abinit/tests/v2/Refs/t51.abo

445 lines
22 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h08 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v2_t51/t51.abi
- output file -> t51.abo
- root for input files -> t51i
- root for output files -> t51o
Symmetries : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need of the present run
intxc = 0 ionmov = 0 iscf = 6 lmnmax = 1
lnmax = 1 mgfft = 30 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 7 xclevel = 2
- mband = 8 mffmem = 1 mkmem = 1
mpw = 428 nfft = 17280 nkpt = 1
================================================================================
P This job should need less than 8.610 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.106 Mbytes ; DEN or POT disk file : 0.266 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 6.5000000000E+00 6.5000000000E+00 9.0000000000E+00 Bohr
amu 1.59994000E+01
diemac 1.00000000E+00
diemix 3.33333333E-01
ecut 1.30000000E+01 Hartree
- fftalg 512
iscf 6
isecur 4
istwfk 2
ixc 11
kptopt 0
P mkmem 1
natom 2
nband 8
ngfft 24 24 30
nkpt 1
nline 6
nnsclo 4
nspden 2
nsppol 2
nstep 15
nsym 1
ntypat 1
occ 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.000000 0.000000
occopt 7
optforces 1
spgroup 1
spinat 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
toldff 1.00000000E-08
tsmear 2.00000000E-02 Hartree
typat 1 1
xangst 0.0000000000E+00 0.0000000000E+00 5.5007970833E-01
0.0000000000E+00 0.0000000000E+00 -5.5007970833E-01
xcart 0.0000000000E+00 0.0000000000E+00 1.0395000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0395000000E+00
xred 0.0000000000E+00 0.0000000000E+00 1.1550000000E-01
0.0000000000E+00 0.0000000000E+00 -1.1550000000E-01
znucl 8.00000
================================================================================
chkinp: Checking input parameters for consistency.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 8, nsppol: 2, nspinor: 1, nspden: 2, mpw: 428, }
cutoff_energies: {ecut: 13.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 7.00000000E+00, tsmear: 2.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 6, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 6.5000000 0.0000000 0.0000000 G(1)= 0.1538462 0.0000000 0.0000000
R(2)= 0.0000000 6.5000000 0.0000000 G(2)= 0.0000000 0.1538462 0.0000000
R(3)= 0.0000000 0.0000000 9.0000000 G(3)= 0.0000000 0.0000000 0.1111111
Unit cell volume ucvol= 3.8025000E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 30
ecut(hartree)= 13.000 => boxcut(ratio)= 2.05372
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/8o.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/8o.pspnc
- Troullier-Martins psp for element O Thu Oct 27 17:29:57 EDT 1994
- 8.00000 6.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 5.480 16.893 1 1.4482335 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 20.911 28.075 0 1.4482335 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.56990156784787 3.95561236318184 0.63894027514378 rchrg,fchrg,qchrg
pspatm : epsatm= 1.57752239
--- l ekb(1:nproj) -->
0 5.670783
pspatm: atomic psp has been read and splines computed
3.78605374E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 855.000 855.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 6, nstep: 15, nline: 6, wfoptalg: 0, }
tolerances: {toldff: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor magn
ETOT 1 -31.761111530039 -3.18E+01 1.45E-03 6.53E+02 8.8E-01 8.83E-01 1.658
ETOT 2 -32.047430803657 -2.86E-01 4.59E-14 5.48E+01 1.6E-01 7.27E-01 1.916
ETOT 3 -32.050430956669 -3.00E-03 4.99E-17 2.52E+01 4.0E-02 6.87E-01 1.957
ETOT 4 -32.051598030849 -1.17E-03 4.77E-17 2.96E+00 5.3E-02 6.34E-01 1.986
ETOT 5 -32.051843963086 -2.46E-04 5.96E-18 5.93E-01 2.1E-02 6.55E-01 1.991
ETOT 6 -32.051868809267 -2.48E-05 1.89E-18 4.52E-01 7.8E-04 6.56E-01 1.995
ETOT 7 -32.051878539147 -9.73E-06 2.70E-19 4.83E-02 2.6E-03 6.59E-01 1.995
ETOT 8 -32.051878824556 -2.85E-07 7.20E-21 2.27E-02 6.4E-04 6.59E-01 1.995
ETOT 9 -32.051879219587 -3.95E-07 1.20E-20 4.42E-03 3.1E-04 6.59E-01 1.995
ETOT 10 -32.051879680779 -4.61E-07 1.03E-20 4.55E-03 3.9E-04 6.59E-01 1.995
ETOT 11 -32.051879796171 -1.15E-07 6.93E-21 7.37E-04 3.8E-04 6.59E-01 1.995
ETOT 12 -32.051879818274 -2.21E-08 2.69E-21 4.17E-04 1.2E-05 6.59E-01 1.995
ETOT 13 -32.051879822485 -4.21E-09 2.15E-21 8.07E-05 9.0E-05 6.59E-01 1.995
ETOT 14 -32.051879822703 -2.18E-10 1.36E-23 3.59E-05 3.0E-05 6.59E-01 1.995
ETOT 15 -32.051879823109 -4.06E-10 2.80E-24 4.89E-06 2.0E-05 6.59E-01 1.995
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.50330561E-03 sigma(3 2)= 1.38522381E-10
sigma(2 2)= 4.50330776E-03 sigma(3 1)= -1.11158827E-11
sigma(3 3)= 1.62865743E-03 sigma(2 1)= -1.14543716E-10
scprqt: WARNING -
nstep= 15 was not enough SCF cycles to converge;
maximum force difference= 2.022E-05 exceeds toldff= 1.000E-08
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 6.5000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 6.5000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 9.0000000, ]
lattice_lengths: [ 6.50000, 6.50000, 9.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8025000E+02
convergence: {deltae: -4.064E-10, res2: 4.889E-06, residm: 2.804E-24, diffor: 2.022E-05, }
etotal : -3.20518798E+01
entropy : 0.00000000E+00
fermie : 2.20286163E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.50330561E-03, -1.14543716E-10, -1.11158827E-11, ]
- [ -1.14543716E-10, 4.50330776E-03, 1.38522381E-10, ]
- [ -1.11158827E-11, 1.38522381E-10, 1.62865743E-03, ]
pressure_GPa: -1.0430E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 1.1550E-01, O]
- [ 0.0000E+00, 0.0000E+00, -1.1550E-01, O]
cartesian_forces: # hartree/bohr
- [ -6.67684862E-09, 1.87340460E-08, 6.58959349E-01, ]
- [ 6.67684862E-09, -1.87340460E-08, -6.58959349E-01, ]
force_length_stats: {min: 6.58959349E-01, max: 6.58959349E-01, mean: 6.58959349E-01, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 4.047681 3.014267 7.061949 1.033414
2 2.00000 4.047682 3.014268 7.061949 1.033414
---------------------------------------------------------------------
Sum: 8.095363 6.028535 14.123898 2.066828
Total magnetization (from the atomic spheres): 2.066828
Total magnetization (exact up - dn): 1.995081
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 61.878E-26; max= 28.035E-25
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.115500000000
0.000000000000 0.000000000000 -0.115500000000
rms dE/dt= 3.4241E+00; max dE/dt= 5.9306E+00; dE/dt below (all hartree)
1 0.000000044199 -0.000000132181 -5.930634134009
2 -0.000000042600 0.000000111362 5.930634154907
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.55007970832930
2 0.00000000000000 0.00000000000000 -0.55007970832930
cartesian forces (hartree/bohr) at end:
1 -0.00000000667685 0.00000001873405 0.65895934938422
2 0.00000000667685 -0.00000001873405 -0.65895934938422
frms,max,avg= 3.8045036E-01 6.5895935E-01 -1.230E-10 1.601E-09 -1.161E-09 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000034333733 0.00000096334330 33.88504930514244
2 0.00000034333733 -0.00000096334330 -33.88504930514244
frms,max,avg= 1.9563542E+01 3.3885049E+01 -6.325E-09 8.235E-08 -5.970E-08 e/A
length scales= 6.500000000000 6.500000000000 9.000000000000 bohr
= 3.439651855835 3.439651855835 4.762594877310 angstroms
prteigrs : about to open file t51o_EIG
Fermi (or HOMO) energy (hartree) = 0.02203 Average Vxc (hartree)= -0.20904
Magnetization (Bohr magneton)= 1.99508097E+00
Total spin up = 6.99754049E+00 Total spin down = 5.00245951E+00
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.23920 -0.67016 -0.37631 -0.37631 -0.36415 -0.02070 -0.02070 0.07659
occupation numbers for kpt# 1
1.00000 1.00000 1.00000 1.00000 1.00000 0.99874 0.99874 0.00006
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.19682 -0.60219 -0.32744 -0.30913 -0.30913 0.06486 0.06486 0.09225
occupation numbers for kpt# 1
1.00000 1.00000 1.00000 1.00000 1.00000 0.00123 0.00123 0.00000
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 1.97452378188053E+01
hartree : 1.73811041389687E+01
xc : -8.29015336837172E+00
Ewald energy : -9.67393586823616E+00
psp_core : 9.95674882595728E-02
local_psp : -5.60575606960913E+01
non_local_psp : 4.74409664877723E+00
internal : -3.20516438378883E+01
'-kT*entropy' : -2.35985221055062E-04
total_energy : -3.20518798231093E+01
total_energy_eV : -8.72176005301217E+02
band_energy : -5.81201523877118E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.50330561E-03 sigma(3 2)= 1.38522381E-10
sigma(2 2)= 4.50330776E-03 sigma(3 1)= -1.11158827E-11
sigma(3 3)= 1.62865743E-03 sigma(2 1)= -1.14543716E-10
-Cartesian components of stress tensor (GPa) [Pressure= -1.0430E+02 GPa]
- sigma(1 1)= 1.32491803E+02 sigma(3 2)= 4.07546848E-06
- sigma(2 2)= 1.32491866E+02 sigma(3 1)= -3.27040506E-07
- sigma(3 3)= 4.79167478E+01 sigma(2 1)= -3.36999191E-06
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 6.5000000000E+00 6.5000000000E+00 9.0000000000E+00 Bohr
amu 1.59994000E+01
diemac 1.00000000E+00
diemix 3.33333333E-01
ecut 1.30000000E+01 Hartree
etotal -3.2051879823E+01
fcart -6.6768486154E-09 1.8734046046E-08 6.5895934938E-01
6.6768486154E-09 -1.8734046046E-08 -6.5895934938E-01
- fftalg 512
iscf 6
isecur 4
istwfk 2
ixc 11
kptopt 0
P mkmem 1
natom 2
nband 8
ngfft 24 24 30
nkpt 1
nline 6
nnsclo 4
nspden 2
nsppol 2
nstep 15
nsym 1
ntypat 1
occ 1.000000 1.000000 1.000000 1.000000 1.000000 0.998742
0.998742 0.000057
1.000000 1.000000 1.000000 1.000000 1.000000 0.001230
0.001230 0.000000
occopt 7
optforces 1
spgroup 1
spinat 0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.0000000000E+00
strten 4.5033056111E-03 4.5033077606E-03 1.6286574286E-03
1.3852238145E-10 -1.1115882735E-11 -1.1454371606E-10
toldff 1.00000000E-08
tsmear 2.00000000E-02 Hartree
typat 1 1
xangst 0.0000000000E+00 0.0000000000E+00 5.5007970833E-01
0.0000000000E+00 0.0000000000E+00 -5.5007970833E-01
xcart 0.0000000000E+00 0.0000000000E+00 1.0395000000E+00
0.0000000000E+00 0.0000000000E+00 -1.0395000000E+00
xred 0.0000000000E+00 0.0000000000E+00 1.1550000000E-01
0.0000000000E+00 0.0000000000E+00 -1.1550000000E-01
znucl 8.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 1.5 wall= 1.5
================================================================================
Calculation completed.
.Delivered 4 WARNINGs and 4 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.5 wall= 1.5