abinit/tests/v2/Refs/t04.abo

978 lines
44 KiB
Plaintext

.Version 10.2.4.2 of ABINIT, released Nov 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Tue 19 Nov 2024.
- ( at 18h40 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_release-10.2/tests/TestBot_MPI1/v2_t04/t04.abi
- output file -> t04.abo
- root for input files -> t04i
- root for output files -> t04o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
mpw = 69 nfft = 4096 nkpt = 4
================================================================================
P This job should need less than 1.598 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.019 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 2
lnmax = 2 mgfft = 16 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 0 ntypat = 1
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
mpw = 69 nfft = 4096 nkpt = 4
================================================================================
P This job should need less than 1.098 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.019 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
DATASET 3 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 2 lnmax = 2
mgfft = 16 mpssoang = 3 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 0 ntypat = 1 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 4
- mkqmem = 4 mk1mem = 4 mpw = 69
nfft = 4096 nkpt = 4
================================================================================
P This job should need less than 1.542 Mbytes of memory.
P Max. in main chain + fourwf.f
P 30 blocks of mpw integer numbers, for 0.008 Mbytes.
P 156 blocks of mpw real(dp) numbers, for 0.082 Mbytes.
P 32 blocks of nfft real(dp) numbers, for 1.000 Mbytes.
P Additional real(dp) numbers, for 0.215 Mbytes.
P With residue estimated to be 0.237 Mbytes.
P
P Comparison of the memory needs of different chains
P Main chain + fourwf.f 1.542 Mbytes.
P Main chain + nonlop.f + opernl.f 1.478 Mbytes.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.019 Mbytes ; DEN or POT disk file : 0.033 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.00000000E+00
asr 0
chneut 0
diemac1 1.50000000E+00
diemac2 1.50000000E+00
diemac3 1.00000000E+00
diemix1 1.00000000E+00
diemix2 1.00000000E+00
diemix3 6.50000000E-01
ecut 1.20000000E+00 Hartree
- fftalg 512
getden1 0
getden2 1
getden3 0
getwfk1 0
getwfk2 1
getwfk3 1
getwfq1 0
getwfq2 0
getwfq3 2
iscf1 7
iscf2 -2
iscf3 7
ixc 3
jdtset 1 2 3
kpt 0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 1.25000000E-01
0.00000000E+00 0.00000000E+00 3.75000000E-01
kptopt 0
P mkmem 4
P mkqmem 4
P mk1mem 4
natom 2
nband 4
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
ndtset 3
ngfft 16 16 16
nkpt 4
nqpt1 0
nqpt2 1
nqpt3 1
nsym 1
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
prtpot1 0
prtpot2 0
prtpot3 1
prtvol1 0
prtvol2 0
prtvol3 10
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 5.00000000E-01
qpt3 0.00000000E+00 0.00000000E+00 5.00000000E-01
rfatpol1 1 2
rfatpol2 1 2
rfatpol3 1 1
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 0 0 1
rfphon1 0
rfphon2 0
rfphon3 1
spgroup 1
tolwfr1 1.00000000E-22
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-15
typat 1 1
wtk1 0.25000 0.25000 0.25000 0.25000
wtk2 1.00000 1.00000 1.00000 1.00000
wtk3 0.25000 0.25000 0.25000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 -7.9376581289E-01
0.0000000000E+00 0.0000000000E+00 7.9376581289E-01
xcart 0.0000000000E+00 0.0000000000E+00 -1.5000000000E+00
0.0000000000E+00 0.0000000000E+00 1.5000000000E+00
xred 0.0000000000E+00 0.0000000000E+00 -1.5000000000E-01
0.0000000000E+00 0.0000000000E+00 1.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 69, }
cutoff_energies: {ecut: 1.2, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 1.200 => boxcut(ratio)= 3.24462
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 3.158273 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_release-10.2/tests/Pspdir/14si.Hamann_mod
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_release-10.2/tests/Pspdir/14si.Hamann_mod
- Si psp produced from Hamann's atompp on 14 Feb 1990 ( !! OLD, for tests only )
- 14.00000 4.00000 900214 znucl, zion, pspdat
5 3 2 0 770 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
1.000000E-06 2.357045E-02 r1 and al (Hamman grid)
0 0.000 0.000 0 1.0529960 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 0.000 0.000 1 1.2715070 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
2 0.000 0.000 1 1.2715070 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.00000000000000 0.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
pspatm : epsatm= 28.17357484
--- l ekb(1:nproj) -->
1 -2.083263
2 -1.959803
pspatm: atomic psp has been read and splines computed
4.50777197E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 67.000 66.970
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-22, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -6.9150416124650 -6.915E+00 1.462E-03 6.218E+00
ETOT 2 -6.9259777419405 -1.094E-02 7.500E-07 2.779E-01
ETOT 3 -6.9267953259487 -8.176E-04 1.446E-05 3.310E-02
ETOT 4 -6.9268557036702 -6.038E-05 8.075E-07 1.305E-03
ETOT 5 -6.9268519666777 3.737E-06 2.125E-07 1.959E-03
ETOT 6 -6.9268610958403 -9.129E-06 7.078E-08 3.072E-06
ETOT 7 -6.9268611059422 -1.010E-08 7.956E-11 3.297E-08
ETOT 8 -6.9268611061301 -1.878E-10 6.635E-12 1.990E-09
ETOT 9 -6.9268611061406 -1.055E-11 2.688E-13 5.475E-11
ETOT 10 -6.9268611061409 -2.842E-13 7.791E-15 6.099E-12
ETOT 11 -6.9268611061410 -4.441E-14 5.155E-16 1.567E-13
ETOT 12 -6.9268611061410 -7.105E-15 2.207E-17 1.513E-14
ETOT 13 -6.9268611061410 1.510E-14 7.060E-19 6.377E-16
ETOT 14 -6.9268611061409 7.105E-15 1.941E-20 6.243E-17
ETOT 15 -6.9268611061410 -1.421E-14 6.543E-21 1.658E-18
ETOT 16 -6.9268611061410 2.665E-15 2.105E-22 9.117E-20
ETOT 17 -6.9268611061410 8.882E-16 9.270E-23 2.132E-20
At SCF step 17 max residual= 9.27E-23 < tolwfr= 1.00E-22 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.20420711E-04 sigma(3 2)= 3.90582387E-15
sigma(2 2)= 4.20420711E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.72628098E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 10.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0000000E+03
convergence: {deltae: 8.882E-16, res2: 2.132E-20, residm: 9.270E-23, diffor: null, }
etotal : -6.92686111E+00
entropy : 0.00000000E+00
fermie : -1.77958830E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.20420711E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.20420711E-04, 3.90582387E-15, ]
- [ 0.00000000E+00, 3.90582387E-15, -1.72628098E-03, ]
pressure_GPa: 8.6835E+00
xred :
- [ 0.0000E+00, 0.0000E+00, -1.5000E-01, Si]
- [ 0.0000E+00, 0.0000E+00, 1.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -2.07247609E-13, -7.20531852E-13, -7.07065849E-01, ]
- [ 2.07247609E-13, 7.20531852E-13, 7.07065849E-01, ]
force_length_stats: {min: 7.07065849E-01, max: 7.07065849E-01, mean: 7.07065849E-01, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.56048840
2 2.00000 1.56048840
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.039E-24; max= 92.697E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 -0.150000000000
0.000000000000 0.000000000000 0.150000000000
rms dE/dt= 4.0822E+00; max dE/dt= 7.0707E+00; dE/dt below (all hartree)
1 0.000000000021 -0.000000000010 7.070658488324
2 0.000000000017 -0.000000000025 -7.070658488283
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 -0.79376581288500
2 0.00000000000000 0.00000000000000 0.79376581288500
cartesian forces (hartree/bohr) at end:
1 -0.00000000000021 -0.00000000000072 -0.70706584883034
2 0.00000000000021 0.00000000000072 0.70706584883034
frms,max,avg= 4.0822466E-01 7.0706585E-01 -1.938E-12 1.756E-12 -2.029E-12 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000001066 -0.00000000003705 -36.35878475961758
2 0.00000000001066 0.00000000003705 36.35878475961758
frms,max,avg= 2.0991754E+01 3.6358785E+01 -9.966E-11 9.032E-11 -1.043E-10 e/A
length scales= 10.000000000000 10.000000000000 10.000000000000 bohr
= 5.291772085900 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t04o_DS1_EIG
Fermi (or HOMO) energy (hartree) = -0.17796 Average Vxc (hartree)= -0.17262
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= 0.0000 0.0000 -0.3750 (reduced coord)
-0.46574 -0.26054 -0.17796 -0.17796
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.53831572796743E+00
hartree : 2.48837358075384E+00
xc : -2.14467324355702E+00
Ewald energy : -3.40312010772530E+00
psp_core : 4.50777197418492E-01
local_psp : -6.74889803429584E+00
non_local_psp : -1.07636226702547E-01
total_energy : -6.92686110614096E+00
total_energy_eV : -1.88489476504106E+02
band_energy : -2.13659508067780E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.20420711E-04 sigma(3 2)= 3.90582387E-15
sigma(2 2)= 4.20420711E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.72628098E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 8.6835E+00 GPa]
- sigma(1 1)= 1.23692023E+01 sigma(3 2)= 1.14913286E-10
- sigma(2 2)= 1.23692023E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -5.07889312E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 69, }
cutoff_energies: {ecut: 1.2, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 1.200 => boxcut(ratio)= 3.24462
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 3.158273 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t04o_DS1_WFK
================================================================================
prteigrs : about to open file t04o_DS2_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.12500), residuals and eigenvalues=
4.11E-23 4.64E-23 6.26E-23 4.20E-23
-4.7216E-01 -2.2317E-01 -1.7953E-01 -1.7953E-01
Non-SCF case, kpt 2 ( 0.00000 0.00000 0.37500), residuals and eigenvalues=
3.60E-23 4.50E-23 8.30E-23 4.06E-23
-4.6574E-01 -2.6054E-01 -1.7796E-01 -1.7796E-01
Non-SCF case, kpt 3 ( 0.00000 0.00000 0.62500), residuals and eigenvalues=
3.60E-23 4.50E-23 8.30E-23 4.06E-23
-4.6574E-01 -2.6054E-01 -1.7796E-01 -1.7796E-01
Non-SCF case, kpt 4 ( 0.00000 0.00000 0.87500), residuals and eigenvalues=
4.11E-23 4.64E-23 6.41E-23 8.22E-23
-4.7216E-01 -2.2317E-01 -1.7953E-01 -1.7953E-01
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 10.0000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 10.0000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 10.0000000, ]
lattice_lengths: [ 10.00000, 10.00000, 10.00000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 1.0000000E+03
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 4.641E-23, diffor: 0.000E+00, }
etotal : -6.92686111E+00
entropy : 0.00000000E+00
fermie : -1.77958830E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, -1.5000E-01, Si]
- [ 0.0000E+00, 0.0000E+00, 1.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.56048840
2 2.00000 1.56048840
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 42.125E-24; max= 46.411E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 -0.150000000000
0.000000000000 0.000000000000 0.150000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 -0.79376581288500
2 0.00000000000000 0.00000000000000 0.79376581288500
length scales= 10.000000000000 10.000000000000 10.000000000000 bohr
= 5.291772085900 5.291772085900 5.291772085900 angstroms
prteigrs : about to open file t04o_DS2_EIG
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 4, wtk= 1.00000, kpt= 0.0000 0.0000 0.1250 (reduced coord)
-0.47216 -0.22317 -0.17953 -0.17953
kpt# 2, nband= 4, wtk= 1.00000, kpt= 0.0000 0.0000 0.3750 (reduced coord)
-0.46574 -0.26054 -0.17796 -0.17796
kpt# 3, nband= 4, wtk= 1.00000, kpt= 0.0000 0.0000 0.6250 (reduced coord)
-0.46574 -0.26054 -0.17796 -0.17796
kpt# 4, nband= 4, wtk= 1.00000, kpt= 0.0000 0.0000 0.8750 (reduced coord)
-0.47216 -0.22317 -0.17953 -0.17953
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 4, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 69, }
cutoff_energies: {ecut: 1.2, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: old Teter (4/91) fit to Ceperley-Alder data - ixc=3
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 10.0000000 0.0000000 0.0000000 G(1)= 0.1000000 0.0000000 0.0000000
R(2)= 0.0000000 10.0000000 0.0000000 G(2)= 0.0000000 0.1000000 0.0000000
R(3)= 0.0000000 0.0000000 10.0000000 G(3)= 0.0000000 0.0000000 0.1000000
Unit cell volume ucvol= 1.0000000E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.5000 ngfft= 16 16 16
ecut(hartree)= 1.200 => boxcut(ratio)= 3.04183
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 2.775826 Hartrees makes boxcut=2
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 3 ipert= 1
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.500000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 30, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-15, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 1231.0375453958 1.039E+03 2.494E-01 4.997E+05
ETOT 2 10187.074326022 8.956E+03 1.504E+00 4.491E+06
ETOT 3 122.31711389374 -1.006E+04 8.829E-01 2.664E+03
ETOT 4 117.26128885304 -5.056E+00 2.612E-03 2.260E+00
ETOT 5 117.25579642439 -5.492E-03 4.213E-06 4.531E-01
ETOT 6 117.25506805909 -7.284E-04 1.118E-07 7.044E-03
ETOT 7 117.25505466941 -1.339E-05 3.277E-09 2.378E-05
ETOT 8 117.25505461883 -5.058E-08 3.176E-11 1.296E-06
ETOT 9 117.25505461654 -2.295E-09 9.548E-13 8.098E-09
ETOT 10 117.25505461652 -1.714E-11 1.043E-14 2.066E-09
ETOT 11 117.25505461652 -4.817E-12 9.311E-16 2.898E-11
At SCF step 11 max residual= 9.31E-16 < tolwfr= 1.00E-15 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 44.796E-17; max= 93.115E-17
0.0000 0.0000 -0.3750 1 8.17509E-16 kpt; spin; max resid(k); each band:
2.86E-16 8.18E-16 2.84E-16 2.84E-16
0.0000 0.0000 -0.1250 1 9.31150E-16 kpt; spin; max resid(k); each band:
9.31E-16 5.19E-16 2.32E-16 2.32E-16
0.0000 0.0000 0.1250 1 9.30414E-16 kpt; spin; max resid(k); each band:
9.30E-16 5.19E-16 2.32E-16 2.32E-16
0.0000 0.0000 0.3750 1 8.16126E-16 kpt; spin; max resid(k); each band:
2.85E-16 8.16E-16 2.84E-16 2.84E-16
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 4.59461930E+01 eigvalue= 1.83444776E+01 local= -3.12816805E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.46085904E+02 Hartree= 5.07846868E+01 xc= -7.91547094E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= -1.01146876E+00 enl1= -3.64757056E+00
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -7.48667373E+01
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.78193291E+01 fr.nonlo= 1.05971498E+00 Ewald= 1.53242748E+02
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = 0.00000000E+00 frxc 2 = 0.00000000E+00
Resulting in :
2DEtotal= 0.1172550546E+03 Ha. Also 2DEtotal= 0.319067230070E+04 eV
(2DErelax= -7.4866737320E+01 Ha. 2DEnonrelax= 1.9212179194E+02 Ha)
( non-var. 2DEtotal : 1.1725505472E+02 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
Ewald part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 -0.0000000000 -0.0000000000
2 1 3 1 -0.0000000000 -0.0000000000
3 1 3 1 153.2427478424 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
2 2 3 1 -0.0000000000 0.0000000000
3 2 3 1 -102.8618263090 0.0000000000
Frozen wf local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 -0.0000000004 0.0000000000
2 1 3 1 -0.0000000001 0.0000000000
3 1 3 1 37.8193291123 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
Frozen wf non-local part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 -0.0000000001 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 3 1 1.0597149814 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
Frozen wf xc core (1) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
Frozen wf xc core (2) part of the dynamical matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 0.0000000000 0.0000000000
2 1 3 1 0.0000000000 0.0000000000
3 1 3 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
3 2 3 1 0.0000000000 0.0000000000
Non-stationary local part of the 2-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 0.0000000004 -0.0000000001
2 1 3 1 -0.0000000002 -0.0000000000
3 1 3 1 -73.0429519422 -0.0000000125
1 2 3 1 -0.0000000001 0.0000000001
2 2 3 1 0.0000000001 0.0000000000
3 2 3 1 -16.4064743304 -0.0000000125
Non-stationary non-local part of the 2nd-order matrix
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 0.0000000000 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
3 1 3 1 -1.8237852782 -0.0000000000
1 2 3 1 -0.0000000000 -0.0000000000
2 2 3 1 0.0000000000 -0.0000000000
3 2 3 1 0.6728357658 -0.0000000000
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 -0.0000000001 -0.0000000001
2 1 3 1 -0.0000000003 -0.0000000000
3 1 1 1 -0.0000000001 0.0000000001
3 1 2 1 -0.0000000003 0.0000000000
3 1 3 1 117.2550547157 0.0000000000
3 1 1 2 -0.0000000001 -0.0000000001
3 1 2 2 0.0000000001 -0.0000000000
3 1 3 2 -118.5954648735 0.0000000125
1 2 3 1 -0.0000000001 0.0000000001
2 2 3 1 0.0000000001 0.0000000000
3 2 3 1 -118.5954648735 -0.0000000125
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 3 1 -0.0000000000 -0.0000000000
2 1 3 1 -0.0000000000 -0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 3 1 1.1725505472 0.0000000000
3 1 1 2 -0.0000000000 -0.0000000000
3 1 2 2 0.0000000000 -0.0000000000
3 1 3 2 -1.1859546487 0.0000000001
1 2 3 1 -0.0000000000 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
3 2 3 1 -1.1859546487 -0.0000000001
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.50000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
2.536213E-02
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- 5.566344E+03
chkph3 : WARNING -
Dynamical matrix incomplete, phonon frequencies may be wrong, see the log file for more explanations.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0000000000E+01 1.0000000000E+01 1.0000000000E+01 Bohr
amu 1.00000000E+00
asr 0
chneut 0
diemac1 1.50000000E+00
diemac2 1.50000000E+00
diemac3 1.00000000E+00
diemix1 1.00000000E+00
diemix2 1.00000000E+00
diemix3 6.50000000E-01
ecut 1.20000000E+00 Hartree
etotal1 -6.9268611061E+00
etotal3 1.1725505462E+02
fcart1 -2.0724760942E-13 -7.2053185237E-13 -7.0706584883E-01
2.0724760942E-13 7.2053185237E-13 7.0706584883E-01
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden1 0
getden2 1
getden3 0
getwfk1 0
getwfk2 1
getwfk3 1
getwfq1 0
getwfq2 0
getwfq3 2
iscf1 7
iscf2 -2
iscf3 7
ixc 3
jdtset 1 2 3
kpt 0.00000000E+00 0.00000000E+00 -3.75000000E-01
0.00000000E+00 0.00000000E+00 -1.25000000E-01
0.00000000E+00 0.00000000E+00 1.25000000E-01
0.00000000E+00 0.00000000E+00 3.75000000E-01
kptopt 0
P mkmem 4
P mkqmem 4
P mk1mem 4
natom 2
nband 4
nbdbuf1 0
nbdbuf2 2
nbdbuf3 0
ndtset 3
ngfft 16 16 16
nkpt 4
nqpt1 0
nqpt2 1
nqpt3 1
nsym 1
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
prtpot1 0
prtpot2 0
prtpot3 1
prtvol1 0
prtvol2 0
prtvol3 10
qpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt2 0.00000000E+00 0.00000000E+00 5.00000000E-01
qpt3 0.00000000E+00 0.00000000E+00 5.00000000E-01
rfatpol1 1 2
rfatpol2 1 2
rfatpol3 1 1
rfdir1 1 1 1
rfdir2 1 1 1
rfdir3 0 0 1
rfphon1 0
rfphon2 0
rfphon3 1
spgroup 1
strten1 4.2042071067E-04 4.2042071065E-04 -1.7262809752E-03
3.9058238732E-15 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
tolwfr1 1.00000000E-22
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-15
typat 1 1
wtk1 0.25000 0.25000 0.25000 0.25000
wtk2 1.00000 1.00000 1.00000 1.00000
wtk3 0.25000 0.25000 0.25000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 -7.9376581289E-01
0.0000000000E+00 0.0000000000E+00 7.9376581289E-01
xcart 0.0000000000E+00 0.0000000000E+00 -1.5000000000E+00
0.0000000000E+00 0.0000000000E+00 1.5000000000E+00
xred 0.0000000000E+00 0.0000000000E+00 -1.5000000000E-01
0.0000000000E+00 0.0000000000E+00 1.5000000000E-01
znucl 14.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [3] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 0.7 wall= 0.7
================================================================================
Calculation completed.
.Delivered 37 WARNINGs and 22 COMMENTs to log file.
+Overall time at end (sec) : cpu= 0.7 wall= 0.7