abinit/tests/v2/Refs/t30.abo

5165 lines
256 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h08 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v2_t30-t31-t32/t30.abi
- output file -> t30.abo
- root for input files -> t30i
- root for output files -> t30o
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 8 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 15 nfft = 512 nkpt = 2
================================================================================
P This job should need less than 0.767 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.004 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 8 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 15 nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.755 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = -3 lmnmax = 2 lnmax = 2
mgfft = 8 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 15
nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.814 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 4 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 8 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 15
nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.818 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 5 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 8 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 16 nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.758 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.033 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 6 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 8 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 16
nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.854 Mbytes of memory.
P Max. in main chain + nonlop.f + opernl.f
P 198 blocks of mpw integer numbers, for 0.012 Mbytes.
P 832 blocks of mpw real(dp) numbers, for 0.102 Mbytes.
P 28 blocks of nfft real(dp) numbers, for 0.109 Mbytes.
P Additional integer numbers, for 0.002 Mbytes.
P Additional real(dp) numbers, for 0.392 Mbytes.
P With residue estimated to be 0.237 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 0.807 Mbytes.
P Main chain + nonlop.f + opernl.f 0.854 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.033 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 7 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 7.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 8 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 0 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 16 nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.758 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.033 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 8 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 8 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 8 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 16
nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.854 Mbytes of memory.
P Max. in main chain + nonlop.f + opernl.f
P 198 blocks of mpw integer numbers, for 0.012 Mbytes.
P 832 blocks of mpw real(dp) numbers, for 0.102 Mbytes.
P 28 blocks of nfft real(dp) numbers, for 0.109 Mbytes.
P Additional integer numbers, for 0.002 Mbytes.
P Additional real(dp) numbers, for 0.392 Mbytes.
P With residue estimated to be 0.237 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 0.807 Mbytes.
P Main chain + nonlop.f + opernl.f 0.854 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.033 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 9 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 9 (RF).
intxc = 0 iscf = -3 lmnmax = 2 lnmax = 2
mgfft = 8 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 15
nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.814 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
DATASET 10 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 10 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 8 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 0 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 15
nfft = 512 nkpt = 32
================================================================================
P This job should need less than 0.818 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.031 Mbytes ; DEN or POT disk file : 0.006 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0600000000E+01 1.0600000000E+01 1.0600000000E+01 Bohr
amu 6.97200000E+01 7.49216000E+01
asr 0
chneut 0
diemac 6.00000000E+00
ecut 1.00000000E+00 Hartree
- fftalg 512
getddk1 0
getddk2 0
getddk3 3
getddk4 3
getddk5 0
getddk6 0
getddk7 0
getddk8 0
getddk9 9
getddk10 9
getden1 0
getden2 1
getden3 0
getden4 0
getden5 1
getden6 0
getden7 1
getden8 0
getden9 0
getden10 0
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 2
getwfk9 2
getwfk10 2
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 0
getwfq5 0
getwfq6 5
getwfq7 0
getwfq8 7
getwfq9 0
getwfq10 0
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 0
get1wf6 0
get1wf7 0
get1wf8 0
get1wf9 0
get1wf10 4
iscf1 7
iscf2 -2
iscf3 -3
iscf4 7
iscf5 -2
iscf6 7
iscf7 -2
iscf8 7
iscf9 -3
iscf10 7
istwfk5 0 0 4 0 0 8 0 0 0 0
5 0 2 0 0 0 0 9 0 6
0 0 0 0 3 0 0 0 0 7
0 0
istwfk7 0 0 0 8 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0
ixc 3
jdtset 1 2 3 4 5 6 7 8 9 10
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt6 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt7 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt8 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt9 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt10 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt1 1
kptopt2 3
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 3
kptopt7 3
kptopt8 3
kptopt9 3
kptopt10 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12000000E+01
P mkmem1 2
P mkmem2 32
P mkmem3 32
P mkmem4 32
P mkmem5 32
P mkmem6 32
P mkmem7 32
P mkmem8 32
P mkmem9 32
P mkmem10 32
P mkqmem1 2
P mkqmem2 32
P mkqmem3 32
P mkqmem4 32
P mkqmem5 32
P mkqmem6 32
P mkqmem7 32
P mkqmem8 32
P mkqmem9 32
P mkqmem10 32
P mk1mem1 2
P mk1mem2 32
P mk1mem3 32
P mk1mem4 32
P mk1mem5 32
P mk1mem6 32
P mk1mem7 32
P mk1mem8 32
P mk1mem9 32
P mk1mem10 32
natom 2
nband1 4
nband2 4
nband3 4
nband4 4
nband5 4
nband6 4
nband7 4
nband8 4
nband9 4
nband10 4
ndtset 10
ngfft 8 8 8
nkpt1 2
nkpt2 32
nkpt3 32
nkpt4 32
nkpt5 32
nkpt6 32
nkpt7 32
nkpt8 32
nkpt9 32
nkpt10 32
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 1
nqpt5 1
nqpt6 1
nqpt7 1
nqpt8 1
nqpt9 1
nqpt10 1
nstep1 50
nstep2 50
nstep3 50
nstep4 50
nstep5 50
nstep6 30
nstep7 50
nstep8 15
nstep9 50
nstep10 50
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
occ6 2.000000 2.000000 2.000000 2.000000
occ8 2.000000 2.000000 2.000000 2.000000
occ9 2.000000 2.000000 2.000000 2.000000
occ10 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 0
optdriver6 1
optdriver7 0
optdriver8 1
optdriver9 1
optdriver10 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 0
prtpot6 1
prtpot7 0
prtpot8 1
prtpot9 1
prtpot10 1
prtvol1 0
prtvol2 0
prtvol3 0
prtvol4 0
prtvol5 0
prtvol6 10
prtvol7 0
prtvol8 10
prtvol9 0
prtvol10 0
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt5 2.50000000E-01 2.50000000E-01 2.50000000E-01
qpt6 2.50000000E-01 2.50000000E-01 2.50000000E-01
qpt7 2.50000000E-01 5.00000000E-01 5.00000000E-01
qpt8 2.50000000E-01 5.00000000E-01 5.00000000E-01
qpt9 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt10 0.00000000E+00 0.00000000E+00 0.00000000E+00
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 0 0
rfdir4 1 1 1
rfdir5 1 1 1
rfdir6 1 1 1
rfdir7 1 1 1
rfdir8 1 1 1
rfdir9 1 1 1
rfdir10 1 1 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 3
rfelfd5 0
rfelfd6 0
rfelfd7 0
rfelfd8 0
rfelfd9 2
rfelfd10 3
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 0
rfphon6 1
rfphon7 0
rfphon8 1
rfphon9 0
rfphon10 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 1 -1 1 0 -1 0 0 -1
0 -1 1 0 -1 0 1 -1 0 -1 0 0 -1 0 1 -1 1 0
0 1 0 0 0 1 1 0 0 1 0 -1 0 0 -1 0 1 -1
0 -1 0 1 -1 0 0 -1 1 -1 0 1 -1 1 0 -1 0 0
0 0 1 1 0 0 0 1 0 0 0 -1 0 1 -1 1 0 -1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 -1 0 0 -1 0 1
1 0 -1 0 1 -1 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 -1 0 0 -1 1 0 0 -1 0 0 -1 1 1 -1 0
-1 1 0 -1 0 1 -1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 0 0 1 0 1 0 1 0 0
0 -1 1 1 -1 0 0 -1 0 -1 0 0 -1 1 0 -1 0 1
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
tolwfr1 1.00000000E-22
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-22
tolwfr4 1.00000000E-16
tolwfr5 1.00000000E-22
tolwfr6 1.00000000E-16
tolwfr7 1.00000000E-22
tolwfr8 1.00000000E-16
tolwfr9 1.00000000E-22
tolwfr10 1.00000000E-16
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk3 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk4 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk5 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk6 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk7 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk8 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk9 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk10 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4023196028E+00 1.4023196028E+00 1.4023196028E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6500000000E+00 2.6500000000E+00 2.6500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 31.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 9.
chkinp: Checking input parameters for consistency, jdtset= 10.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 15, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/31ga.SGS_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/31ga.SGS_mod
- pspot from prpsa - Bachelet or Stumpf table ( !! OLD, only for tests )
- 31.00000 3.00000 900101 znucl, zion, pspdat
5 3 2 2 267 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
3.225807E-04 4.879035E-02 r1 and al (Hamman grid)
0 0.000 0.000 1 1.2712000 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 1 1.4316000 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 1.4889000 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
pspatm : epsatm= 19.73612150
--- l ekb(1:nproj) -->
0 9.397339
1 -0.525725
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/33as.SGS_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/33as.SGS_mod
- pspot from prpsa - Bachelet or Stumpf table ( !! OLD, for testing purposes only )
- 33.00000 5.00000 900101 znucl, zion, pspdat
5 3 2 2 269 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
3.030304E-04 4.879035E-02 r1 and al (Hamman grid)
0 0.000 0.000 1 1.0000000 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 1 1.0000000 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 0 1.0000000 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
pspatm : epsatm= 26.05495600
--- l ekb(1:nproj) -->
0 9.019459
1 -0.908274
pspatm: atomic psp has been read and splines computed
3.66328620E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 15.000 15.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -8.0021645254243 -8.002E+00 2.266E-05 2.146E+00
ETOT 2 -8.0201217448020 -1.796E-02 4.620E-09 7.025E-02
ETOT 3 -8.0206366109685 -5.149E-04 5.824E-06 7.291E-04
ETOT 4 -8.0206403459819 -3.735E-06 1.346E-08 1.075E-06
ETOT 5 -8.0206403502387 -4.257E-09 7.566E-11 2.932E-08
ETOT 6 -8.0206403503870 -1.483E-10 1.659E-12 4.489E-10
ETOT 7 -8.0206403503888 -1.782E-12 2.282E-14 1.853E-12
ETOT 8 -8.0206403503888 -2.309E-14 7.998E-18 6.073E-15
ETOT 9 -8.0206403503888 1.421E-14 4.812E-19 5.013E-17
ETOT 10 -8.0206403503888 1.243E-14 3.570E-21 4.012E-20
ETOT 11 -8.0206403503888 0.000E+00 4.237E-23 1.073E-21
At SCF step 11 max residual= 4.24E-23 < tolwfr= 1.00E-22 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.14843208E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.14843208E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.14843208E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 0.000E+00, res2: 1.073E-21, residm: 4.237E-23, diffor: null, }
etotal : -8.02064035E+00
entropy : 0.00000000E+00
fermie : 1.54172183E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.14843208E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.14843208E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.14843208E-03, ]
pressure_GPa: -3.3788E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.95612946
2 2.00000 1.55850647
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.585E-24; max= 42.370E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t30o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.01542 Average Vxc (hartree)= -0.33197
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.32023 -0.16274 -0.06400 -0.03685
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.65974436478006E+00
hartree : 3.57196304951922E-01
xc : -2.25852868691653E+00
Ewald energy : -8.48789573682593E+00
psp_core : 1.23030629308494E+00
local_psp : -1.63273884097572E+00
non_local_psp : 1.11275951512498E-01
total_energy : -8.02064035038876E+00
total_energy_eV : -2.18252723377434E+02
band_energy : -1.09104076157541E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.14843208E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.14843208E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.14843208E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -3.3788E+01 GPa]
- sigma(1 1)= 3.37880326E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 3.37880326E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 3.37880326E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 15, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t30o_DS1_WFK
================================================================================
prteigrs : about to open file t30o_DS2_EIG
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
4.07E-23 5.15E-23 4.11E-23 5.03E-23
-3.2023E-01 -1.6274E-01 -6.3996E-02 -3.6853E-02
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 8.260E-23, diffor: 0.000E+00, }
etotal : -8.02064035E+00
entropy : 0.00000000E+00
fermie : 1.54172183E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.95612946
2 2.00000 1.55850647
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 51.462E-24; max= 82.599E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t30o_DS2_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.32023 -0.16274 -0.06400 -0.03685
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 15, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: -3, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.008223145205 -1.001E+01 1.227E-03 0.000E+00
ETOT 2 -10.008769926737 -5.468E-04 7.191E-07 0.000E+00
ETOT 3 -10.008770074740 -1.480E-07 9.903E-11 0.000E+00
ETOT 4 -10.008770074767 -2.723E-11 3.263E-14 0.000E+00
ETOT 5 -10.008770074767 0.000E+00 1.341E-17 0.000E+00
ETOT 6 -10.008770074767 1.776E-15 1.022E-20 0.000E+00
ETOT 7 -10.008770074767 1.776E-15 9.929E-23 0.000E+00
At SCF step 7 max residual= 9.93E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.694E-24; max= 99.292E-24
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 9.8215015844E-01
prteigrs : about to open file t30t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.09829 -0.12076 0.27833 0.14589
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.64327196E+01 eigvalue= 8.17308248E-01 local= -1.05635998E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.65640730E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.32234199E+00 enl1= -3.45346720E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00087701E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1000877007E+02 Ha. Also 2DEtotal= -0.272352484471E+03 eV
( non-var. 2DEtotal : -1.0008770075E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 0.0000000000 0.0000000000
1 2 0.0000000000 0.0000000000
1 3 0.0000000000 0.0000000000
2 1 0.0000000000 0.0000000000
2 2 1.4804364615 0.0000000000
2 3 1.4804364615 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 1.4804364615 0.0000000000
3 3 1.4804364615 0.0000000000
WARNING : Localization tensor calculation (this does not apply to other properties).
Not all d/dk perturbations were computed. So the localization tensor in reciprocal space is incomplete,
and transformation to cartesian coordinates may be wrong. Check input variable rfdir.
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 15, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 3.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 17.056048986011 -1.844E+01 1.152E-02 1.448E+01
ETOT 2 16.793000150405 -2.630E-01 6.326E-05 4.349E-01
ETOT 3 16.786695101758 -6.305E-03 2.639E-06 5.025E-03
ETOT 4 16.786640843118 -5.426E-05 2.765E-08 1.464E-05
ETOT 5 16.786640703817 -1.393E-07 4.098E-11 9.920E-08
ETOT 6 16.786640702791 -1.026E-09 2.992E-13 4.817E-10
ETOT 7 16.786640702786 -5.031E-12 2.701E-15 1.317E-12
ETOT 8 16.786640702786 7.105E-15 8.196E-17 5.321E-15
At SCF step 8 max residual= 8.20E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t30o_DS3_1WF7
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.256E-18; max= 81.962E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.66631608E+01 eigvalue= 1.54675574E+00 local= -9.55853419E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -8.91444487E+00 Hartree= 1.41019724E+00 xc= -7.73684545E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.42488123E+00 enl1= -2.85111077E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.87127763E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.57618865E+00 fr.nonlo= 2.00681617E+01 Ewald= 1.18550666E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1678664070E+02 Ha. Also 2DEtotal= 0.456787723883E+03 eV
(2DErelax= -1.8712776257E+01 Ha. 2DEnonrelax= 3.5499416960E+01 Ha)
( non-var. 2DEtotal : 1.6786640692E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 19.986813967413 -3.558E+01 2.891E-02 1.592E+02
ETOT 2 16.836868481686 -3.150E+00 6.931E-04 2.848E+00
ETOT 3 16.786941340979 -4.993E-02 1.819E-05 2.451E-02
ETOT 4 16.786672336549 -2.690E-04 1.041E-07 1.236E-04
ETOT 5 16.786671057323 -1.279E-06 3.411E-10 7.123E-07
ETOT 6 16.786671050113 -7.209E-09 3.069E-12 2.540E-09
ETOT 7 16.786671050092 -2.110E-11 9.549E-15 8.186E-12
ETOT 8 16.786671050092 1.421E-14 9.855E-17 3.630E-14
At SCF step 8 max residual= 9.86E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t30o_DS3_1WF7
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.403E-18; max= 98.553E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.05077501E+01 eigvalue= 3.42813826E+00 local= -2.74073367E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -5.15882955E+01 Hartree= 1.07165134E+01 xc= -4.49339586E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 6.03322199E+00 enl1= -2.59814869E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.87848912E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 2.60560979E+01 fr.nonlo= 1.76603977E+01 Ewald= 1.18550666E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1678667105E+02 Ha. Also 2DEtotal= 0.456788549676E+03 eV
(2DErelax= -3.8784891183E+01 Ha. 2DEnonrelax= 5.5571562233E+01 Ha)
( non-var. 2DEtotal : 1.6786671043E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t30o_DS3_1WF7
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -114.75106186753 -1.148E+02 2.182E-02 2.101E+02
ETOT 2 -119.12632158632 -4.375E+00 1.579E-03 2.867E+00
ETOT 3 -119.18312155875 -5.680E-02 1.730E-05 1.607E-02
ETOT 4 -119.18327850558 -1.569E-04 7.551E-08 8.190E-05
ETOT 5 -119.18327933221 -8.266E-07 2.382E-10 8.823E-07
ETOT 6 -119.18327934140 -9.195E-09 3.392E-12 5.760E-09
ETOT 7 -119.18327934145 -4.857E-11 2.561E-14 2.494E-11
ETOT 8 -119.18327934145 -1.421E-14 1.226E-16 1.681E-13
ETOT 9 -119.18327934145 -8.527E-14 9.852E-17 5.079E-15
At SCF step 9 max residual= 9.85E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t30o_DS3_1WF7
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 48.642E-18; max= 98.518E-18
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.22272793E+02 eigvalue= 5.85769156E+00 local= -1.39769848E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -2.38366559E+02 Hartree= 1.65393339E+01 xc= -8.33502126E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.26183303E+01 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.19183279E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1191832793E+03 Ha. Also 2DEtotal= -0.324314196385E+04 eV
( non-var. 2DEtotal : -1.1918327931E+02 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 16.7866406926 0.0000000000
1 1 2 1 8.3933203463 0.0000000000
1 1 3 1 8.3933203463 0.0000000000
1 1 1 2 -16.7870063632 -0.0000000000
1 1 2 2 -8.3935031816 -0.0000000000
1 1 3 2 -8.3935031816 -0.0000000000
1 1 1 4 -12.1951060477 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 8.3933203463 0.0000000000
2 1 2 1 16.7866406926 0.0000000000
2 1 3 1 8.3933203463 0.0000000000
2 1 1 2 -8.3935031816 -0.0000000000
2 1 2 2 -16.7870063632 0.0000000000
2 1 3 2 -8.3935031816 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -12.1951060477 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 1 1 8.3933203463 0.0000000000
3 1 2 1 8.3933203463 0.0000000000
3 1 3 1 16.7866406926 0.0000000000
3 1 1 2 -8.3935031816 -0.0000000000
3 1 2 2 -8.3935031816 0.0000000000
3 1 3 2 -16.7870063632 -0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -12.1951060477 0.0000000000
1 2 1 1 -16.7870063119 0.0000000000
1 2 2 1 -8.3935031560 0.0000000000
1 2 3 1 -8.3935031560 0.0000000000
1 2 1 2 16.7866710442 0.0000000000
1 2 2 2 8.3933355221 0.0000000000
1 2 3 2 8.3933355221 0.0000000000
1 2 1 4 -37.1738833409 0.0000000000
1 2 2 4 -0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 -8.3935031560 0.0000000000
2 2 2 1 -16.7870063119 -0.0000000000
2 2 3 1 -8.3935031560 -0.0000000000
2 2 1 2 8.3933355221 0.0000000000
2 2 2 2 16.7866710442 0.0000000000
2 2 3 2 8.3933355221 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
2 2 2 4 -37.1738833409 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -8.3935031560 0.0000000000
3 2 2 1 -8.3935031560 -0.0000000000
3 2 3 1 -16.7870063119 0.0000000000
3 2 1 2 8.3933355221 0.0000000000
3 2 2 2 8.3933355221 0.0000000000
3 2 3 2 16.7866710442 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
3 2 3 4 -37.1738833409 0.0000000000
1 4 1 1 -12.1951059935 0.0000000000
1 4 2 1 -0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
1 4 1 2 -37.1738832489 0.0000000000
1 4 2 2 -0.0000000000 0.0000000000
1 4 3 2 0.0000000000 0.0000000000
1 4 1 4 -119.1832793118 0.0000000000
1 4 2 4 39.7277597706 0.0000000000
1 4 3 4 39.7277597706 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
2 4 2 1 -12.1951059935 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 2 2 -37.1738832489 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 39.7277597706 0.0000000000
2 4 2 4 -119.1832793118 0.0000000000
2 4 3 4 39.7277597706 0.0000000000
3 4 1 1 -0.0000000000 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
3 4 3 1 -12.1951059935 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -37.1738832489 0.0000000000
3 4 1 4 39.7277597706 0.0000000000
3 4 2 4 39.7277597706 0.0000000000
3 4 3 4 -119.1832793118 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.2988010091 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -0.2988075180 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.2988010091 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 -0.0000000000
2 1 2 2 -0.2988075180 -0.0000000000
2 1 3 2 -0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.2988010091 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.2988075180 -0.0000000000
1 2 1 1 -0.2988075171 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
1 2 1 2 0.2988015494 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 -0.2988075171 0.0000000000
2 2 3 1 0.0000000000 -0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 0.2988015494 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 0.0000000000 -0.0000000000
3 2 3 1 -0.2988075171 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 0.2988015494 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 5.7719768645 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 -0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 5.7719768645 -0.0000000000
2 4 3 4 -0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 5.7719768645 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 1.0590885910 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 -0.9164072876 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
2 1 2 4 1.0590885910 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -0.9164072876 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 1.0590885910 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 3 4 -0.0000000000 0.0000000000
3 2 3 4 -0.9164072876 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 1.0590885996 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
3 4 1 1 -0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 1.0590885996 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 -0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 1.0590885996 0.0000000000
1 4 1 2 -0.9164072730 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -0.9164072730 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -0.9164072730 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.878953E-06 -6.878953E-06 -6.878953E-06 2.130482E-03 2.130482E-03
2.130482E-03
Phonon frequencies in cm-1 :
- -1.509756E+00 -1.509756E+00 -1.509756E+00 4.675867E+02 4.675867E+02
- 4.675867E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.878953E-06 -6.878953E-06 2.245035E-05 2.130482E-03 2.130482E-03
2.155898E-03
Phonon frequencies in cm-1 :
- -1.509756E+00 -1.509756E+00 4.927282E+00 4.675867E+02 4.675867E+02
- 4.731648E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
-6.878953E-06 -6.878953E-06 2.245035E-05 2.130482E-03 2.130482E-03
2.155898E-03
Phonon frequencies in cm-1 :
- -1.509756E+00 -1.509756E+00 4.927282E+00 4.675867E+02 4.675867E+02
- 4.731648E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
-6.878953E-06 -6.878953E-06 2.245035E-05 2.130482E-03 2.130482E-03
2.155898E-03
Phonon frequencies in cm-1 :
- -1.509756E+00 -1.509756E+00 4.927282E+00 4.675867E+02 4.675867E+02
- 4.731648E+02
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 16, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t30o_DS2_WFK
================================================================================
prteigrs : about to open file t30o_DS5_EIG
Non-SCF case, kpt 1 ( -0.00000 0.75000 0.25000), residuals and eigenvalues=
1.58E-23 6.35E-23 4.17E-24 7.73E-23
-3.4073E-01 -1.1955E-01 -8.0245E-02 1.3170E-02
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 5, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 8.215E-23, diffor: 0.000E+00, }
etotal : -8.02064035E+00
entropy : 0.00000000E+00
fermie : 1.54172183E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.95612946
2 2.00000 1.55850647
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.510E-24; max= 82.150E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t30o_DS5_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.0000 0.7500 0.2500 (reduced coord)
-0.34073 -0.11955 -0.08024 0.01317
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 16, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 5.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.2500 0.2500 0.2500 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.22529
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.237983 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.250000 0.250000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 164.98279674538 1.157E+02 3.407E-02 5.616E+04
ETOT 2 20.724525143971 -1.443E+02 3.668E-02 3.398E+02
ETOT 3 18.893344532663 -1.831E+00 5.828E-04 2.091E+02
ETOT 4 18.464463385627 -4.289E-01 8.798E-05 1.604E-01
ETOT 5 18.464029298547 -4.341E-04 1.672E-07 5.021E-04
ETOT 6 18.464026378840 -2.920E-06 1.800E-09 3.035E-05
ETOT 7 18.464026294655 -8.419E-08 2.411E-11 6.891E-07
ETOT 8 18.464026292047 -2.608E-09 1.030E-12 2.025E-08
ETOT 9 18.464026291994 -5.254E-11 1.490E-14 6.078E-10
ETOT 10 18.464026291993 -1.364E-12 2.182E-16 2.782E-11
ETOT 11 18.464026291993 0.000E+00 9.876E-17 1.851E-12
At SCF step 11 max residual= 9.88E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.069E-18; max= 98.762E-18
-0.2500 0.5000 0.0000 1 5.42244E-17 kpt; spin; max resid(k); each band:
1.67E-17 5.42E-17 1.21E-17 1.53E-17
0.5000 -0.2500 0.0000 1 9.70674E-17 kpt; spin; max resid(k); each band:
1.74E-17 6.51E-17 9.71E-17 1.50E-17
-0.2500 -0.2500 0.2500 1 9.31369E-17 kpt; spin; max resid(k); each band:
1.02E-17 2.62E-17 9.31E-17 1.76E-17
-0.2500 0.0000 0.0000 1 5.32774E-17 kpt; spin; max resid(k); each band:
1.73E-17 9.19E-18 3.49E-17 5.33E-17
0.5000 0.2500 0.0000 1 5.59511E-17 kpt; spin; max resid(k); each band:
2.46E-17 3.19E-17 5.60E-17 2.53E-17
-0.2500 0.2500 0.2500 1 6.13283E-17 kpt; spin; max resid(k); each band:
6.13E-17 2.54E-17 4.76E-17 3.42E-18
0.2500 0.5000 0.0000 1 3.48648E-17 kpt; spin; max resid(k); each band:
2.39E-17 2.78E-17 3.49E-17 2.35E-17
0.5000 0.5000 0.2500 1 5.17598E-17 kpt; spin; max resid(k); each band:
2.32E-17 5.18E-17 1.63E-17 4.41E-17
-0.2500 0.5000 0.5000 1 7.24424E-17 kpt; spin; max resid(k); each band:
7.24E-17 5.62E-17 1.84E-17 7.15E-18
0.0000 -0.2500 0.0000 1 2.84798E-17 kpt; spin; max resid(k); each band:
2.32E-17 8.45E-18 2.85E-17 2.58E-17
0.2500 -0.2500 0.2500 1 7.55976E-17 kpt; spin; max resid(k); each band:
7.56E-17 2.20E-17 5.90E-17 6.66E-18
0.5000 -0.2500 0.5000 1 7.66531E-17 kpt; spin; max resid(k); each band:
5.01E-17 4.26E-17 1.90E-17 7.67E-17
-0.2500 -0.2500 -0.2500 1 5.56053E-17 kpt; spin; max resid(k); each band:
5.56E-17 1.86E-17 3.18E-17 2.84E-17
0.2500 0.0000 0.0000 1 2.48203E-17 kpt; spin; max resid(k); each band:
1.76E-17 2.12E-17 2.48E-17 1.45E-17
0.0000 0.2500 0.0000 1 2.67277E-17 kpt; spin; max resid(k); each band:
8.82E-18 2.67E-17 2.06E-17 2.16E-17
0.2500 0.2500 0.2500 1 4.76220E-17 kpt; spin; max resid(k); each band:
1.33E-17 1.29E-17 2.70E-17 4.76E-17
0.0000 0.5000 0.2500 1 7.20707E-17 kpt; spin; max resid(k); each band:
2.16E-17 3.57E-17 7.21E-17 2.36E-17
0.2500 0.5000 0.5000 1 4.04973E-17 kpt; spin; max resid(k); each band:
1.29E-17 3.68E-17 2.15E-17 4.05E-17
0.0000 -0.2500 0.5000 1 4.94961E-17 kpt; spin; max resid(k); each band:
2.24E-17 4.95E-17 1.19E-17 1.63E-17
0.2500 -0.2500 -0.2500 1 9.87617E-17 kpt; spin; max resid(k); each band:
1.02E-17 2.90E-17 9.88E-17 4.40E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.91681655E+01 eigvalue= 1.81685688E+00 local= -1.07096639E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.40093676E+01 Hartree= 1.25758783E+01 xc= -1.22991758E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.15038436E+00 enl1= -2.75340394E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.07717034E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.57618865E+00 fr.nonlo= 2.00681617E+01 Ewald= 2.55913794E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1846402629E+02 Ha. Also 2DEtotal= 0.502431707033E+03 eV
(2DErelax= -3.0771703442E+01 Ha. 2DEnonrelax= 4.9235729733E+01 Ha)
( non-var. 2DEtotal : 1.8464026215E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.250000 0.250000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 620.55299348099 5.268E+02 2.080E-01 2.246E+05
ETOT 2 27.845917438885 -5.927E+02 1.526E-01 1.726E+03
ETOT 3 18.768260255679 -9.078E+00 3.295E-03 5.860E+02
ETOT 4 17.568648777381 -1.200E+00 2.485E-04 1.002E+00
ETOT 5 17.566308615645 -2.340E-03 4.979E-07 1.421E-03
ETOT 6 17.566297537286 -1.108E-05 3.744E-09 1.015E-05
ETOT 7 17.566297447494 -8.979E-08 6.995E-11 4.317E-07
ETOT 8 17.566297445718 -1.776E-09 7.157E-13 1.367E-08
ETOT 9 17.566297445679 -3.899E-11 1.186E-14 4.687E-10
ETOT 10 17.566297445678 -1.592E-12 5.789E-16 1.802E-11
ETOT 11 17.566297445678 3.837E-13 9.654E-17 2.410E-12
At SCF step 11 max residual= 9.65E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.193E-18; max= 96.536E-18
-0.2500 0.5000 0.0000 1 8.88874E-17 kpt; spin; max resid(k); each band:
4.19E-17 3.06E-17 6.22E-17 8.89E-17
0.5000 -0.2500 0.0000 1 7.36143E-17 kpt; spin; max resid(k); each band:
4.60E-17 3.16E-17 5.37E-17 7.36E-17
-0.2500 -0.2500 0.2500 1 9.45083E-17 kpt; spin; max resid(k); each band:
4.11E-17 1.25E-17 9.45E-17 4.83E-17
-0.2500 0.0000 0.0000 1 8.07250E-17 kpt; spin; max resid(k); each band:
3.66E-17 2.98E-17 8.07E-17 3.85E-17
0.5000 0.2500 0.0000 1 2.60790E-17 kpt; spin; max resid(k); each band:
2.61E-17 1.83E-17 2.32E-17 9.17E-18
-0.2500 0.2500 0.2500 1 3.09834E-17 kpt; spin; max resid(k); each band:
3.10E-17 1.63E-17 6.03E-18 1.07E-18
0.2500 0.5000 0.0000 1 4.00456E-17 kpt; spin; max resid(k); each band:
4.00E-17 1.73E-17 1.61E-17 9.88E-18
0.5000 0.5000 0.2500 1 4.54051E-17 kpt; spin; max resid(k); each band:
2.62E-17 3.64E-17 4.54E-17 3.52E-17
-0.2500 0.5000 0.5000 1 8.57455E-17 kpt; spin; max resid(k); each band:
2.76E-17 6.39E-18 2.57E-17 8.57E-17
0.0000 -0.2500 0.0000 1 7.10724E-17 kpt; spin; max resid(k); each band:
4.20E-17 6.72E-17 7.11E-17 2.34E-17
0.2500 -0.2500 0.2500 1 7.40698E-17 kpt; spin; max resid(k); each band:
3.68E-17 1.42E-17 5.10E-18 7.41E-17
0.5000 -0.2500 0.5000 1 8.23677E-17 kpt; spin; max resid(k); each band:
3.00E-17 8.24E-17 3.16E-17 7.10E-17
-0.2500 -0.2500 -0.2500 1 8.46646E-17 kpt; spin; max resid(k); each band:
8.47E-17 2.45E-17 1.28E-17 2.15E-17
0.2500 0.0000 0.0000 1 5.52561E-17 kpt; spin; max resid(k); each band:
4.98E-17 2.28E-17 5.53E-17 3.39E-17
0.0000 0.2500 0.0000 1 5.83461E-17 kpt; spin; max resid(k); each band:
3.29E-17 3.14E-17 5.83E-17 4.69E-17
0.2500 0.2500 0.2500 1 3.12030E-17 kpt; spin; max resid(k); each band:
1.20E-17 3.12E-17 4.96E-18 1.23E-17
0.0000 0.5000 0.2500 1 3.83329E-17 kpt; spin; max resid(k); each band:
2.87E-17 2.51E-17 3.83E-17 1.03E-17
0.2500 0.5000 0.5000 1 4.03956E-17 kpt; spin; max resid(k); each band:
2.66E-17 3.69E-17 1.75E-17 4.04E-17
0.0000 -0.2500 0.5000 1 9.65356E-17 kpt; spin; max resid(k); each band:
5.36E-17 4.05E-17 6.94E-17 9.65E-17
0.2500 -0.2500 -0.2500 1 7.06123E-17 kpt; spin; max resid(k); each band:
3.03E-17 6.23E-18 7.06E-17 6.68E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.66654671E+01 eigvalue= 3.74429713E+00 local= -2.43577059E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.29973317E+02 Hartree= 5.04349204E+01 xc= -5.05023633E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.72494721E+00 enl1= -2.23500614E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.61616892E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 2.60560979E+01 fr.nonlo= 1.76603977E+01 Ewald= 5.00114910E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1756629745E+02 Ha. Also 2DEtotal= 0.478003262793E+03 eV
(2DErelax= -7.6161689159E+01 Ha. 2DEnonrelax= 9.3727986605E+01 Ha)
( non-var. 2DEtotal : 1.7566297274E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
Ewald part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 25.5913793910 0.0000000000
1 1 2 1 19.4189624988 -0.0000000000
1 1 3 1 19.4189624988 0.0000000000
1 1 1 2 -4.1635126823 -15.8201182648
1 1 2 2 -6.2452690235 -23.7301773973
1 1 3 2 -6.2452690235 -23.7301773973
2 1 1 1 19.4189624988 -0.0000000000
2 1 2 1 25.5913793910 0.0000000000
2 1 3 1 19.4189624988 0.0000000000
2 1 1 2 -6.2452690235 -23.7301773973
2 1 2 2 -4.1635126823 -15.8201182648
2 1 3 2 -6.2452690235 -23.7301773973
3 1 1 1 19.4189624988 0.0000000000
3 1 2 1 19.4189624988 0.0000000000
3 1 3 1 25.5913793910 -0.0000000000
3 1 1 2 -6.2452690235 -23.7301773973
3 1 2 2 -6.2452690235 -23.7301773973
3 1 3 2 -4.1635126823 -15.8201182648
1 2 1 1 -4.1635126823 15.8201182648
1 2 2 1 -6.2452690235 23.7301773973
1 2 3 1 -6.2452690235 23.7301773973
1 2 1 2 50.0114909888 0.0000000000
1 2 2 2 43.4037255036 -0.0000000000
1 2 3 2 43.4037255036 0.0000000000
2 2 1 1 -6.2452690235 23.7301773973
2 2 2 1 -4.1635126823 15.8201182648
2 2 3 1 -6.2452690235 23.7301773973
2 2 1 2 43.4037255036 -0.0000000000
2 2 2 2 50.0114909888 0.0000000000
2 2 3 2 43.4037255036 0.0000000000
3 2 1 1 -6.2452690235 23.7301773973
3 2 2 1 -6.2452690235 23.7301773973
3 2 3 1 -4.1635126823 15.8201182648
3 2 1 2 43.4037255036 0.0000000000
3 2 2 2 43.4037255036 0.0000000000
3 2 3 2 50.0114909888 -0.0000000000
Frozen wf local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 3.5761886459 0.0000000000
1 1 2 1 1.7880943230 0.0000000000
1 1 3 1 1.7880943230 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 1.7880943230 0.0000000000
2 1 2 1 3.5761886459 0.0000000000
2 1 3 1 1.7880943230 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 1.7880943230 0.0000000000
3 1 2 1 1.7880943230 0.0000000000
3 1 3 1 3.5761886459 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 26.0560979240 0.0000000000
1 2 2 2 13.0280489620 0.0000000000
1 2 3 2 13.0280489620 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 13.0280489620 0.0000000000
2 2 2 2 26.0560979240 0.0000000000
2 2 3 2 13.0280489620 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 13.0280489620 0.0000000000
3 2 2 2 13.0280489620 0.0000000000
3 2 3 2 26.0560979240 0.0000000000
Frozen wf non-local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 20.0681616965 0.0000000000
1 1 2 1 10.0340808483 0.0000000000
1 1 3 1 10.0340808483 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 10.0340808483 0.0000000000
2 1 2 1 20.0681616965 0.0000000000
2 1 3 1 10.0340808483 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 10.0340808483 0.0000000000
3 1 2 1 10.0340808483 0.0000000000
3 1 3 1 20.0681616965 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 17.6603976920 0.0000000000
1 2 2 2 8.8301988460 0.0000000000
1 2 3 2 8.8301988460 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 8.8301988460 0.0000000000
2 2 2 2 17.6603976920 0.0000000000
2 2 3 2 8.8301988460 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 8.8301988460 0.0000000000
3 2 2 2 8.8301988460 0.0000000000
3 2 3 2 17.6603976920 0.0000000000
Frozen wf xc core (1) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0000000000 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0000000000 0.0000000000
Frozen wf xc core (2) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0000000000 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0000000000 0.0000000000
Non-stationary local part of the 2-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -17.0046838025 0.1332258961
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -1.1283446760 22.1199324566
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -14.4995155647 0.2281815241
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.9876260819 24.7928218587
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -14.4995155647 0.2281815241
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 0.9876260819 24.7928218587
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 -1.4312288887 -21.6655108919
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 -64.9866586172 0.0573832359
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 0.4206440886 -23.4931785947
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -51.4071046110 -0.0987883334
2 2 2 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.4206440886 -23.4931785947
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 -51.4071046110 -0.0987883334
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0000000000 0.0000000000
Non-stationary non-local part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -13.7670197162 -0.1332260987
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -2.6487042787 2.4866302486
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -7.0752876051 -0.2281817277
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -2.6017767009 -0.1935460398
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -7.0752876051 -0.2281817277
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 -2.6017767009 -0.1935460398
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 -2.3458200026 -2.9410519395
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 -11.1750307139 -0.0573827880
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -2.0347946472 -1.1060973552
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -5.2453413805 0.0987887859
2 2 2 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 -2.0347946472 -1.1060973552
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 -5.2453413805 0.0987887859
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0000000000 0.0000000000
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 18.4640262148 0.0000000000
1 1 2 1 9.6663345002 -0.0000000000
1 1 3 1 9.6663345002 0.0000000000
1 1 1 2 -7.9405616371 8.7864444403
1 1 2 2 -7.8594196123 0.8690984871
1 1 3 2 -7.8594196123 0.8690984871
2 1 1 1 9.6663345002 -0.0000000000
2 1 2 1 18.4640262148 0.0000000000
2 1 3 1 9.6663345002 0.0000000000
2 1 1 2 -7.8594196123 0.8690984871
2 1 2 2 -7.9405616371 8.7864444403
2 1 3 2 -7.8594196123 0.8690984871
3 1 1 1 9.6663345002 0.0000000000
3 1 2 1 9.6663345002 0.0000000000
3 1 3 1 18.4640262148 -0.0000000000
3 1 1 2 -7.8594196123 0.8690984871
3 1 2 2 -7.8594196123 0.8690984871
3 1 3 2 -7.9405616371 8.7864444403
1 2 1 1 -7.9405615737 -8.7864445665
1 2 2 1 -7.8594196123 -0.8690984871
1 2 3 1 -7.8594196123 -0.8690984871
1 2 1 2 17.5662972737 0.0000000000
1 2 2 2 8.6095273202 -0.0000000000
1 2 3 2 8.6095273202 0.0000000000
2 2 1 1 -7.8594196123 -0.8690984871
2 2 2 1 -7.9405615737 -8.7864445665
2 2 3 1 -7.8594196123 -0.8690984871
2 2 1 2 8.6095273202 -0.0000000000
2 2 2 2 17.5662972737 0.0000000000
2 2 3 2 8.6095273202 0.0000000000
3 2 1 1 -7.8594196123 -0.8690984871
3 2 2 1 -7.8594196123 -0.8690984871
3 2 3 1 -7.9405615737 -8.7864445665
3 2 1 2 8.6095273202 0.0000000000
3 2 2 2 8.6095273202 0.0000000000
3 2 3 2 17.5662972737 -0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.3209274621 0.0000000000
1 1 2 1 0.0077308899 -0.0000000000
1 1 3 1 0.0077308899 0.0000000000
1 1 1 2 -0.0721150382 0.2191272370
1 1 2 2 -0.0692263936 -0.0627291515
1 1 3 2 -0.0692263936 -0.0627291515
2 1 1 1 0.0077308899 -0.0000000000
2 1 2 1 0.3209274621 0.0000000000
2 1 3 1 0.0077308899 0.0000000000
2 1 1 2 -0.0692263936 -0.0627291515
2 1 2 2 -0.0721150382 0.2191272370
2 1 3 2 -0.0692263936 -0.0627291515
3 1 1 1 0.0077308899 0.0000000000
3 1 2 1 0.0077308899 0.0000000000
3 1 3 1 0.3209274621 -0.0000000000
3 1 1 2 -0.0692263936 -0.0627291515
3 1 2 2 -0.0692263936 -0.0627291515
3 1 3 2 -0.0721150382 0.2191272370
1 2 1 1 -0.0721150365 -0.2191272403
1 2 2 1 -0.0692263942 0.0627291527
1 2 3 1 -0.0692263942 0.0627291527
1 2 1 2 0.3157692878 0.0000000000
1 2 2 2 -0.0030904471 -0.0000000000
1 2 3 2 -0.0030904471 0.0000000000
2 2 1 1 -0.0692263942 0.0627291527
2 2 2 1 -0.0721150365 -0.2191272403
2 2 3 1 -0.0692263942 0.0627291527
2 2 1 2 -0.0030904471 -0.0000000000
2 2 2 2 0.3157692878 0.0000000000
2 2 3 2 -0.0030904471 0.0000000000
3 2 1 1 -0.0692263942 0.0627291527
3 2 2 1 -0.0692263942 0.0627291527
3 2 3 1 -0.0721150365 -0.2191272403
3 2 1 2 -0.0030904471 0.0000000000
3 2 2 2 -0.0030904471 0.0000000000
3 2 3 2 0.3157692878 -0.0000000000
Phonon wavevector (reduced coordinates) : 0.25000 0.25000 0.25000
Phonon energies in Hartree :
5.089779E-04 5.089779E-04 8.350233E-04 2.053383E-03 2.130724E-03
2.130724E-03
Phonon frequencies in cm-1 :
- 1.117077E+02 1.117077E+02 1.832664E+02 4.506654E+02 4.676398E+02
- 4.676398E+02
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 16, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t30o_DS2_WFK
================================================================================
prteigrs : about to open file t30o_DS7_EIG
Non-SCF case, kpt 1 ( -0.00000 1.00000 0.50000), residuals and eigenvalues=
1.75E-23 8.96E-24 1.59E-23 3.82E-23
-3.3227E-01 -1.8663E-01 1.0892E-02 1.0892E-02
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 7, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3000000, 5.3000000, ]
- [ 5.3000000, 0.0000000, 5.3000000, ]
- [ 5.3000000, 5.3000000, 0.0000000, ]
lattice_lengths: [ 7.49533, 7.49533, 7.49533, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9775400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 7.731E-23, diffor: 0.000E+00, }
etotal : -8.02064035E+00
entropy : 0.00000000E+00
fermie : 1.54172183E-02
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Ga]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.95612946
2 2.00000 1.55850647
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.565E-24; max= 77.310E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40231960276350 1.40231960276350 1.40231960276350
length scales= 10.600000000000 10.600000000000 10.600000000000 bohr
= 5.609278411054 5.609278411054 5.609278411054 angstroms
prteigrs : about to open file t30o_DS7_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.0000 1.0000 0.5000 (reduced coord)
-0.33227 -0.18663 0.01089 0.01089
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 16, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 7.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.2500 0.5000 0.5000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.08256
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 1 ipert= 2
4) idir= 2 ipert= 2
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.500000 0.500000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 38.937946348960 -4.250E+00 2.363E-02 2.050E+03
ETOT 2 17.959187772439 -2.098E+01 6.562E-03 4.600E+01
ETOT 3 17.581045705022 -3.781E-01 9.713E-05 2.134E+00
ETOT 4 17.565861231092 -1.518E-02 5.654E-06 1.443E-02
ETOT 5 17.565771957442 -8.927E-05 3.952E-08 5.369E-05
ETOT 6 17.565771452309 -5.051E-07 3.457E-10 9.341E-07
ETOT 7 17.565771444949 -7.360E-09 2.914E-12 3.012E-08
ETOT 8 17.565771444708 -2.410E-10 9.501E-14 3.849E-10
ETOT 9 17.565771444705 -2.711E-12 1.037E-15 6.846E-12
ETOT 10 17.565771444705 -1.172E-13 9.797E-17 6.585E-14
At SCF step 10 max residual= 9.80E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.907E-18; max= 97.971E-18
-0.2500 0.5000 0.0000 1 5.73657E-17 kpt; spin; max resid(k); each band:
5.74E-17 4.27E-18 4.46E-17 3.25E-17
0.5000 -0.2500 0.0000 1 4.60957E-17 kpt; spin; max resid(k); each band:
4.61E-17 3.59E-17 2.06E-17 9.31E-18
-0.2500 -0.2500 0.2500 1 8.86071E-17 kpt; spin; max resid(k); each band:
8.86E-17 8.39E-18 4.84E-17 7.18E-17
-0.2500 0.0000 0.0000 1 7.23156E-17 kpt; spin; max resid(k); each band:
5.42E-17 5.73E-17 7.23E-17 5.19E-17
0.5000 0.2500 0.0000 1 7.07542E-17 kpt; spin; max resid(k); each band:
2.65E-17 7.08E-17 1.77E-17 2.11E-17
-0.2500 0.2500 0.2500 1 7.85481E-17 kpt; spin; max resid(k); each band:
7.85E-17 1.41E-17 7.05E-17 6.00E-17
0.2500 0.5000 0.0000 1 6.28509E-17 kpt; spin; max resid(k); each band:
6.29E-17 9.06E-18 1.26E-17 5.40E-17
0.5000 0.5000 0.2500 1 6.76775E-17 kpt; spin; max resid(k); each band:
4.30E-17 3.95E-17 3.08E-17 6.77E-17
-0.2500 0.5000 0.5000 1 5.24797E-17 kpt; spin; max resid(k); each band:
2.54E-17 5.25E-17 2.15E-17 1.29E-17
0.0000 -0.2500 0.0000 1 9.72742E-17 kpt; spin; max resid(k); each band:
3.32E-17 1.66E-17 4.34E-17 9.73E-17
0.2500 -0.2500 0.2500 1 3.63125E-17 kpt; spin; max resid(k); each band:
3.63E-17 1.80E-17 3.06E-17 9.48E-18
0.5000 -0.2500 0.5000 1 9.79709E-17 kpt; spin; max resid(k); each band:
5.71E-17 4.35E-17 2.07E-17 9.80E-17
-0.2500 -0.2500 -0.2500 1 5.01992E-17 kpt; spin; max resid(k); each band:
9.72E-18 2.83E-17 4.66E-17 5.02E-17
0.2500 0.0000 0.0000 1 7.14846E-17 kpt; spin; max resid(k); each band:
4.86E-17 7.15E-17 3.88E-17 3.18E-17
0.0000 0.2500 0.0000 1 9.71879E-17 kpt; spin; max resid(k); each band:
6.32E-17 2.17E-17 3.42E-17 9.72E-17
0.2500 0.2500 0.2500 1 7.27053E-17 kpt; spin; max resid(k); each band:
7.27E-17 1.80E-17 3.12E-17 6.84E-17
0.0000 0.5000 0.2500 1 6.25971E-17 kpt; spin; max resid(k); each band:
6.26E-17 1.42E-17 3.35E-17 9.74E-18
0.2500 0.5000 0.5000 1 9.02086E-17 kpt; spin; max resid(k); each band:
8.48E-17 9.02E-17 9.83E-18 5.75E-17
0.0000 -0.2500 0.5000 1 5.47429E-17 kpt; spin; max resid(k); each band:
5.47E-17 1.08E-17 4.09E-17 3.04E-17
0.2500 -0.2500 -0.2500 1 6.68553E-17 kpt; spin; max resid(k); each band:
2.72E-17 6.69E-17 1.76E-17 1.12E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.95714774E+01 eigvalue= 1.72659707E+00 local= -1.02071126E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.54710729E+01 Hartree= 7.78163497E+00 xc= -1.51247574E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.26160092E+00 enl1= -2.57723713E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.56217221E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.57618865E+00 fr.nonlo= 2.00681617E+01 Ewald= 1.95431432E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1756577144E+02 Ha. Also 2DEtotal= 0.477988949579E+03 eV
(2DErelax= -2.5621722119E+01 Ha. 2DEnonrelax= 4.3187493564E+01 Ha)
( non-var. 2DEtotal : 1.7565771467E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.500000 0.500000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 52.289315973952 5.438E+00 3.217E-02 3.881E+03
ETOT 2 18.951077649466 -3.334E+01 1.245E-02 4.676E+01
ETOT 3 18.497433352535 -4.536E-01 1.233E-04 5.829E+00
ETOT 4 18.459378843775 -3.805E-02 1.125E-05 1.461E-02
ETOT 5 18.459285560957 -9.328E-05 4.616E-08 7.007E-05
ETOT 6 18.459285034890 -5.261E-07 4.311E-10 9.403E-07
ETOT 7 18.459285026763 -8.128E-09 5.905E-12 2.516E-08
ETOT 8 18.459285026551 -2.111E-10 1.256E-13 2.976E-10
ETOT 9 18.459285026549 -2.458E-12 1.388E-15 5.813E-12
ETOT 10 18.459285026549 -1.066E-14 9.813E-17 1.061E-13
At SCF step 10 max residual= 9.81E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.753E-18; max= 98.130E-18
-0.2500 0.5000 0.0000 1 6.82791E-17 kpt; spin; max resid(k); each band:
5.28E-17 7.25E-18 6.83E-17 4.59E-17
0.5000 -0.2500 0.0000 1 7.86477E-17 kpt; spin; max resid(k); each band:
7.86E-17 7.68E-17 1.17E-17 9.02E-18
-0.2500 -0.2500 0.2500 1 3.73946E-17 kpt; spin; max resid(k); each band:
5.41E-18 7.52E-18 3.74E-17 1.44E-17
-0.2500 0.0000 0.0000 1 5.86124E-17 kpt; spin; max resid(k); each band:
5.12E-17 4.63E-17 5.86E-17 4.02E-17
0.5000 0.2500 0.0000 1 5.64878E-17 kpt; spin; max resid(k); each band:
3.51E-17 1.62E-17 9.68E-18 5.65E-17
-0.2500 0.2500 0.2500 1 3.96398E-17 kpt; spin; max resid(k); each band:
6.36E-18 8.22E-18 4.53E-18 3.96E-17
0.2500 0.5000 0.0000 1 9.12169E-17 kpt; spin; max resid(k); each band:
9.12E-17 8.39E-18 6.51E-17 5.99E-17
0.5000 0.5000 0.2500 1 7.80642E-17 kpt; spin; max resid(k); each band:
3.62E-17 6.33E-17 2.30E-17 7.81E-17
-0.2500 0.5000 0.5000 1 6.18589E-17 kpt; spin; max resid(k); each band:
2.11E-17 2.27E-17 1.93E-17 6.19E-17
0.0000 -0.2500 0.0000 1 5.49104E-17 kpt; spin; max resid(k); each band:
5.49E-17 1.50E-17 3.40E-17 4.03E-17
0.2500 -0.2500 0.2500 1 6.42852E-17 kpt; spin; max resid(k); each band:
5.44E-17 1.06E-17 6.29E-17 6.43E-17
0.5000 -0.2500 0.5000 1 9.81301E-17 kpt; spin; max resid(k); each band:
4.93E-17 2.13E-17 1.50E-17 9.81E-17
-0.2500 -0.2500 -0.2500 1 8.66363E-17 kpt; spin; max resid(k); each band:
8.66E-17 6.86E-17 4.29E-17 3.21E-17
0.2500 0.0000 0.0000 1 7.60792E-17 kpt; spin; max resid(k); each band:
6.00E-17 7.61E-17 2.38E-17 2.91E-17
0.5000 0.0000 0.2500 1 6.41896E-17 kpt; spin; max resid(k); each band:
3.74E-17 1.21E-17 7.25E-18 6.42E-17
-0.2500 0.0000 0.5000 1 5.49713E-17 kpt; spin; max resid(k); each band:
6.17E-18 6.30E-18 3.79E-17 5.50E-17
0.0000 0.2500 0.0000 1 9.43986E-17 kpt; spin; max resid(k); each band:
6.67E-18 2.28E-17 9.44E-17 5.66E-17
0.2500 0.2500 0.2500 1 8.60484E-17 kpt; spin; max resid(k); each band:
6.51E-17 8.60E-17 4.11E-17 7.95E-17
0.5000 0.2500 0.5000 1 9.08045E-17 kpt; spin; max resid(k); each band:
4.11E-17 9.08E-17 2.46E-17 5.98E-17
-0.2500 0.2500 -0.2500 1 6.15588E-17 kpt; spin; max resid(k); each band:
5.03E-18 4.55E-18 6.16E-17 1.52E-17
0.0000 0.5000 0.2500 1 8.16895E-17 kpt; spin; max resid(k); each band:
5.06E-18 1.25E-17 7.28E-17 8.17E-17
0.2500 0.5000 0.5000 1 9.09962E-17 kpt; spin; max resid(k); each band:
9.10E-17 6.94E-17 5.20E-18 4.97E-17
0.5000 0.5000 -0.2500 1 6.47409E-17 kpt; spin; max resid(k); each band:
6.47E-17 2.59E-17 1.51E-17 1.56E-17
0.0000 -0.2500 0.5000 1 9.54601E-17 kpt; spin; max resid(k); each band:
4.61E-17 1.04E-17 3.29E-17 9.55E-17
0.2500 -0.2500 -0.2500 1 6.34214E-17 kpt; spin; max resid(k); each band:
4.83E-17 5.34E-17 1.63E-17 6.34E-17
0.0000 0.0000 0.2500 1 5.10565E-17 kpt; spin; max resid(k); each band:
6.51E-18 2.04E-17 7.05E-18 5.11E-17
0.2500 0.0000 0.5000 1 7.58699E-17 kpt; spin; max resid(k); each band:
7.59E-17 8.16E-18 5.29E-18 5.09E-17
0.5000 0.0000 -0.2500 1 9.34291E-17 kpt; spin; max resid(k); each band:
9.34E-17 7.84E-17 7.67E-17 9.16E-17
0.0000 0.2500 0.5000 1 9.71155E-17 kpt; spin; max resid(k); each band:
9.71E-17 7.32E-18 5.10E-17 7.62E-17
0.2500 0.2500 -0.2500 1 7.14782E-17 kpt; spin; max resid(k); each band:
5.49E-17 1.24E-17 7.15E-17 4.27E-17
0.0000 0.5000 -0.2500 1 9.16173E-17 kpt; spin; max resid(k); each band:
6.23E-17 9.17E-18 3.03E-17 9.16E-17
0.0000 0.0000 -0.2500 1 5.48704E-17 kpt; spin; max resid(k); each band:
5.33E-17 2.14E-17 5.49E-17 3.80E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.00993521E+01 eigvalue= 1.85165153E+00 local= -1.06598381E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.03995320E+01 Hartree= 9.96116668E+00 xc= -1.56078409E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.70082323E+00 enl1= -2.63852108E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.83923714E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.57618865E+00 fr.nonlo= 2.00681617E+01 Ewald= 2.32073061E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1845928503E+02 Ha. Also 2DEtotal= 0.502302690639E+03 eV
(2DErelax= -2.8392371397E+01 Ha. 2DEnonrelax= 4.6851656424E+01 Ha)
( non-var. 2DEtotal : 1.8459285036E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.500000 0.500000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 115.49635150228 3.857E+01 8.405E-02 9.101E+03
ETOT 2 17.907893672487 -9.759E+01 2.924E-02 1.265E+02
ETOT 3 16.654739370528 -1.253E+00 4.004E-04 2.075E+00
ETOT 4 16.637374513747 -1.736E-02 7.859E-06 4.445E-02
ETOT 5 16.637054231111 -3.203E-04 1.796E-07 1.494E-04
ETOT 6 16.637052951893 -1.279E-06 1.119E-09 1.787E-06
ETOT 7 16.637052938637 -1.326E-08 6.072E-12 7.590E-08
ETOT 8 16.637052938068 -5.686E-10 2.526E-13 1.717E-09
ETOT 9 16.637052938056 -1.237E-11 4.740E-15 8.256E-12
ETOT 10 16.637052938055 -3.340E-13 9.859E-17 2.156E-13
At SCF step 10 max residual= 9.86E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.160E-18; max= 98.588E-18
-0.2500 0.5000 0.0000 1 7.87255E-17 kpt; spin; max resid(k); each band:
7.87E-17 9.38E-18 2.69E-17 3.08E-17
0.5000 -0.2500 0.0000 1 8.33114E-17 kpt; spin; max resid(k); each band:
8.33E-17 1.92E-17 2.61E-17 2.41E-17
-0.2500 -0.2500 0.2500 1 9.85880E-17 kpt; spin; max resid(k); each band:
9.86E-17 2.37E-17 2.97E-17 9.03E-17
-0.2500 0.0000 0.0000 1 9.45739E-17 kpt; spin; max resid(k); each band:
9.46E-17 3.41E-18 8.13E-17 4.27E-17
0.5000 0.2500 0.0000 1 5.32159E-17 kpt; spin; max resid(k); each band:
7.57E-18 1.27E-17 5.32E-17 1.89E-17
-0.2500 0.2500 0.2500 1 8.09042E-17 kpt; spin; max resid(k); each band:
8.09E-17 2.88E-17 3.10E-17 1.46E-18
0.2500 0.5000 0.0000 1 6.04563E-17 kpt; spin; max resid(k); each band:
6.05E-17 1.55E-17 2.40E-17 3.79E-17
0.5000 0.5000 0.2500 1 6.95285E-17 kpt; spin; max resid(k); each band:
1.26E-17 1.26E-17 4.30E-17 6.95E-17
-0.2500 0.5000 0.5000 1 4.63418E-17 kpt; spin; max resid(k); each band:
1.04E-17 1.67E-17 4.63E-17 9.65E-19
0.0000 -0.2500 0.0000 1 2.84834E-17 kpt; spin; max resid(k); each band:
6.39E-18 1.49E-17 1.10E-17 2.85E-17
0.2500 -0.2500 0.2500 1 5.72280E-17 kpt; spin; max resid(k); each band:
8.71E-18 2.00E-17 2.32E-17 5.72E-17
0.5000 -0.2500 0.5000 1 9.70264E-17 kpt; spin; max resid(k); each band:
1.29E-17 1.08E-17 9.12E-17 9.70E-17
-0.2500 -0.2500 -0.2500 1 9.31143E-17 kpt; spin; max resid(k); each band:
5.20E-18 2.68E-17 9.31E-17 2.90E-17
0.2500 0.0000 0.0000 1 3.20440E-17 kpt; spin; max resid(k); each band:
2.86E-18 3.20E-17 1.51E-17 1.93E-17
0.0000 0.2500 0.0000 1 2.19526E-17 kpt; spin; max resid(k); each band:
7.56E-18 2.05E-17 2.20E-17 2.16E-17
0.2500 0.2500 0.2500 1 8.06881E-17 kpt; spin; max resid(k); each band:
8.07E-17 2.82E-17 2.95E-17 3.71E-17
0.0000 0.5000 0.2500 1 4.58010E-17 kpt; spin; max resid(k); each band:
3.50E-18 1.67E-17 2.92E-17 4.58E-17
0.2500 0.5000 0.5000 1 1.74974E-17 kpt; spin; max resid(k); each band:
7.17E-18 1.01E-17 1.01E-17 1.75E-17
0.0000 -0.2500 0.5000 1 4.24440E-17 kpt; spin; max resid(k); each band:
1.13E-17 1.41E-17 4.24E-17 2.37E-17
0.2500 -0.2500 -0.2500 1 2.37676E-17 kpt; spin; max resid(k); each band:
1.29E-17 2.38E-17 2.19E-17 3.06E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.95547286E+01 eigvalue= 4.22151480E+00 local= -2.55452308E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -9.84952278E+01 Hartree= 3.30799653E+01 xc= -5.96226023E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.94155981E+00 enl1= -2.20853273E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -6.02902776E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 2.60560979E+01 fr.nonlo= 1.76603977E+01 Ewald= 3.32108350E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1663705294E+02 Ha. Also 2DEtotal= 0.452717233797E+03 eV
(2DErelax= -6.0290277640E+01 Ha. 2DEnonrelax= 7.6927330578E+01 Ha)
( non-var. 2DEtotal : 1.6637053006E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.500000 0.500000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 7, nstep: 15, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 204.87194472829 1.178E+02 1.595E-01 2.007E+04
ETOT 2 18.555530241591 -1.863E+02 6.394E-02 1.872E+02
ETOT 3 16.341136161689 -2.214E+00 7.232E-04 5.700E+00
ETOT 4 16.304731808170 -3.640E-02 1.885E-05 5.728E-02
ETOT 5 16.304358937029 -3.729E-04 1.441E-07 1.695E-04
ETOT 6 16.304357346560 -1.590E-06 8.089E-10 2.903E-06
ETOT 7 16.304357324786 -2.177E-08 1.429E-11 6.447E-08
ETOT 8 16.304357324216 -5.700E-10 2.290E-13 1.458E-09
ETOT 9 16.304357324203 -1.347E-11 4.729E-15 1.417E-11
ETOT 10 16.304357324202 -2.984E-13 9.945E-17 1.927E-13
At SCF step 10 max residual= 9.94E-17 < tolwfr= 1.00E-16 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.193E-18; max= 99.449E-18
-0.2500 0.5000 0.0000 1 8.84945E-17 kpt; spin; max resid(k); each band:
8.85E-17 2.32E-17 4.45E-17 7.75E-17
0.5000 -0.2500 0.0000 1 7.87427E-17 kpt; spin; max resid(k); each band:
8.99E-18 6.42E-17 7.87E-17 2.57E-17
-0.2500 -0.2500 0.2500 1 3.69478E-17 kpt; spin; max resid(k); each band:
1.94E-17 3.05E-17 3.69E-17 3.36E-17
-0.2500 0.0000 0.0000 1 9.94487E-17 kpt; spin; max resid(k); each band:
1.21E-17 6.73E-17 9.94E-17 1.32E-17
0.5000 0.2500 0.0000 1 4.08231E-17 kpt; spin; max resid(k); each band:
1.60E-17 2.53E-17 4.08E-17 4.05E-17
-0.2500 0.2500 0.2500 1 6.78355E-17 kpt; spin; max resid(k); each band:
2.67E-17 1.77E-17 6.78E-17 4.58E-17
0.2500 0.5000 0.0000 1 3.03658E-17 kpt; spin; max resid(k); each band:
8.70E-18 9.17E-18 1.34E-17 3.04E-17
0.5000 0.5000 0.2500 1 6.04679E-17 kpt; spin; max resid(k); each band:
1.35E-17 2.42E-17 6.05E-17 2.42E-17
-0.2500 0.5000 0.5000 1 6.78130E-17 kpt; spin; max resid(k); each band:
4.64E-17 4.70E-17 6.78E-17 3.73E-18
0.0000 -0.2500 0.0000 1 8.47043E-17 kpt; spin; max resid(k); each band:
1.31E-17 8.47E-17 2.83E-17 5.57E-17
0.2500 -0.2500 0.2500 1 5.64714E-17 kpt; spin; max resid(k); each band:
8.66E-18 2.96E-17 5.65E-17 1.67E-17
0.5000 -0.2500 0.5000 1 6.90167E-17 kpt; spin; max resid(k); each band:
1.46E-17 6.90E-17 3.98E-17 4.78E-17
-0.2500 -0.2500 -0.2500 1 5.51033E-17 kpt; spin; max resid(k); each band:
2.06E-17 5.51E-17 4.67E-18 2.17E-17
0.2500 0.0000 0.0000 1 4.25136E-17 kpt; spin; max resid(k); each band:
1.38E-17 4.25E-17 2.69E-17 2.84E-17
0.5000 0.0000 0.2500 1 6.17751E-17 kpt; spin; max resid(k); each band:
6.17E-17 2.07E-17 6.18E-17 4.01E-17
-0.2500 0.0000 0.5000 1 3.96489E-17 kpt; spin; max resid(k); each band:
1.12E-17 3.96E-17 3.32E-17 1.63E-17
0.0000 0.2500 0.0000 1 7.63339E-17 kpt; spin; max resid(k); each band:
1.12E-17 3.02E-17 7.63E-17 2.42E-17
0.2500 0.2500 0.2500 1 7.33085E-17 kpt; spin; max resid(k); each band:
2.14E-17 7.33E-17 2.64E-17 4.86E-17
0.5000 0.2500 0.5000 1 8.79958E-17 kpt; spin; max resid(k); each band:
8.80E-17 2.25E-17 1.66E-17 3.23E-17
-0.2500 0.2500 -0.2500 1 4.24685E-17 kpt; spin; max resid(k); each band:
1.20E-17 1.75E-17 3.67E-17 4.25E-17
0.0000 0.5000 0.2500 1 3.35648E-17 kpt; spin; max resid(k); each band:
2.54E-17 2.17E-17 3.36E-17 9.54E-18
0.2500 0.5000 0.5000 1 3.55507E-17 kpt; spin; max resid(k); each band:
1.16E-17 2.33E-17 2.08E-17 3.56E-17
0.5000 0.5000 -0.2500 1 6.43077E-17 kpt; spin; max resid(k); each band:
6.43E-17 1.27E-17 5.39E-17 3.47E-17
0.0000 -0.2500 0.5000 1 8.39438E-17 kpt; spin; max resid(k); each band:
1.55E-17 4.10E-17 8.39E-17 8.94E-18
0.2500 -0.2500 -0.2500 1 2.93087E-17 kpt; spin; max resid(k); each band:
7.59E-18 1.79E-17 2.91E-18 2.93E-17
0.0000 0.0000 0.2500 1 3.20977E-17 kpt; spin; max resid(k); each band:
1.04E-17 3.21E-17 5.66E-18 1.79E-17
0.2500 0.0000 0.5000 1 3.62828E-17 kpt; spin; max resid(k); each band:
8.44E-18 1.02E-17 2.69E-17 3.63E-17
0.5000 0.0000 -0.2500 1 6.48666E-17 kpt; spin; max resid(k); each band:
7.93E-18 6.49E-17 5.99E-17 3.12E-17
0.0000 0.2500 0.5000 1 9.32810E-17 kpt; spin; max resid(k); each band:
1.32E-17 3.96E-17 9.33E-17 9.73E-18
0.2500 0.2500 -0.2500 1 6.88863E-17 kpt; spin; max resid(k); each band:
7.71E-18 2.17E-17 6.89E-17 1.37E-17
0.0000 0.5000 -0.2500 1 8.42542E-17 kpt; spin; max resid(k); each band:
3.37E-17 2.64E-17 8.11E-17 8.43E-17
0.0000 0.0000 -0.2500 1 8.45137E-17 kpt; spin; max resid(k); each band:
1.62E-17 4.16E-18 8.45E-17 1.66E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.96925423E+01 eigvalue= 4.31837609E+00 local= -2.55561115E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.19229106E+02 Hartree= 4.37254359E+01 xc= -6.29479230E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.91575289E+00 enl1= -2.23733007E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.08012034E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 2.60560979E+01 fr.nonlo= 1.76603977E+01 Ewald= 4.33890651E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1630435732E+02 Ha. Also 2DEtotal= 0.443664125739E+03 eV
(2DErelax= -7.0801203420E+01 Ha. 2DEnonrelax= 8.7105560744E+01 Ha)
( non-var. 2DEtotal : 1.6304357352E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
Ewald part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 19.5431432212 -0.0000000000
1 1 2 1 12.9233825511 -0.0000000000
1 1 3 1 12.9233825511 0.0000000000
1 1 1 2 -24.0408960876 9.8718605102
1 1 2 2 -21.4824396214 -5.4650022818
1 1 3 2 -21.4824396214 -5.4650022818
2 1 1 1 12.9233825511 -0.0000000000
2 1 2 1 23.2073060811 -0.0000000000
2 1 3 1 16.1855482098 -0.0000000000
2 1 1 2 -21.4824396214 -5.4650022818
2 1 2 2 -9.6720496065 -11.7331579781
2 1 3 2 -22.1126137081 -9.4616786053
3 1 1 1 12.9233825511 0.0000000000
3 1 2 1 16.1855482098 -0.0000000000
3 1 3 1 23.2073060811 -0.0000000000
3 1 1 2 -21.4824396214 -5.4650022818
3 1 2 2 -22.1126137081 -9.4616786053
3 1 3 2 -9.6720496065 -11.7331579781
1 2 1 1 -24.0408960876 -9.8718605102
1 2 2 1 -21.4824396214 5.4650022818
1 2 3 1 -21.4824396214 5.4650022818
1 2 1 2 33.2108349616 -0.0000000000
1 2 2 2 25.3604478711 -0.0000000000
1 2 3 2 25.3604478711 -0.0000000000
2 2 1 1 -21.4824396214 5.4650022818
2 2 2 1 -9.6720496065 11.7331579781
2 2 3 1 -22.1126137081 9.4616786053
2 2 1 2 25.3604478711 -0.0000000000
2 2 2 2 43.3890651279 -0.0000000000
2 2 3 2 34.4220191452 -0.0000000000
3 2 1 1 -21.4824396214 5.4650022818
3 2 2 1 -22.1126137081 9.4616786053
3 2 3 1 -9.6720496065 11.7331579781
3 2 1 2 25.3604478711 -0.0000000000
3 2 2 2 34.4220191452 -0.0000000000
3 2 3 2 43.3890651279 -0.0000000000
Frozen wf local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 3.5761886459 0.0000000000
1 1 2 1 1.7880943230 0.0000000000
1 1 3 1 1.7880943230 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 1.7880943230 0.0000000000
2 1 2 1 3.5761886459 0.0000000000
2 1 3 1 1.7880943230 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 1.7880943230 0.0000000000
3 1 2 1 1.7880943230 0.0000000000
3 1 3 1 3.5761886459 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 26.0560979240 0.0000000000
1 2 2 2 13.0280489620 0.0000000000
1 2 3 2 13.0280489620 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 13.0280489620 0.0000000000
2 2 2 2 26.0560979240 0.0000000000
2 2 3 2 13.0280489620 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 13.0280489620 0.0000000000
3 2 2 2 13.0280489620 0.0000000000
3 2 3 2 26.0560979240 0.0000000000
Frozen wf non-local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 20.0681616965 0.0000000000
1 1 2 1 10.0340808483 0.0000000000
1 1 3 1 10.0340808483 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 10.0340808483 0.0000000000
2 1 2 1 20.0681616965 0.0000000000
2 1 3 1 10.0340808483 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 10.0340808483 0.0000000000
3 1 2 1 10.0340808483 0.0000000000
3 1 3 1 20.0681616965 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 17.6603976920 0.0000000000
1 2 2 2 8.8301988460 0.0000000000
1 2 3 2 8.8301988460 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 8.8301988460 0.0000000000
2 2 2 2 17.6603976920 0.0000000000
2 2 3 2 8.8301988460 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 8.8301988460 0.0000000000
3 2 2 2 8.8301988460 0.0000000000
3 2 3 2 17.6603976920 0.0000000000
Frozen wf xc core (1) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0000000000 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0000000000 0.0000000000
Frozen wf xc core (2) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000000 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 0.0000000000 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 0.0000000000 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 0.0000000000 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0000000000 0.0000000000
1 2 2 2 0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.0000000000 0.0000000000
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.0000000000 0.0000000000
Non-stationary local part of the 2-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -12.7355364567 0.2545001614
1 1 2 1 -9.3158909177 0.4197344450
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 19.2222137027 -4.7024215452
1 1 2 2 16.4669748261 5.7440293005
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -9.3126174671 -0.1370807885
2 1 2 1 -15.1997660047 -0.0037852315
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 16.7445155694 5.5741160256
2 1 2 2 10.1345858335 12.1586534727
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -9.3126174671 -0.1370807885
3 1 2 1 -11.4619854982 0.1053069033
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 16.7445155694 5.5741160256
3 1 2 2 17.5071342885 9.8326135469
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 17.1031834449 3.5001719207
1 2 2 1 14.7488601549 -5.3048475021
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 -49.2476139000 -0.2777841580
1 2 2 2 -33.8267027659 0.0922853224
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 14.9383689105 -5.3573216400
2 2 2 1 9.6689212718 -11.2722338155
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -33.8321893225 -0.3124553931
2 2 2 2 -59.6145530203 0.0655922079
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 14.9383689105 -5.3573216400
3 2 2 1 15.6991595503 -9.2093107934
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 -33.8321893225 -0.3124553931
3 2 2 2 -43.1205477434 -0.0893851177
3 2 3 2 0.0000000000 0.0000000000
Non-stationary non-local part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 -12.8861856401 -0.2545001414
1 1 2 1 -6.4788066198 -0.8143670539
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -2.6555744090 2.6982649240
1 1 2 2 -2.5806849734 0.0020450527
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -6.4820800669 0.5317134290
2 1 2 1 -13.1926053824 0.0037852559
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -2.7820310012 0.0831530120
2 1 2 2 -0.0292014133 0.0385281790
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -6.4820800669 0.5317134290
3 1 2 1 -6.7336833855 -0.1053068838
3 1 3 1 0.0000000000 0.0000000000
3 1 1 2 -2.7820310012 0.0831530120
3 1 2 2 -2.7065376965 -0.0277592514
3 1 3 2 0.0000000000 0.0000000000
1 2 1 1 -0.5365442493 -1.4960153132
1 2 2 1 -0.7863756285 -0.3524215871
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 -11.0426636713 0.2777841203
1 2 2 2 -5.4610090357 0.5564841197
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -1.0520791397 -0.3887527122
2 2 2 1 0.4364630643 -0.9249478847
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -5.4555225003 -0.3363140029
2 2 2 2 -11.1866503713 -0.0655921378
2 2 3 2 0.0000000000 0.0000000000
3 2 1 1 -1.0520791397 -0.3887527122
3 2 2 1 -0.8985630472 -0.5955435590
3 2 3 1 0.0000000000 0.0000000000
3 2 1 2 -5.4555225003 -0.3363140029
3 2 2 2 -5.4355298140 0.0893851895
3 2 3 2 0.0000000000 0.0000000000
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 17.5657714669 -0.0000000000
1 1 2 1 8.9508601866 -0.3946326247
1 1 3 1 8.9508601866 -0.3946326247
1 1 1 2 -7.4742567939 7.8677038890
1 1 2 2 -7.5961498096 0.2810720709
1 1 3 2 -7.5961498096 0.2810720709
2 1 1 1 8.9508601883 0.3946326405
2 1 2 1 18.4592850364 -0.0000000000
2 1 3 1 9.8120544973 -0.0000000000
2 1 1 2 -7.5199550532 0.1922667559
2 1 2 2 0.4333348137 0.4640236736
2 1 3 2 -7.3120171606 0.3431757186
3 1 1 1 8.9508601883 0.3946326405
3 1 2 1 9.8120544973 -0.0000000000
3 1 3 1 18.4592850364 -0.0000000000
3 1 1 2 -7.5199550532 0.1922667559
3 1 2 2 -7.3120171606 0.3431757186
3 1 3 2 0.4333348137 0.4640236736
1 2 1 1 -7.4742568920 -7.8677039027
1 2 2 1 -7.5199550741 -0.1922667816
1 2 3 1 -7.5199550741 -0.1922667816
1 2 1 2 16.6370530063 -0.0000000000
1 2 2 2 7.9309838670 0.6487694190
1 2 3 2 7.9309838670 0.6487694190
2 2 1 1 -7.5961498505 -0.2810720704
2 2 2 1 0.4333347296 -0.4640237222
2 2 3 1 -7.3120171606 -0.3431757186
2 2 1 2 7.9309838564 -0.6487693960
2 2 2 2 16.3043573523 -0.0000000000
2 2 3 2 7.7241893958 -0.0000000000
3 2 1 1 -7.5961498505 -0.2810720704
3 2 2 1 -7.3120171606 -0.3431757186
3 2 3 1 0.4333347296 -0.4640237222
3 2 1 2 7.9309838564 -0.6487693960
3 2 2 2 7.7241893958 -0.0000000000
3 2 3 2 16.3043573523 -0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.3409132234 -0.0000000003
1 1 2 1 0.0029899333 0.0070244329
1 1 3 1 0.0029899333 0.0070244329
1 1 1 2 0.0801049149 0.0759649788
1 1 2 2 -0.0673340451 -0.0665999500
1 1 3 2 -0.0673340451 -0.0665999500
2 1 1 1 0.0029899333 -0.0070244326
2 1 2 1 0.3102548286 0.0000000000
2 1 3 1 0.0024146528 0.0000000000
2 1 1 2 -0.0686903064 -0.0650192217
2 1 2 2 0.0713460943 0.0721733695
2 1 3 2 -0.2043873331 0.0678711995
3 1 1 1 0.0029899333 -0.0070244326
3 1 2 1 0.0024146528 -0.0000000000
3 1 3 1 0.3102548286 -0.0000000000
3 1 1 2 -0.0686903064 -0.0650192217
3 1 2 2 -0.2043873331 0.0678711995
3 1 3 2 0.0713460943 0.0721733695
1 2 1 1 0.0801049136 -0.0759649794
1 2 2 1 -0.0686903062 0.0650192218
1 2 3 1 -0.0686903062 0.0650192218
1 2 1 2 0.2934337047 -0.0000000004
1 2 2 2 -0.0068982315 -0.0115480491
1 2 3 2 -0.0068982315 -0.0115480491
2 2 1 1 -0.0673340446 0.0665999496
2 2 2 1 0.0713460919 -0.0721733705
2 2 3 1 -0.2043873324 -0.0678711988
2 2 1 2 -0.0068982313 0.0115480495
2 2 2 2 0.3007955582 0.0000000000
2 2 3 2 -0.0046571992 -0.0000000000
3 2 1 1 -0.0673340446 0.0665999496
3 2 2 1 -0.2043873324 -0.0678711988
3 2 3 1 0.0713460919 -0.0721733705
3 2 1 2 -0.0068982313 0.0115480495
3 2 2 2 -0.0046571992 0.0000000000
3 2 3 2 0.3007955582 -0.0000000000
Phonon wavevector (reduced coordinates) : 0.25000 0.50000 0.50000
Phonon energies in Hartree :
4.839000E-04 5.842480E-04 1.219569E-03 1.762231E-03 2.103466E-03
2.127283E-03
Phonon frequencies in cm-1 :
- 1.062038E+02 1.282276E+02 2.676644E+02 3.867650E+02 4.616575E+02
- 4.668845E+02
================================================================================
== DATASET 9 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 9, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 15, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 9.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: -3, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.008223145205 -1.001E+01 1.227E-03 0.000E+00
ETOT 2 -10.008769926737 -5.468E-04 7.191E-07 0.000E+00
ETOT 3 -10.008770074740 -1.480E-07 9.903E-11 0.000E+00
ETOT 4 -10.008770074767 -2.723E-11 3.263E-14 0.000E+00
ETOT 5 -10.008770074767 0.000E+00 1.341E-17 0.000E+00
ETOT 6 -10.008770074767 1.776E-15 1.022E-20 0.000E+00
ETOT 7 -10.008770074767 1.776E-15 9.929E-23 0.000E+00
At SCF step 7 max residual= 9.93E-23 < tolwfr= 1.00E-22 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.694E-24; max= 99.292E-24
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 9.8215015844E-01
prteigrs : about to open file t30t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.09829 -0.12076 0.27833 0.14589
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.64327196E+01 eigvalue= 8.17308248E-01 local= -1.05635998E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.65640730E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.32234199E+00 enl1= -3.45346720E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00087701E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1000877007E+02 Ha. Also 2DEtotal= -0.272352484471E+03 eV
( non-var. 2DEtotal : -1.0008770075E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: -3, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.008233163968 -1.001E+01 1.227E-03 0.000E+00
ETOT 2 -10.008769927981 -5.368E-04 7.309E-07 0.000E+00
ETOT 3 -10.008770074611 -1.466E-07 9.903E-11 0.000E+00
ETOT 4 -10.008770074638 -2.745E-11 3.263E-14 0.000E+00
ETOT 5 -10.008770074638 -2.132E-14 1.341E-17 0.000E+00
ETOT 6 -10.008770074638 1.776E-15 1.022E-20 0.000E+00
ETOT 7 -10.008770074638 0.000E+00 9.952E-23 0.000E+00
At SCF step 7 max residual= 9.95E-23 < tolwfr= 1.00E-22 =>converged.
-open ddk wf file :t30o_DS9_1WF7
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.261E-24; max= 99.517E-24
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 9.8215015843E-01
prteigrs : about to open file t30t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.16250 0.25598 0.16370 -0.05046
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.64327196E+01 eigvalue= 8.17308248E-01 local= -1.05635998E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.65640730E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.32234199E+00 enl1= -3.45346720E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00087701E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1000877007E+02 Ha. Also 2DEtotal= -0.272352484467E+03 eV
( non-var. 2DEtotal : -1.0008770075E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: -3, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.008223178876 -1.001E+01 1.227E-03 0.000E+00
ETOT 2 -10.008769926498 -5.467E-04 7.191E-07 0.000E+00
ETOT 3 -10.008770074482 -1.480E-07 9.903E-11 0.000E+00
ETOT 4 -10.008770074509 -2.721E-11 3.263E-14 0.000E+00
ETOT 5 -10.008770074509 -7.105E-15 1.341E-17 0.000E+00
ETOT 6 -10.008770074509 3.553E-15 1.022E-20 0.000E+00
ETOT 7 -10.008770074509 -3.553E-15 9.928E-23 0.000E+00
At SCF step 7 max residual= 9.93E-23 < tolwfr= 1.00E-22 =>converged.
-open ddk wf file :t30o_DS9_1WF7
-open ddk wf file :t30o_DS9_1WF8
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.379E-24; max= 99.280E-24
dfpt_looppert : ek2= 1.6865112540E+01
f-sum rule ratio= 9.8215015841E-01
prteigrs : about to open file t30t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 32 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.13039 -0.06761 -0.22101 -0.04772
prteigrs : prtvol=0 or 1, do not print more k-points.
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.64327196E+01 eigvalue= 8.17308248E-01 local= -1.05635998E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -1.65640730E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 3.32234199E+00 enl1= -3.45346720E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00087701E+01
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1000877007E+02 Ha. Also 2DEtotal= -0.272352484464E+03 eV
( non-var. 2DEtotal : -1.0008770074E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
Total localisation tensor (bohr^2) in cartesian coordinates
WARNING : still subject to testing - especially symmetries.
direction matrix element
alpha beta real part imaginary part
1 1 1.9739152820 0.0000000000
1 2 -0.0000000000 -0.0000000000
1 3 0.0000000000 -0.0000000000
2 1 -0.0000000000 0.0000000000
2 2 1.9739152820 0.0000000000
2 3 0.0000000000 0.0000000000
3 1 0.0000000000 0.0000000000
3 2 0.0000000000 -0.0000000000
3 3 1.9739152820 -0.0000000000
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 10 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 10, }
dimensions: {natom: 2, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 15, }
cutoff_energies: {ecut: 1.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : get1wf/=0, take file _1WF from output of DATASET 4.
mkfilename : getddk/=0, take file _1WF from output of DATASET 9.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3000000 5.3000000 G(1)= -0.0943396 0.0943396 0.0943396
R(2)= 5.3000000 0.0000000 5.3000000 G(2)= 0.0943396 -0.0943396 0.0943396
R(3)= 5.3000000 5.3000000 0.0000000 G(3)= 0.0943396 0.0943396 -0.0943396
Unit cell volume ucvol= 2.9775400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 8 8 8
ecut(hartree)= 1.000 => boxcut(ratio)= 2.37101
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 1.405426 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 4 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 1
--- !BeginCycle
iteration_state: {dtset: 10, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 16.786640702786 -1.871E+01 8.810E-17 1.443E-30
At SCF step 1 max residual= 8.81E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t30o_DS9_1WF7
-open ddk wf file :t30o_DS9_1WF8
-open ddk wf file :t30o_DS9_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.364E-18; max= 88.100E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.66631608E+01 eigvalue= 1.54675574E+00 local= -9.55853419E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -8.91444487E+00 Hartree= 1.41019724E+00 xc= -7.73684545E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 9.42488123E+00 enl1= -2.85111077E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.87127763E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.57618865E+00 fr.nonlo= 2.00681617E+01 Ewald= 1.18550666E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1678664070E+02 Ha. Also 2DEtotal= 0.456787723883E+03 eV
(2DErelax= -1.8712776257E+01 Ha. 2DEnonrelax= 3.5499416960E+01 Ha)
( non-var. 2DEtotal : 1.6786640692E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 1
--- !BeginCycle
iteration_state: {dtset: 10, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 16.786671050092 -3.878E+01 6.809E-17 2.605E-18
At SCF step 1 max residual= 6.81E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t30o_DS9_1WF7
-open ddk wf file :t30o_DS9_1WF8
-open ddk wf file :t30o_DS9_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.264E-18; max= 68.086E-18
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.05077501E+01 eigvalue= 3.42813826E+00 local= -2.74073367E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -5.15882955E+01 Hartree= 1.07165134E+01 xc= -4.49339586E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 6.03322199E+00 enl1= -2.59814869E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.87848912E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 2.60560979E+01 fr.nonlo= 1.76603977E+01 Ewald= 1.18550666E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1678667105E+02 Ha. Also 2DEtotal= 0.456788549676E+03 eV
(2DErelax= -3.8784891183E+01 Ha. 2DEnonrelax= 5.5571562233E+01 Ha)
( non-var. 2DEtotal : 1.6786671043E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 1
- dfpt_looppert: read the DDK wavefunctions from file: t30o_DS9_1WF7
--- !BeginCycle
iteration_state: {dtset: 10, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-16, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -119.18327934145 -1.192E+02 9.894E-17 2.364E-16
At SCF step 1 max residual= 9.89E-17 < tolwfr= 1.00E-16 =>converged.
-open ddk wf file :t30o_DS9_1WF7
-open ddk wf file :t30o_DS9_1WF8
-open ddk wf file :t30o_DS9_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 47.700E-18; max= 98.935E-18
Seven components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.22272793E+02 eigvalue= 5.85769156E+00 local= -1.39769848E+02
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -2.38366559E+02 Hartree= 1.65393339E+01 xc= -8.33502126E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.26183303E+01 enl1= 0.00000000E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.19183279E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1191832793E+03 Ha. Also 2DEtotal= -0.324314196385E+04 eV
( non-var. 2DEtotal : -1.1918327931E+02 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 16.7866406926 0.0000000000
1 1 2 1 8.3933203463 0.0000000000
1 1 3 1 8.3933203463 0.0000000000
1 1 1 2 -16.7870063642 -0.0000000000
1 1 2 2 -8.3935031821 -0.0000000000
1 1 3 2 -8.3935031821 -0.0000000000
1 1 1 4 -12.1951060567 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
1 1 3 4 -0.0000000000 0.0000000000
2 1 1 1 8.3933203463 0.0000000000
2 1 2 1 16.7866406926 0.0000000000
2 1 3 1 8.3933203463 0.0000000000
2 1 1 2 -8.3935031821 -0.0000000000
2 1 2 2 -16.7870063642 0.0000000000
2 1 3 2 -8.3935031821 0.0000000000
2 1 1 4 -0.0000000000 0.0000000000
2 1 2 4 -12.1951060567 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 1 1 8.3933203463 0.0000000000
3 1 2 1 8.3933203463 0.0000000000
3 1 3 1 16.7866406926 0.0000000000
3 1 1 2 -8.3935031821 -0.0000000000
3 1 2 2 -8.3935031821 0.0000000000
3 1 3 2 -16.7870063642 -0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -12.1951060567 0.0000000000
1 2 1 1 -16.7870063118 0.0000000000
1 2 2 1 -8.3935031559 0.0000000000
1 2 3 1 -8.3935031559 0.0000000000
1 2 1 2 16.7866710435 0.0000000000
1 2 2 2 8.3933355218 0.0000000000
1 2 3 2 8.3933355218 0.0000000000
1 2 1 4 -37.1738833271 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 1 1 -8.3935031559 0.0000000000
2 2 2 1 -16.7870063118 -0.0000000000
2 2 3 1 -8.3935031559 -0.0000000000
2 2 1 2 8.3933355218 0.0000000000
2 2 2 2 16.7866710435 0.0000000000
2 2 3 2 8.3933355218 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
2 2 2 4 -37.1738833271 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -8.3935031559 0.0000000000
3 2 2 1 -8.3935031559 -0.0000000000
3 2 3 1 -16.7870063118 0.0000000000
3 2 1 2 8.3933355218 0.0000000000
3 2 2 2 8.3933355218 0.0000000000
3 2 3 2 16.7866710435 0.0000000000
3 2 1 4 0.0000000000 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
3 2 3 4 -37.1738833271 0.0000000000
1 4 1 1 -12.1951059937 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 -0.0000000000 0.0000000000
1 4 1 2 -37.1738832494 0.0000000000
1 4 2 2 -0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
1 4 1 4 -119.1832793116 0.0000000000
1 4 2 4 39.7277597705 0.0000000000
1 4 3 4 39.7277597705 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 -12.1951059937 0.0000000000
2 4 3 1 -0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 2 2 -37.1738832494 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
2 4 1 4 39.7277597705 0.0000000000
2 4 2 4 -119.1832793116 0.0000000000
2 4 3 4 39.7277597705 0.0000000000
3 4 1 1 -0.0000000000 0.0000000000
3 4 2 1 -0.0000000000 0.0000000000
3 4 3 1 -12.1951059937 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -37.1738832494 0.0000000000
3 4 1 4 39.7277597705 0.0000000000
3 4 2 4 39.7277597705 0.0000000000
3 4 3 4 -119.1832793116 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.2988010091 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
1 1 1 2 -0.2988075181 0.0000000000
1 1 2 2 -0.0000000000 -0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.2988010091 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
2 1 1 2 -0.0000000000 -0.0000000000
2 1 2 2 -0.2988075181 -0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.2988010091 0.0000000000
3 1 1 2 -0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.2988075181 -0.0000000000
1 2 1 1 -0.2988075171 -0.0000000000
1 2 2 1 -0.0000000000 0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
1 2 1 2 0.2988015494 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 0.0000000000 0.0000000000
2 2 1 1 -0.0000000000 0.0000000000
2 2 2 1 -0.2988075171 0.0000000000
2 2 3 1 -0.0000000000 -0.0000000000
2 2 1 2 0.0000000000 0.0000000000
2 2 2 2 0.2988015494 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 -0.0000000000 -0.0000000000
3 2 2 1 -0.0000000000 -0.0000000000
3 2 3 1 -0.2988075171 0.0000000000
3 2 1 2 0.0000000000 0.0000000000
3 2 2 2 0.0000000000 0.0000000000
3 2 3 2 0.2988015494 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 5.7719768645 -0.0000000000
1 4 2 4 0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 0.0000000000 -0.0000000000
2 4 2 4 5.7719768645 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 0.0000000000 -0.0000000000
3 4 2 4 0.0000000000 -0.0000000000
3 4 3 4 5.7719768645 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 1.0590885895 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
1 2 1 4 -0.9164072854 0.0000000000
2 2 1 4 0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
2 1 2 4 1.0590885895 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
1 2 2 4 -0.0000000000 0.0000000000
2 2 2 4 -0.9164072854 0.0000000000
3 2 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 3 4 1.0590885895 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 3 4 -0.9164072854 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 1.0590885996 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 1.0590885996 0.0000000000
3 4 2 1 -0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 -0.0000000000 0.0000000000
3 4 3 1 1.0590885996 0.0000000000
1 4 1 2 -0.9164072731 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
1 4 2 2 0.0000000000 0.0000000000
2 4 2 2 -0.9164072731 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
2 4 3 2 0.0000000000 0.0000000000
3 4 3 2 -0.9164072731 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.878961E-06 -6.878961E-06 -6.878961E-06 2.130482E-03 2.130482E-03
2.130482E-03
Phonon frequencies in cm-1 :
- -1.509757E+00 -1.509757E+00 -1.509757E+00 4.675867E+02 4.675867E+02
- 4.675867E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
-6.878961E-06 -6.878961E-06 2.245034E-05 2.130482E-03 2.130482E-03
2.155898E-03
Phonon frequencies in cm-1 :
- -1.509757E+00 -1.509757E+00 4.927281E+00 4.675867E+02 4.675867E+02
- 4.731648E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
-6.878961E-06 -6.878961E-06 2.245034E-05 2.130482E-03 2.130482E-03
2.155898E-03
Phonon frequencies in cm-1 :
- -1.509757E+00 -1.509757E+00 4.927281E+00 4.675867E+02 4.675867E+02
- 4.731648E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
-6.878961E-06 -6.878961E-06 2.245034E-05 2.130482E-03 2.130482E-03
2.155898E-03
Phonon frequencies in cm-1 :
- -1.509757E+00 -1.509757E+00 4.927281E+00 4.675867E+02 4.675867E+02
- 4.731648E+02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0600000000E+01 1.0600000000E+01 1.0600000000E+01 Bohr
amu 6.97200000E+01 7.49216000E+01
asr 0
chneut 0
diemac 6.00000000E+00
ecut 1.00000000E+00 Hartree
etotal1 -8.0206403504E+00
etotal3 -1.0008770075E+01
etotal4 -1.1918327934E+02
etotal6 1.7566297446E+01
etotal8 1.6304357324E+01
etotal9 -1.0008770075E+01
etotal10 -1.1918327934E+02
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getddk1 0
getddk2 0
getddk3 3
getddk4 3
getddk5 0
getddk6 0
getddk7 0
getddk8 0
getddk9 9
getddk10 9
getden1 0
getden2 1
getden3 0
getden4 0
getden5 1
getden6 0
getden7 1
getden8 0
getden9 0
getden10 0
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 2
getwfk9 2
getwfk10 2
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 0
getwfq5 0
getwfq6 5
getwfq7 0
getwfq8 7
getwfq9 0
getwfq10 0
get1wf1 0
get1wf2 0
get1wf3 0
get1wf4 0
get1wf5 0
get1wf6 0
get1wf7 0
get1wf8 0
get1wf9 0
get1wf10 4
iscf1 7
iscf2 -2
iscf3 -3
iscf4 7
iscf5 -2
iscf6 7
iscf7 -2
iscf8 7
iscf9 -3
iscf10 7
istwfk5 0 0 4 0 0 8 0 0 0 0
5 0 2 0 0 0 0 9 0 6
0 0 0 0 3 0 0 0 0 7
0 0
istwfk7 0 0 0 8 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0
ixc 3
jdtset 1 2 3 4 5 6 7 8 9 10
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt6 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt7 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt8 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt9 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt10 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt1 1
kptopt2 3
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 3
kptopt7 3
kptopt8 3
kptopt9 3
kptopt10 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12000000E+01
P mkmem1 2
P mkmem2 32
P mkmem3 32
P mkmem4 32
P mkmem5 32
P mkmem6 32
P mkmem7 32
P mkmem8 32
P mkmem9 32
P mkmem10 32
P mkqmem1 2
P mkqmem2 32
P mkqmem3 32
P mkqmem4 32
P mkqmem5 32
P mkqmem6 32
P mkqmem7 32
P mkqmem8 32
P mkqmem9 32
P mkqmem10 32
P mk1mem1 2
P mk1mem2 32
P mk1mem3 32
P mk1mem4 32
P mk1mem5 32
P mk1mem6 32
P mk1mem7 32
P mk1mem8 32
P mk1mem9 32
P mk1mem10 32
natom 2
nband1 4
nband2 4
nband3 4
nband4 4
nband5 4
nband6 4
nband7 4
nband8 4
nband9 4
nband10 4
ndtset 10
ngfft 8 8 8
nkpt1 2
nkpt2 32
nkpt3 32
nkpt4 32
nkpt5 32
nkpt6 32
nkpt7 32
nkpt8 32
nkpt9 32
nkpt10 32
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 1
nqpt5 1
nqpt6 1
nqpt7 1
nqpt8 1
nqpt9 1
nqpt10 1
nstep1 50
nstep2 50
nstep3 50
nstep4 50
nstep5 50
nstep6 30
nstep7 50
nstep8 15
nstep9 50
nstep10 50
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
occ6 2.000000 2.000000 2.000000 2.000000
occ8 2.000000 2.000000 2.000000 2.000000
occ9 2.000000 2.000000 2.000000 2.000000
occ10 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
optdriver5 0
optdriver6 1
optdriver7 0
optdriver8 1
optdriver9 1
optdriver10 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
prtpot5 0
prtpot6 1
prtpot7 0
prtpot8 1
prtpot9 1
prtpot10 1
prtvol1 0
prtvol2 0
prtvol3 0
prtvol4 0
prtvol5 0
prtvol6 10
prtvol7 0
prtvol8 10
prtvol9 0
prtvol10 0
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt4 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt5 2.50000000E-01 2.50000000E-01 2.50000000E-01
qpt6 2.50000000E-01 2.50000000E-01 2.50000000E-01
qpt7 2.50000000E-01 5.00000000E-01 5.00000000E-01
qpt8 2.50000000E-01 5.00000000E-01 5.00000000E-01
qpt9 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt10 0.00000000E+00 0.00000000E+00 0.00000000E+00
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 1 0 0
rfdir4 1 1 1
rfdir5 1 1 1
rfdir6 1 1 1
rfdir7 1 1 1
rfdir8 1 1 1
rfdir9 1 1 1
rfdir10 1 1 1
rfelfd1 0
rfelfd2 0
rfelfd3 2
rfelfd4 3
rfelfd5 0
rfelfd6 0
rfelfd7 0
rfelfd8 0
rfelfd9 2
rfelfd10 3
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 0
rfphon6 1
rfphon7 0
rfphon8 1
rfphon9 0
rfphon10 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
strten1 1.1484320795E-03 1.1484320795E-03 1.1484320795E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten8 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten10 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 1 -1 1 0 -1 0 0 -1
0 -1 1 0 -1 0 1 -1 0 -1 0 0 -1 0 1 -1 1 0
0 1 0 0 0 1 1 0 0 1 0 -1 0 0 -1 0 1 -1
0 -1 0 1 -1 0 0 -1 1 -1 0 1 -1 1 0 -1 0 0
0 0 1 1 0 0 0 1 0 0 0 -1 0 1 -1 1 0 -1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 -1 0 0 -1 0 1
1 0 -1 0 1 -1 0 0 -1 0 1 0 1 0 0 0 0 1
-1 0 1 -1 0 0 -1 1 0 0 -1 0 0 -1 1 1 -1 0
-1 1 0 -1 0 1 -1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 0 0 1 0 1 0 1 0 0
0 -1 1 1 -1 0 0 -1 0 -1 0 0 -1 1 0 -1 0 1
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
tolwfr1 1.00000000E-22
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-22
tolwfr4 1.00000000E-16
tolwfr5 1.00000000E-22
tolwfr6 1.00000000E-16
tolwfr7 1.00000000E-22
tolwfr8 1.00000000E-16
tolwfr9 1.00000000E-22
tolwfr10 1.00000000E-16
typat 1 2
wtk1 0.75000 0.25000
wtk2 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk3 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk4 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk5 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk6 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk7 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk8 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk9 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk10 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4023196028E+00 1.4023196028E+00 1.4023196028E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6500000000E+00 2.6500000000E+00 2.6500000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 31.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 3.2 wall= 7.1
================================================================================
Calculation completed.
.Delivered 30 WARNINGs and 73 COMMENTs to log file.
+Overall time at end (sec) : cpu= 3.2 wall= 7.1