tolrel = 4.000e-01
#%% [paral_info]
#%% max_nprocs = 1
#%% [extra_info]
#%% authors = Unknown
#%% keywords =
#%% description =
#%% N2 molecule non-spin-polarized, in a big box.
#%% Compute excitation energies, as well as Cauchy
#%% coefficients. The Cauchy (-2) coefficient
#%% is the low-frequency optical polarisability.
#%% The present test uses a small box (6x5x5 Angstrom),
#%% a small energy cut-off (25 Ha), and only
#%% 12 states. Two different exchange-correlation
#%% functionals are treated : ixc=1 (Teter93),
#%% and ixc=7 (PW92).
#%% Experimental values are taken from Goerling at al,
#%% J. Chem. Phys. 110, 2785 (1999)).
#%% Experimental values for the singlet excitation
#%% energies are :
#%% 1pi_g 9.31eV 1sig_u- 9.92eV 1del_u 10.27eV
#%% The present test gives
#%% 1pi_g 9.47eV 1sig_u- 9.91eV 1del_u 10.45eV
#%% With a larger box (8x7x7)
#%% 1pi_g 9.33eV 1sig_u- 9.84eV 1del_u 10.38eV
#%% With a larger cutoff (60Ha)
#%% 1pi_g 9.38eV 1sig_u- 9.77eV 1del_u 10.31eV
#%% With a larger number of states (30)
#%% 1pi_g 9.44eV 1sig_u- 9.91eV 1del_u 10.45eV
#%% Experimental values for the Cauchy coefficients are:
#%% (These values should be updated, the real ones
#%% are smaller by a few percent, because a
#%% buffer has been introduced in tddft.f)
#%% (-2) 11.74au, (-4) 30.11au, (-6) 101.8au
#%% The present test gives
#%% (-2) 8.012au, (-4) 27.83au, (-6) 108.4au
#%% With a larger box (8x7x7)
#%% (-2) 7.112au, (-4) 25.51au, (-6) 102.2au
#%% With a larger cutoff (60Ha)
#%% (-2) 7.717au, (-4) 26.87au, (-6) 104.6au
#%% With a larger number of states (30)
#%% (-2) 11.70au, (-4) 34.56au, (-6) 123.3au
#%% (The larger number of states is important to give
#%% reasonable values ...)
#%% Experimental values for the triplet excitation
#%% energies are :
#%% 3pi_g 7.75eV 3sig_u+ 8.04eV 3del_u 8.88eV 3sig_u- 9.67eV 3pi_u 11.19eV
#%% The present test gives
#%% 3pi_g 7.83eV 3sig_u+ 8.11eV 3del_u 9.06eV 3sig_u- 9.91eV 3pi_u 10.91eV
#%% With a larger box (8x7x7)
#%% 3pi_g 7.70eV 3sig_u+ 8.13eV 3del_u 9.04eV 3sig_u- 9.85eV 3pi_u 10.71eV
#%% With a larger cutoff (60Ha)
#%% 3pi_g 7.73eV 3sig_u+ 7.88eV 3del_u 8.88eV 3sig_u- 9.77eV 3pi_u 10.44eV
#%% With a larger number of states (30)
#%% 3pi_g 7.83eV 3sig_u+ 8.04eV 3del_u 9.04eV 3sig_u- 9.91eV 3pi_u 10.90eV
#%% Note that the use of the PW92 functional instead of the
#%% Teter93 functional does not affect the singlet values,
#%% but have some effects on the triplet values:
#%% they change from
#%% 3pi_g 7.83eV 3sig_u+ 8.11eV 3del_u 9.06eV 3sig_u- 9.91eV 3pi_u 10.91eV
#%% to
#%% 3pi_g 7.85eV 3sig_u+ 8.16eV 3del_u 9.08eV 3sig_u- 9.91eV 3pi_u 10.93eV
#%% In the Goerling paper, still another functional was used,
#%% the Vosko-Wilk-Nussair one,
#%% whose spin dependence is not very accurate, hence the large
#%% differences for the triplet states.
#%% When this functional will be coded in ABINIT, it will be
#%% worth to complete the present test.
#%% topics = TDDFT
#%%<END TEST_INFO>