abinit/tests/v2/Refs/t26.abo

4242 lines
218 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h08 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/v2_t26-t27-t28/t26.abi
- output file -> t26.abo
- root for input files -> t26i
- root for output files -> t26o
DATASET 1 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 22 nfft = 1728 nkpt = 2
================================================================================
P This job should need less than 1.735 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.005 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 2 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 3 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 4 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 5 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.712 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 6 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 7 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 7 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 8 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 8.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 9 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 9 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 10 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 10.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 11 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 11 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 12 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 12.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 3
lnmax = 3 mgfft = 12 mpssoang = 3 mqgrid = 3001
natom = 1 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 0 ntypat = 1
occopt = 4 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
mpw = 22 nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.588 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
DATASET 13 : space group Fm -3 m (#225); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 13 (RF).
intxc = 0 iscf = 7 lmnmax = 3 lnmax = 3
mgfft = 12 mpssoang = 3 mqgrid = 3001 natom = 1
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 0 ntypat = 1 occopt = 4
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 32
- mkqmem = 32 mk1mem = 32 mpw = 22
nfft = 1728 nkpt = 32
================================================================================
P This job should need less than 1.809 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.045 Mbytes ; DEN or POT disk file : 0.015 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 2.69600000E+01
asr 0
chneut 0
ecut 2.50000000E+00 Hartree
enunit 2
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 1
getden5 1
getden6 1
getden7 1
getden8 1
getden9 1
getden10 1
getden11 1
getden12 1
getden13 1
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 2
getwfk9 2
getwfk10 2
getwfk11 2
getwfk12 2
getwfk13 2
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 3
getwfq5 0
getwfq6 0
getwfq7 6
getwfq8 0
getwfq9 8
getwfq10 0
getwfq11 10
getwfq12 0
getwfq13 12
iscf1 7
iscf2 -2
iscf3 -2
iscf4 7
iscf5 7
iscf6 -2
iscf7 7
iscf8 -2
iscf9 7
iscf10 -2
iscf11 7
iscf12 -2
iscf13 7
jdtset 1 2 3 4 5 6 7 8 9 10
11 12 13
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt6 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt7 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt8 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt9 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt10 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt11 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt12 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt13 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt1 1
kptopt2 3
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 3
kptopt7 3
kptopt8 3
kptopt9 3
kptopt10 3
kptopt11 3
kptopt12 3
kptopt13 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 1.52000000E+01
P mkmem1 2
P mkmem2 32
P mkmem3 32
P mkmem4 32
P mkmem5 32
P mkmem6 32
P mkmem7 32
P mkmem8 32
P mkmem9 32
P mkmem10 32
P mkmem11 32
P mkmem12 32
P mkmem13 32
P mkqmem1 2
P mkqmem2 32
P mkqmem3 32
P mkqmem4 32
P mkqmem5 32
P mkqmem6 32
P mkqmem7 32
P mkqmem8 32
P mkqmem9 32
P mkqmem10 32
P mkqmem11 32
P mkqmem12 32
P mkqmem13 32
P mk1mem1 2
P mk1mem2 32
P mk1mem3 32
P mk1mem4 32
P mk1mem5 32
P mk1mem6 32
P mk1mem7 32
P mk1mem8 32
P mk1mem9 32
P mk1mem10 32
P mk1mem11 32
P mk1mem12 32
P mk1mem13 32
natom 1
nband1 4
nband2 4
nband3 4
nband4 4
nband5 4
nband6 4
nband7 4
nband8 4
nband9 4
nband10 4
nband11 4
nband12 4
nband13 4
nbdbuf 2
ndtset 13
ngfft 12 12 12
nkpt1 2
nkpt2 32
nkpt3 32
nkpt4 32
nkpt5 32
nkpt6 32
nkpt7 32
nkpt8 32
nkpt9 32
nkpt10 32
nkpt11 32
nkpt12 32
nkpt13 32
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 1
nqpt5 1
nqpt6 1
nqpt7 1
nqpt8 1
nqpt9 1
nqpt10 1
nqpt11 1
nqpt12 1
nqpt13 1
nsym 48
ntypat 1
occ1 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occ4 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occ5 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occ7 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occ9 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occ11 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occ13 2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
2.000000 1.000000 0.000000 0.000000
occopt 4
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
optdriver5 1
optdriver6 0
optdriver7 1
optdriver8 0
optdriver9 1
optdriver10 0
optdriver11 1
optdriver12 0
optdriver13 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
prtpot5 1
prtpot6 0
prtpot7 1
prtpot8 0
prtpot9 1
prtpot10 0
prtpot11 1
prtpot12 0
prtpot13 1
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt4 2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt6 5.00000000E-01 5.00000000E-01 0.00000000E+00
qpt7 5.00000000E-01 5.00000000E-01 0.00000000E+00
qpt8 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt9 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt10 5.00000000E-01 2.50000000E-01 2.50000000E-01
qpt11 5.00000000E-01 2.50000000E-01 2.50000000E-01
qpt12 5.00000000E-01 -2.50000000E-01 2.50000000E-01
qpt13 5.00000000E-01 -2.50000000E-01 2.50000000E-01
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 1
rfphon6 0
rfphon7 1
rfphon8 0
rfphon9 1
rfphon10 0
rfphon11 1
rfphon12 0
rfphon13 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs1 1.00000000E-13
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 1.00000000E-10
tolvrs5 1.00000000E-10
tolvrs6 0.00000000E+00
tolvrs7 1.00000000E-10
tolvrs8 0.00000000E+00
tolvrs9 1.00000000E-10
tolvrs10 0.00000000E+00
tolvrs11 1.00000000E-10
tolvrs12 0.00000000E+00
tolvrs13 1.00000000E-10
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-22
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 1.00000000E-22
tolwfr7 0.00000000E+00
tolwfr8 1.00000000E-22
tolwfr9 0.00000000E+00
tolwfr10 1.00000000E-22
tolwfr11 0.00000000E+00
tolwfr12 1.00000000E-22
tolwfr13 0.00000000E+00
tsmear 4.00000000E-02 Hartree
typat 1
wtk1 0.75000 0.25000
wtk2 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk3 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk4 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk5 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk6 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk7 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk8 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk9 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk10 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk11 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk12 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk13 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
znucl 13.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 9.
chkinp: Checking input parameters for consistency, jdtset= 10.
chkinp: Checking input parameters for consistency, jdtset= 11.
chkinp: Checking input parameters for consistency, jdtset= 12.
chkinp: Checking input parameters for consistency, jdtset= 13.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 1, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/13al.981214.fhi
- Aluminum, fhi98PP : Hamann-type, LDA CA PerdewWang, l=2 local
- 13.00000 3.00000 981214 znucl, zion, pspdat
6 7 2 2 493 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
No XC core correction.
1.024700 amesh (Hamman grid)
pspatm : epsatm= 1.36305739
--- l ekb(1:nproj) -->
0 1.768744
1 0.900554
pspatm: atomic psp has been read and splines computed
4.08917216E+00 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 21.000 20.924
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -2.0700755653828 -2.070E+00 1.134E-04 1.410E-01
ETOT 2 -2.0702780293941 -2.025E-04 3.145E-12 8.059E-03
ETOT 3 -2.0702873635131 -9.334E-06 2.202E-07 1.744E-05
ETOT 4 -2.0702873764626 -1.295E-08 3.539E-10 4.120E-08
ETOT 5 -2.0702873765050 -4.241E-11 1.212E-12 1.374E-10
ETOT 6 -2.0702873765051 -1.559E-13 3.291E-15 1.691E-12
ETOT 7 -2.0702873765051 9.326E-15 8.074E-17 3.801E-15
At SCF step 7 vres2 = 3.80E-15 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.22148236E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.22148236E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.22148236E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 9.326E-15, res2: 3.801E-15, residm: 8.074E-17, diffor: null, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.22148236E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.22148236E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.22148236E-04, ]
pressure_GPa: -6.5358E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.931E-18; max= 80.735E-18
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.26886 Average Vxc (hartree)= -0.34629
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.09772 0.25758 0.42429 0.54086
occupation numbers for kpt# 1
2.00000 1.33333 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 7.31603 Average Vxc (eV)= -9.42302
Eigenvalues ( eV ) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
2.65916 7.00917 11.54552 14.71761
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 8.30383461928583E-01
hartree : 3.41929237033801E-03
xc : -8.02816375145749E-01
Ewald energy : -2.71472096493581E+00
psp_core : 3.72610088794390E-02
local_psp : 1.04283675799723E-01
non_local_psp : 4.78279142786697E-01
internal : -2.06391075831678E+00
'-kT*entropy' : -6.37661818835896E-03
total_energy : -2.07028737650514E+00
total_energy_eV : -5.63353845025937E+01
band_energy : 3.73848506069953E-01
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.22148236E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.22148236E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.22148236E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.5358E+00 GPa]
- sigma(1 1)= 6.53582566E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.53582566E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.53582566E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t26o_DS1_WFK
================================================================================
prteigrs : about to open file t26o_DS2_EIG
Non-SCF case, kpt 1 ( -0.25000 0.50000 0.00000), residuals and eigenvalues=
3.20E-24 1.20E-24 1.52E-23 1.00E-23
9.7723E-02 2.5758E-01 4.2429E-01 5.4086E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 2.686E-23, diffor: 0.000E+00, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.482E-25; max= 26.860E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS2_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.09772 0.25758 0.42429 0.54086
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= -0.2500 0.5000 0.0000 (reduced coord)
2.65916 7.00917 11.54552 14.71761
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t26o_DS2_WFK
================================================================================
prteigrs : about to open file t26o_DS3_EIG
Non-SCF case, kpt 1 ( -0.00000 0.75000 0.00000), residuals and eigenvalues=
3.27E-25 2.68E-23 9.09E-24 9.69E-23
-6.0635E-02 4.1706E-01 6.9457E-01 6.9457E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 2.686E-23, diffor: 0.000E+00, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.482E-25; max= 26.860E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS3_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.0000 0.7500 0.0000 (reduced coord)
-0.06064 0.41706 0.69457 0.69457
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.0000 0.7500 0.0000 (reduced coord)
-1.64997 11.34878 18.90008 18.90008
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 3.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.2500 0.2500 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.00936
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.660157 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.250000 0.250000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 16 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 814.78773717566 7.977E+02 1.740E-02 9.965E+05
ETOT 2 273.32196089209 -5.415E+02 1.948E-02 3.328E+05
ETOT 3 0.21927357245799 -2.731E+02 2.595E-03 8.997E+00
ETOT 4 0.21148335899743 -7.790E-03 9.316E-07 2.031E-02
ETOT 5 0.21145603543073 -2.732E-05 2.664E-08 3.129E-04
ETOT 6 0.21145572050976 -3.149E-07 1.324E-10 9.134E-08
ETOT 7 0.21145572035387 -1.559E-10 7.741E-14 2.144E-10
ETOT 8 0.21145572035345 -4.228E-13 1.558E-16 5.209E-13
At SCF step 8 vres2 = 5.21E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 34.159E-18; max= 15.581E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 5.63508909E+00 eigvalue= -7.28702138E-01 local= -2.70526284E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.50167306E+01 Hartree= 1.16975180E+01 xc= -1.28813392E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.98802779E+00 enl0= 2.24604228E+00 enl1= -8.67242598E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.68445783E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 1.37219800E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2114557204E+00 Ha. Also 2DEtotal= 0.575400277593E+01 eV
(2DErelax= -1.6844578298E+01 Ha. 2DEnonrelax= 1.7056034019E+01 Ha)
( non-var. 2DEtotal : 2.1145571595E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.2114557159 -0.0000000000
1 1 2 1 0.1312914838 0.0000000000
1 1 3 1 0.0801642322 -0.0000000000
2 1 1 1 0.1312914838 0.0000000000
2 1 2 1 0.2114557159 0.0000000000
2 1 3 1 0.0801642322 0.0000000000
3 1 1 1 0.0801642322 -0.0000000000
3 1 2 1 0.0801642322 0.0000000000
3 1 3 1 0.1603284644 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0055515396 -0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0055515396 -0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0090922080 -0.0000000000
Phonon wavevector (reduced coordinates) : 0.25000 0.25000 0.00000
Phonon energies in Hartree :
3.360986E-04 3.360986E-04 4.301250E-04
Phonon energies in meV :
- 9.145709E+00 9.145709E+00 1.170430E+01
Phonon frequencies in cm-1 :
- 7.376512E+01 7.376512E+01 9.440153E+01
Phonon frequencies in Thz :
- 2.211423E+00 2.211423E+00 2.830087E+00
Phonon energies in Kelvin :
- 1.061314E+02 1.061314E+02 1.358226E+02
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 10 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1.90307948560253E-03 -3.332E+00 2.220E-03 1.921E+00
ETOT 2 5.01116896263198E-05 -1.853E-03 9.942E-07 3.890E-02
ETOT 3 1.11337961605784E-06 -4.900E-05 8.248E-08 3.930E-05
ETOT 4 1.01983279421347E-06 -9.355E-08 1.028E-10 2.031E-07
ETOT 5 1.01917730610523E-06 -6.555E-10 7.906E-13 6.793E-10
ETOT 6 1.01917573402943E-06 -1.573E-12 1.267E-15 6.649E-13
At SCF step 6 vres2 = 6.65E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.115E-17; max= 12.672E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.52969447E+00 eigvalue= -3.96710048E-01 local= -1.61285385E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 6.01019190E+00 Hartree= 2.02103613E-01 xc= -2.31013975E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 4.39803718E-01 enl0= 1.40302916E+00 enl1= -1.26782980E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.33405302E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 0.00000000E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1019175732E-05 Ha. Also 2DEtotal= 0.277331820711E-04 eV
(2DErelax= -3.3340530176E+00 Ha. 2DEnonrelax= 3.3340540367E+00 Ha)
( non-var. 2DEtotal : 9.8349724986E-07 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000009835 0.0000000000
1 1 2 1 0.0000004917 0.0000000000
1 1 3 1 0.0000004917 0.0000000000
1 1 2 3 0.0000000000 0.0000000000
1 1 3 3 0.0000000000 0.0000000000
2 1 1 1 0.0000004917 0.0000000000
2 1 2 1 0.0000009835 0.0000000000
2 1 3 1 0.0000004917 0.0000000000
2 1 1 3 0.0000000000 0.0000000000
2 1 3 3 0.0000000000 0.0000000000
3 1 1 1 0.0000004917 0.0000000000
3 1 2 1 0.0000004917 0.0000000000
3 1 3 1 0.0000009835 0.0000000000
3 1 1 3 0.0000000000 0.0000000000
3 1 2 3 0.0000000000 0.0000000000
1 3 2 1 0.0000000000 0.0000000000
1 3 3 1 0.0000000000 0.0000000000
2 3 1 1 0.0000000000 0.0000000000
2 3 3 1 0.0000000000 0.0000000000
3 3 1 1 0.0000000000 0.0000000000
3 3 2 1 0.0000000000 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0000000341 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0000000341 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000341 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
8.324316E-07 8.324322E-07 8.324338E-07
Phonon energies in meV :
- 2.265162E-02 2.265163E-02 2.265168E-02
Phonon frequencies in cm-1 :
- 1.826976E-01 1.826977E-01 1.826981E-01
Phonon frequencies in Thz :
- 5.477137E-03 5.477140E-03 5.477151E-03
Phonon energies in Kelvin :
- 2.628608E-01 2.628610E-01 2.628615E-01
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t26o_DS2_WFK
================================================================================
prteigrs : about to open file t26o_DS6_EIG
Non-SCF case, kpt 1 ( 0.25000 1.00000 0.00000), residuals and eigenvalues=
3.26E-25 2.68E-23 8.51E-24 6.63E-24
-6.0635E-02 4.1706E-01 6.9457E-01 6.9457E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 6, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 2.686E-23, diffor: 0.000E+00, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.482E-25; max= 26.860E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS6_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 1.0000 0.0000 (reduced coord)
-0.06064 0.41706 0.69457 0.69457
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 1.0000 0.0000 (reduced coord)
-1.64997 11.34878 18.90008 18.90008
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 6.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.5000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.88766
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.211616 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 16 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 7, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 14.547750352363 -1.273E+00 2.022E-02 5.214E+03
ETOT 2 1.5203668140141 -1.303E+01 1.802E-03 5.617E-01
ETOT 3 1.5188189188856 -1.548E-03 1.490E-06 1.008E-02
ETOT 4 1.5187999266249 -1.899E-05 2.630E-08 8.095E-05
ETOT 5 1.5187997297109 -1.969E-07 3.860E-10 3.605E-07
ETOT 6 1.5187997290001 -7.108E-10 1.042E-12 3.247E-10
ETOT 7 1.5187997289996 -5.080E-13 1.806E-15 1.676E-12
At SCF step 7 vres2 = 1.68E-12 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 30.174E-17; max= 18.058E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.92494277E+00 eigvalue= -9.58930736E-01 local= -3.76741079E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.49227762E+01 Hartree= 6.80233369E+00 xc= -1.99016285E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.24037618E+00 enl0= 3.05102966E+00 enl1= -3.68157965E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.43021779E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 1.24869236E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1518799729E+01 Ha. Also 2DEtotal= 0.413286424323E+02 eV
(2DErelax= -1.4302177887E+01 Ha. 2DEnonrelax= 1.5820977616E+01 Ha)
( non-var. 2DEtotal : 1.5187997107E+00 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 1.5187997107 0.0000000000
1 1 2 1 1.4203960246 0.0000000000
1 1 3 1 0.0984036861 0.0000000000
2 1 1 1 1.4203960246 0.0000000000
2 1 2 1 1.5187997107 0.0000000000
2 1 3 1 0.0984036861 0.0000000000
3 1 1 1 0.0984036861 0.0000000000
3 1 2 1 0.0984036861 0.0000000000
3 1 3 1 0.1968073721 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0068146597 0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0068146597 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0983653757 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.50000 0.00000
Phonon energies in Hartree :
3.723764E-04 3.723764E-04 1.414755E-03
Phonon energies in meV :
- 1.013288E+01 1.013288E+01 3.849743E+01
Phonon frequencies in cm-1 :
- 8.172716E+01 8.172716E+01 3.105028E+02
Phonon frequencies in Thz :
- 2.450119E+00 2.450119E+00 9.308638E+00
Phonon energies in Kelvin :
- 1.175870E+02 1.175870E+02 4.467436E+02
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t26o_DS2_WFK
================================================================================
prteigrs : about to open file t26o_DS8_EIG
Non-SCF case, kpt 1 ( 0.25000 0.50000 0.00000), residuals and eigenvalues=
3.20E-24 1.20E-24 1.52E-23 1.00E-23
9.7723E-02 2.5758E-01 4.2429E-01 5.4086E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 8, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 2.686E-23, diffor: 0.000E+00, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.482E-25; max= 26.860E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS8_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.5000 0.0000 (reduced coord)
0.09772 0.25758 0.42429 0.54086
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.5000 0.0000 (reduced coord)
2.65916 7.00917 11.54552 14.71761
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 9 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 9, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 8.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.88174
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.190257 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
Found 2 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 20 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 52.291416140537 3.047E+01 4.539E-02 2.523E+04
ETOT 2 2.0196010091006 -5.027E+01 1.040E-02 1.148E+02
ETOT 3 1.7820112275088 -2.376E-01 4.480E-05 1.027E-01
ETOT 4 1.7817773441957 -2.339E-04 2.502E-07 5.356E-05
ETOT 5 1.7817772187893 -1.254E-07 1.649E-10 2.664E-07
ETOT 6 1.7817772181220 -6.673E-10 8.506E-13 2.761E-09
ETOT 7 1.7817772181166 -5.461E-12 8.212E-16 1.630E-11
At SCF step 7 vres2 = 1.63E-11 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.241E-17; max= 82.116E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 8.83458367E+00 eigvalue= -1.25208391E+00 local= -4.33380080E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -3.47889026E+01 Hartree= 1.17221949E+01 xc= -2.24881904E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.85890553E+00 enl0= 3.45430496E+00 enl1= -5.28166923E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.00352866E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 1.84830098E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1781777218E+01 Ha. Also 2DEtotal= 0.484846238352E+02 eV
(2DErelax= -2.0035286623E+01 Ha. 2DEnonrelax= 2.1817063841E+01 Ha)
( non-var. 2DEtotal : 1.7817779011E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 0.25740837914633 -4.435E+00 3.398E-03 7.634E+00
ETOT 2 0.22641128228394 -3.100E-02 2.199E-05 1.102E-01
ETOT 3 0.22604314234374 -3.681E-04 1.244E-07 1.249E-04
ETOT 4 0.22604293293142 -2.094E-07 2.754E-10 2.971E-07
ETOT 5 0.22604293219147 -7.399E-10 1.381E-12 1.096E-09
ETOT 6 0.22604293218818 -3.292E-12 5.233E-15 4.081E-12
At SCF step 6 vres2 = 4.08E-12 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.952E-16; max= 52.331E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.49601563E+00 eigvalue= -4.52027066E-01 local= -1.87767547E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = 1.10719069E+00 Hartree= 5.02149171E-01 xc= -4.79147191E-01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 7.63766824E-01 enl0= 1.51355712E+00 enl1= -1.00404688E+01
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -4.46663911E+00
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 1.35862801E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.2260429322E+00 Ha. Also 2DEtotal= 0.615094099661E+01 eV
(2DErelax= -4.4666391125E+00 Ha. 2DEnonrelax= 4.6926820447E+00 Ha)
( non-var. 2DEtotal : 2.2604297599E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 1.7817779210 0.0000000000
1 1 2 1 0.1130214880 0.0000000000
1 1 3 1 0.1130214880 0.0000000000
2 1 1 1 0.1130214880 0.0000000000
2 1 2 1 0.2260429760 0.0000000000
2 1 3 1 0.1130214880 0.0000000000
3 1 1 1 0.1130214880 0.0000000000
3 1 2 1 0.1130214880 0.0000000000
3 1 3 1 0.2260429760 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0347614421 0.0000000000
1 1 2 1 -0.0269344693 -0.0000000000
1 1 3 1 -0.0269344693 -0.0000000000
2 1 1 1 -0.0269344693 -0.0000000000
2 1 2 1 0.0347614421 0.0000000000
2 1 3 1 0.0269344693 0.0000000000
3 1 1 1 -0.0269344693 -0.0000000000
3 1 2 1 0.0269344693 0.0000000000
3 1 3 1 0.0347614421 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.00000 0.00000
Phonon energies in Hartree :
3.990772E-04 3.990772E-04 1.342924E-03
Phonon energies in meV :
- 1.085944E+01 1.085944E+01 3.654281E+01
Phonon frequencies in cm-1 :
- 8.758732E+01 8.758732E+01 2.947377E+02
Phonon frequencies in Thz :
- 2.625802E+00 2.625802E+00 8.836013E+00
Phonon energies in Kelvin :
- 1.260185E+02 1.260185E+02 4.240612E+02
================================================================================
== DATASET 10 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 10, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t26o_DS2_WFK
================================================================================
prteigrs : about to open file t26o_DS10_EIG
Non-SCF case, kpt 1 ( 0.25000 0.75000 0.25000), residuals and eigenvalues=
3.21E-24 1.20E-24 1.52E-23 1.00E-23
9.7723E-02 2.5758E-01 4.2429E-01 5.4086E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 10, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 2.686E-23, diffor: 0.000E+00, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.482E-25; max= 26.860E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS10_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.7500 0.2500 (reduced coord)
0.09772 0.25758 0.42429 0.54086
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.7500 0.2500 (reduced coord)
2.65916 7.00917 11.54552 14.71761
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 10.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 0.2500 0.2500 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.87580
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.168898 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.250000 0.250000
Perturbation : displacement of atom 1 along direction 1
Found 4 symmetries that leave the perturbation invariant.
symkpt : the number of k-points, thanks to the symmetries,
is reduced to 10 .
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 300.73768440072 2.758E+02 5.640E-02 1.915E+05
ETOT 2 70.750232262000 -2.300E+02 3.444E-02 4.468E+04
ETOT 3 0.63155612736658 -7.012E+01 3.430E-03 1.400E+00
ETOT 4 0.62893330039201 -2.623E-03 1.002E-06 1.085E-02
ETOT 5 0.62891435910801 -1.894E-05 1.072E-08 6.525E-06
ETOT 6 0.62891434326810 -1.584E-08 3.891E-12 1.988E-08
ETOT 7 0.62891434323286 -3.525E-11 3.716E-14 6.991E-11
At SCF step 7 vres2 = 6.99E-11 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 61.272E-16; max= 37.162E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.92288770E+00 eigvalue= -1.07501705E+00 local= -3.99011249E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -4.49482596E+01 Hartree= 1.70417139E+01 xc= -2.52828427E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.65606287E+00 enl0= 3.28483494E+00 enl1= -3.67590915E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.43120831E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 2.16069435E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.6289143432E+00 Ha. Also 2DEtotal= 0.171136296088E+02 eV
(2DErelax= -2.4312083149E+01 Ha. 2DEnonrelax= 2.4940997492E+01 Ha)
( non-var. 2DEtotal : 6.2891311651E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 0.250000 0.250000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 77.041178789004 6.458E+01 3.878E-02 4.826E+04
ETOT 2 18.334270573024 -5.871E+01 1.268E-02 1.117E+04
ETOT 3 0.80521501099478 -1.753E+01 8.956E-04 1.783E+00
ETOT 4 0.80206787597586 -3.147E-03 9.810E-07 4.374E-03
ETOT 5 0.80206005530259 -7.821E-06 5.418E-09 3.411E-06
ETOT 6 0.80206004815099 -7.152E-09 7.210E-12 1.852E-08
ETOT 7 0.80206004811732 -3.368E-11 2.777E-14 5.026E-11
At SCF step 7 vres2 = 5.03E-11 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.040E-16; max= 27.771E-15
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.33687264E+00 eigvalue= -7.71379882E-01 local= -2.89153238E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.56315064E+01 Hartree= 5.93208475E+00 xc= -1.35002523E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.07070344E+00 enl0= 2.33362071E+00 enl1= -7.68918021E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.16603426E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 9.12834857E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.8020600481E+00 Ha. Also 2DEtotal= 0.218251638481E+02 eV
(2DErelax= -1.1660342561E+01 Ha. 2DEnonrelax= 1.2462402609E+01 Ha)
( non-var. 2DEtotal : 8.0205930056E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.6289131165 0.0000000000
1 1 2 1 0.3144565583 0.0000000000
1 1 3 1 0.3144565583 0.0000000000
2 1 1 1 0.3144565583 0.0000000000
2 1 2 1 0.8020593129 0.0000000000
2 1 3 1 0.6001555185 -0.0000000000
3 1 1 1 0.3144565583 0.0000000000
3 1 2 1 0.6001555185 -0.0000000000
3 1 3 1 0.8020593129 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0376647601 -0.0000000000
1 1 2 1 0.0000000000 0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 0.0000000000
2 1 2 1 0.0178795136 0.0000000000
2 1 3 1 0.0038972564 -0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0038972564 -0.0000000000
3 1 3 1 0.0178795136 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 0.25000 0.25000
Phonon energies in Hartree :
5.333946E-04 6.656666E-04 8.754425E-04
Phonon energies in meV :
- 1.451441E+01 1.811371E+01 2.382200E+01
Phonon frequencies in cm-1 :
- 1.170666E+02 1.460969E+02 1.921374E+02
Phonon frequencies in Thz :
- 3.509568E+00 4.379876E+00 5.760135E+00
Phonon energies in Kelvin :
- 1.684325E+02 2.102006E+02 2.764425E+02
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 3.13724
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 6.151415 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t26o_DS2_WFK
================================================================================
prteigrs : about to open file t26o_DS12_EIG
Non-SCF case, kpt 1 ( 0.25000 0.25000 0.25000), residuals and eigenvalues=
3.27E-25 2.68E-23 9.81E-23 8.94E-24
-6.0635E-02 4.1706E-01 6.9457E-01 6.9457E-01
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 12, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.8000000, 3.8000000, ]
- [ 3.8000000, 0.0000000, 3.8000000, ]
- [ 3.8000000, 3.8000000, 0.0000000, ]
lattice_lengths: [ 5.37401, 5.37401, 5.37401, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0974400E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 2.686E-23, diffor: 0.000E+00, }
etotal : -2.07028738E+00
entropy : 0.00000000E+00
fermie : 2.68859112E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 0.85350685
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 50.482E-25; max= 26.860E-24
reduced coordinates (array xred) for 1 atoms
0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
length scales= 7.600000000000 7.600000000000 7.600000000000 bohr
= 4.021746785284 4.021746785284 4.021746785284 angstroms
prteigrs : about to open file t26o_DS12_EIG
Eigenvalues (hartree) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-0.06064 0.41706 0.69457 0.69457
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 32 k points:
kpt# 1, nband= 4, wtk= 0.03125, kpt= 0.2500 0.2500 0.2500 (reduced coord)
-1.64997 11.34878 18.90008 18.90008
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 13 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 13, }
dimensions: {natom: 1, nkpt: 32, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 22, }
cutoff_energies: {ecut: 2.5, pawecutdg: -1.0, }
electrons: {nelect: 3.00000000E+00, charge: 0.00000000E+00, occopt: 4.00000000E+00, tsmear: 4.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 12.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.8000000 3.8000000 G(1)= -0.1315789 0.1315789 0.1315789
R(2)= 3.8000000 0.0000000 3.8000000 G(2)= 0.1315789 -0.1315789 0.1315789
R(3)= 3.8000000 3.8000000 0.0000000 G(3)= 0.1315789 0.1315789 -0.1315789
Unit cell volume ucvol= 1.0974400E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.5000 -0.2500 0.2500 ngfft= 12 12 12
ecut(hartree)= 2.500 => boxcut(ratio)= 2.89357
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.232975 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
================================================================================
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 -0.250000 0.250000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 21.504637915845 6.383E+00 2.671E-02 6.223E+03
ETOT 2 1.1959770191512 -2.031E+01 6.528E-03 3.150E+02
ETOT 3 0.11141149345732 -1.085E+00 2.022E-04 1.692E-02
ETOT 4 0.11138662786411 -2.487E-05 2.520E-08 3.251E-05
ETOT 5 0.11138655297748 -7.489E-08 9.114E-11 9.638E-08
ETOT 6 0.11138655277036 -2.071E-10 2.671E-13 2.080E-10
ETOT 7 0.11138655276996 -4.032E-13 5.264E-16 8.821E-13
At SCF step 7 vres2 = 8.82E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.621E-17; max= 52.642E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 7.20900263E+00 eigvalue= -8.66165390E-01 local= -3.51021938E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.76592009E+01 Hartree= 8.31733693E+00 xc= -2.45391208E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 3.40724083E+00 enl0= 2.90653918E+00 enl1= -2.36044434E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.50098225E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 1.17871550E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1113865528E+00 Ha. Also 2DEtotal= 0.303098224427E+01 eV
(2DErelax= -1.5009822532E+01 Ha. 2DEnonrelax= 1.5121209084E+01 Ha)
( non-var. 2DEtotal : 1.1138645745E-01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.500000 -0.250000 0.250000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dfpt_looppert : total number of electrons, from k and k+q
fully or partially occupied states are 3.000000E+00 and 3.000000E+00.
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-10, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 14.654094246131 2.332E+00 1.122E-02 4.192E+03
ETOT 2 1.0202084835283 -1.363E+01 1.133E-02 1.702E+02
ETOT 3 0.43501150253011 -5.852E-01 3.738E-04 1.614E-01
ETOT 4 0.43447422018990 -5.373E-04 3.221E-07 2.899E-03
ETOT 5 0.43446699674551 -7.223E-06 4.385E-09 3.691E-06
ETOT 6 0.43446698835359 -8.392E-09 1.086E-11 1.411E-08
ETOT 7 0.43446698832233 -3.126E-11 2.769E-14 3.006E-10
ETOT 8 0.43446698832154 -7.851E-13 3.044E-16 8.201E-13
At SCF step 8 vres2 = 8.20E-13 < tolvrs= 1.00E-10 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 52.963E-18; max= 30.444E-17
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 6.53372506E+00 eigvalue= -7.63672612E-01 local= -3.03941812E+00
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.03148696E+01 Hartree= 6.03288990E+00 xc= -1.83406806E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.49487921E+00 enl0= 2.46290265E+00 enl1= -3.45960633E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.18872379E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -3.00509626E+00 fr.nonlo= 6.33915029E+00 Ewald= 8.98765084E+00
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.4344669883E+00 Ha. Also 2DEtotal= 0.118224479937E+02 eV
(2DErelax= -1.1887237884E+01 Ha. 2DEnonrelax= 1.2321704872E+01 Ha)
( non-var. 2DEtotal : 4.3446691385E-01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.1113864633 0.0000000000
1 1 2 1 0.0556932317 0.0000000000
1 1 3 1 0.0556932317 0.0000000000
2 1 1 1 0.0556932317 0.0000000000
2 1 2 1 0.4344669050 0.0000000000
2 1 3 1 0.3787736733 0.0000000000
3 1 1 1 0.0556932317 0.0000000000
3 1 2 1 0.3787736733 0.0000000000
3 1 3 1 0.4344669050 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0262308638 0.0000000000
1 1 2 1 0.0000000000 -0.0000000000
1 1 3 1 0.0000000000 -0.0000000000
2 1 1 1 0.0000000000 -0.0000000000
2 1 2 1 0.0038568720 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 1 1 0.0000000000 -0.0000000000
3 1 2 1 0.0000000000 0.0000000000
3 1 3 1 0.0038568720 0.0000000000
Phonon wavevector (reduced coordinates) : 0.50000 -0.25000 0.25000
Phonon energies in Hartree :
2.801416E-04 2.801416E-04 7.305775E-04
Phonon energies in meV :
- 7.623041E+00 7.623041E+00 1.988003E+01
Phonon frequencies in cm-1 :
- 6.148398E+01 6.148398E+01 1.603432E+02
Phonon frequencies in Thz :
- 1.843243E+00 1.843243E+00 4.806969E+00
Phonon energies in Kelvin :
- 8.846162E+01 8.846162E+01 2.306979E+02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.6000000000E+00 7.6000000000E+00 7.6000000000E+00 Bohr
amu 2.69600000E+01
asr 0
chneut 0
ecut 2.50000000E+00 Hartree
enunit 2
etotal1 -2.0702873765E+00
etotal4 2.1145572035E-01
etotal5 1.0191757340E-06
etotal7 1.5187997290E+00
etotal9 2.2604293219E-01
etotal11 8.0206004812E-01
etotal13 4.3446698832E-01
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 1
getden4 1
getden5 1
getden6 1
getden7 1
getden8 1
getden9 1
getden10 1
getden11 1
getden12 1
getden13 1
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
getwfk5 2
getwfk6 2
getwfk7 2
getwfk8 2
getwfk9 2
getwfk10 2
getwfk11 2
getwfk12 2
getwfk13 2
getwfq1 0
getwfq2 0
getwfq3 0
getwfq4 3
getwfq5 0
getwfq6 0
getwfq7 6
getwfq8 0
getwfq9 8
getwfq10 0
getwfq11 10
getwfq12 0
getwfq13 12
iscf1 7
iscf2 -2
iscf3 -2
iscf4 7
iscf5 7
iscf6 -2
iscf7 7
iscf8 -2
iscf9 7
iscf10 -2
iscf11 7
iscf12 -2
iscf13 7
jdtset 1 2 3 4 5 6 7 8 9 10
11 12 13
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt5 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt6 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt7 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt8 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt9 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt10 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt11 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt12 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kpt13 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 2.50000000E-01 0.00000000E+00
2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 2.50000000E-01 5.00000000E-01
-2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
2.50000000E-01 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 -2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
2.50000000E-01 -2.50000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
2.50000000E-01 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 -2.50000000E-01
0.00000000E+00 2.50000000E-01 5.00000000E-01
2.50000000E-01 2.50000000E-01 -2.50000000E-01
0.00000000E+00 5.00000000E-01 -2.50000000E-01
0.00000000E+00 0.00000000E+00 -2.50000000E-01
kptopt1 1
kptopt2 3
kptopt3 3
kptopt4 3
kptopt5 3
kptopt6 3
kptopt7 3
kptopt8 3
kptopt9 3
kptopt10 3
kptopt11 3
kptopt12 3
kptopt13 3
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 1.52000000E+01
P mkmem1 2
P mkmem2 32
P mkmem3 32
P mkmem4 32
P mkmem5 32
P mkmem6 32
P mkmem7 32
P mkmem8 32
P mkmem9 32
P mkmem10 32
P mkmem11 32
P mkmem12 32
P mkmem13 32
P mkqmem1 2
P mkqmem2 32
P mkqmem3 32
P mkqmem4 32
P mkqmem5 32
P mkqmem6 32
P mkqmem7 32
P mkqmem8 32
P mkqmem9 32
P mkqmem10 32
P mkqmem11 32
P mkqmem12 32
P mkqmem13 32
P mk1mem1 2
P mk1mem2 32
P mk1mem3 32
P mk1mem4 32
P mk1mem5 32
P mk1mem6 32
P mk1mem7 32
P mk1mem8 32
P mk1mem9 32
P mk1mem10 32
P mk1mem11 32
P mk1mem12 32
P mk1mem13 32
natom 1
nband1 4
nband2 4
nband3 4
nband4 4
nband5 4
nband6 4
nband7 4
nband8 4
nband9 4
nband10 4
nband11 4
nband12 4
nband13 4
nbdbuf 2
ndtset 13
ngfft 12 12 12
nkpt1 2
nkpt2 32
nkpt3 32
nkpt4 32
nkpt5 32
nkpt6 32
nkpt7 32
nkpt8 32
nkpt9 32
nkpt10 32
nkpt11 32
nkpt12 32
nkpt13 32
nqpt1 0
nqpt2 0
nqpt3 1
nqpt4 1
nqpt5 1
nqpt6 1
nqpt7 1
nqpt8 1
nqpt9 1
nqpt10 1
nqpt11 1
nqpt12 1
nqpt13 1
nsym 48
ntypat 1
occ1 2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occ4 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occ5 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occ7 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occ9 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occ11 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occ13 2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 1.333332 0.000001 0.000000
2.000000 0.000002 0.000000 0.000000
occopt 4
optdriver1 0
optdriver2 0
optdriver3 0
optdriver4 1
optdriver5 1
optdriver6 0
optdriver7 1
optdriver8 0
optdriver9 1
optdriver10 0
optdriver11 1
optdriver12 0
optdriver13 1
prtpot1 0
prtpot2 0
prtpot3 0
prtpot4 1
prtpot5 1
prtpot6 0
prtpot7 1
prtpot8 0
prtpot9 1
prtpot10 0
prtpot11 1
prtpot12 0
prtpot13 1
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt4 2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt5 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt6 5.00000000E-01 5.00000000E-01 0.00000000E+00
qpt7 5.00000000E-01 5.00000000E-01 0.00000000E+00
qpt8 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt9 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt10 5.00000000E-01 2.50000000E-01 2.50000000E-01
qpt11 5.00000000E-01 2.50000000E-01 2.50000000E-01
qpt12 5.00000000E-01 -2.50000000E-01 2.50000000E-01
qpt13 5.00000000E-01 -2.50000000E-01 2.50000000E-01
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rfphon5 1
rfphon6 0
rfphon7 1
rfphon8 0
rfphon9 1
rfphon10 0
rfphon11 1
rfphon12 0
rfphon13 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 225
strten1 2.2214823626E-04 2.2214823626E-04 2.2214823626E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten7 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten9 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten11 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tolvrs1 1.00000000E-13
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 1.00000000E-10
tolvrs5 1.00000000E-10
tolvrs6 0.00000000E+00
tolvrs7 1.00000000E-10
tolvrs8 0.00000000E+00
tolvrs9 1.00000000E-10
tolvrs10 0.00000000E+00
tolvrs11 1.00000000E-10
tolvrs12 0.00000000E+00
tolvrs13 1.00000000E-10
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-22
tolwfr4 0.00000000E+00
tolwfr5 0.00000000E+00
tolwfr6 1.00000000E-22
tolwfr7 0.00000000E+00
tolwfr8 1.00000000E-22
tolwfr9 0.00000000E+00
tolwfr10 1.00000000E-22
tolwfr11 0.00000000E+00
tolwfr12 1.00000000E-22
tolwfr13 0.00000000E+00
tsmear 4.00000000E-02 Hartree
typat 1
wtk1 0.75000 0.25000
wtk2 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk3 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk4 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk5 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk6 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk7 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk8 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk9 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk10 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk11 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk12 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
wtk13 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
0.03125 0.03125
znucl 13.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems,
- using density-functional theory.
- M. Fuchs and, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- Comment: Some pseudopotential generated using the FHI code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#fuchs1999
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.6 wall= 7.1
================================================================================
Calculation completed.
.Delivered 44 WARNINGs and 79 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.6 wall= 7.1