abinit/tests/tutorial/Refs/tpositron_6.abo

939 lines
55 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h06 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/tutorial_tpositron_6/tpositron_6.abi
- output file -> tpositron_6.abo
- root for input files -> tpositron_6i
- root for output files -> tpositron_6o
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 12
lnmax = 6 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 14 mffmem = 1 mkmem = 8
mpw = 303 nfft = 8000 nkpt = 8
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 27 nfftf = 19683
================================================================================
P This job should need less than 6.526 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.520 Mbytes ; DEN or POT disk file : 0.152 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 12
lnmax = 6 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 14 mffmem = 1 mkmem = 1
mpw = 142 nfft = 8000 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 27 nfftf = 19683
================================================================================
P This job should need less than 5.840 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.032 Mbytes ; DEN or POT disk file : 0.152 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0261212902E+01 1.0261212902E+01 1.0261212902E+01 Bohr
amu 2.80855000E+01
ecut 8.00000000E+00 Hartree
- fftalg 512
getden1 0
getden2 1
istwfk1 2 0 3 0 0 0 7 0
istwfk2 2
ixc -1012
jdtset 1 2
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 2.50000000E-01
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 0
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen1 2.90230929E+01
kptrlen2 3.00000000E+01
P mkmem1 8
P mkmem2 1
natom 2
nband1 14
nband2 14
ndtset 2
ngfft 20 20 20
ngfftdg 27 27 27
nkpt1 8
nkpt2 1
nstep 50
nsym 48
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
0.000000 0.000000
occ2 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optforces 0
optstress 0
pawecutdg 1.50000000E+01 Hartree
positron1 0
positron2 1
prteig 0
prtwf 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs 1.00000000E-08
typat 1 1
useylm 1
wtk1 0.01563 0.12500 0.06250 0.09375 0.37500 0.18750
0.04688 0.09375
wtk2 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3575000000E+00 1.3575000000E+00 1.3575000000E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5653032254E+00 2.5653032254E+00 2.5653032254E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 8, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 303, }
cutoff_energies: {ecut: 8.0, pawecutdg: 15.0, }
electrons: {nelect: 2.40000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1306065 5.1306065 G(1)= -0.0974544 0.0974544 0.0974544
R(2)= 5.1306065 0.0000000 5.1306065 G(2)= 0.0974544 -0.0974544 0.0974544
R(3)= 5.1306065 5.1306065 0.0000000 G(3)= 0.0974544 0.0974544 -0.0974544
Unit cell volume ucvol= 2.7010716E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.16489
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 27 27 27
ecut(hartree)= 15.000 => boxcut(ratio)= 2.05836
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 12), orbitals= 0 0 0 1 1 1
Spheres core radius: rc_sph= 1.60149249
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.43309E-03 BB= 0.60633E-02
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.40144648
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1772 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
4.61043961E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 291.297 291.192
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 50, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -203.14682936099 -2.031E+02 8.827E-01 1.012E+00
ETOT 2 -203.64713301399 -5.003E-01 3.221E-02 3.226E-01
ETOT 3 -203.64362155166 3.511E-03 9.329E-04 4.032E-02
ETOT 4 -203.64311240557 5.091E-04 6.372E-04 2.020E-03
ETOT 5 -203.64312293862 -1.053E-05 1.854E-04 4.197E-05
ETOT 6 -203.64312332936 -3.907E-07 2.094E-04 2.666E-06
ETOT 7 -203.64312335426 -2.490E-08 4.784E-05 7.029E-07
ETOT 8 -203.64312335472 -4.554E-10 5.659E-05 1.121E-08
ETOT 9 -203.64312335464 7.495E-11 1.211E-05 2.564E-10
At SCF step 9 nres2 = 2.56E-10 < tolvrs= 1.00E-08 =>converged.
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1306065, 5.1306065, ]
- [ 5.1306065, 0.0000000, 5.1306065, ]
- [ 5.1306065, 5.1306065, 0.0000000, ]
lattice_lengths: [ 7.25577, 7.25577, 7.25577, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7010716E+02
convergence: {deltae: 7.495E-11, res2: 2.564E-10, residm: 1.211E-05, diffor: 0.000E+00, }
etotal : -2.03643123E+02
entropy : 0.00000000E+00
fermie : 2.14886635E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.60149 8.85987472
2 1.60149 8.86009874
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 14.088998693245253
Compensation charge over fine fft grid = 14.089190858601716
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-4.36146 0.47755 1.20610 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.47755 0.34003 1.32201 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.20610 1.32201 4.92430 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 -3.18421 0.00000 0.00000 0.10853 0.00000 0.00000 -0.18401 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -3.18421 0.00000 0.00000 0.10853 0.00000 0.00000 -0.18401 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -3.18421 0.00000 0.00000 0.10853 0.00000 0.00000 -0.18401
0.00000 0.00000 0.00000 0.10853 0.00000 0.00000 0.12420 0.00000 0.00000 0.98741 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.10853 0.00000 0.00000 0.12420 0.00000 0.00000 0.98741 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.10853 0.00000 0.00000 0.12420 0.00000 0.00000 0.98741
0.00000 0.00000 0.00000 -0.18401 0.00000 0.00000 0.98741 0.00000 0.00000 7.02704 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.18401 0.00000 0.00000 0.98741 0.00000 0.00000 7.02704 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.18401 0.00000 0.00000 0.98741 0.00000 0.00000 7.02704
Atom # 2
-4.36146 0.47755 1.20610 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.47755 0.34003 1.32201 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.20610 1.32201 4.92430 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 -3.18421 0.00000 0.00000 0.10853 0.00000 0.00000 -0.18401 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -3.18421 0.00000 0.00000 0.10853 0.00000 0.00000 -0.18401 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -3.18421 0.00000 0.00000 0.10853 0.00000 0.00000 -0.18401
0.00000 0.00000 0.00000 0.10853 0.00000 0.00000 0.12420 0.00000 0.00000 0.98741 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.10853 0.00000 0.00000 0.12420 0.00000 0.00000 0.98741 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.10853 0.00000 0.00000 0.12420 0.00000 0.00000 0.98741
0.00000 0.00000 0.00000 -0.18401 0.00000 0.00000 0.98741 0.00000 0.00000 7.02704 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.18401 0.00000 0.00000 0.98741 0.00000 0.00000 7.02704 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.18401 0.00000 0.00000 0.98741 0.00000 0.00000 7.02704
Augmentation waves occupancies Rhoij:
Atom # 1
1.99158 -0.16226 0.06870 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.16226 1.81181 -0.06817 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.06870 -0.06817 0.00544 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 1.97153 0.00000 0.00000 -0.27248 0.00000 0.00000 0.05929 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 1.97153 0.00000 0.00000 -0.27248 0.00000 0.00000 0.05929 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 1.97153 0.00000 0.00000 -0.27248 0.00000 0.00000 0.05929
0.00000 0.00000 0.00000 -0.27248 0.00000 0.00000 1.30508 0.00000 0.00000 -0.02604 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.27248 0.00000 0.00000 1.30508 0.00000 0.00000 -0.02604 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.27248 0.00000 0.00000 1.30508 0.00000 0.00000 -0.02604
0.00000 0.00000 0.00000 0.05929 0.00000 0.00000 -0.02604 0.00000 0.00000 0.00214 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.05929 0.00000 0.00000 -0.02604 0.00000 0.00000 0.00214 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.05929 0.00000 0.00000 -0.02604 0.00000 0.00000 0.00214
Atom # 2
1.99158 -0.16226 0.06870 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.16226 1.81181 -0.06817 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.06870 -0.06817 0.00544 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 1.97153 0.00000 0.00000 -0.27248 0.00000 0.00000 0.05929 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 1.97153 0.00000 0.00000 -0.27248 0.00000 0.00000 0.05929 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 1.97153 0.00000 0.00000 -0.27248 0.00000 0.00000 0.05929
0.00000 0.00000 0.00000 -0.27248 0.00000 0.00000 1.30508 0.00000 0.00000 -0.02604 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.27248 0.00000 0.00000 1.30508 0.00000 0.00000 -0.02604 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.27248 0.00000 0.00000 1.30508 0.00000 0.00000 -0.02604
0.00000 0.00000 0.00000 0.05929 0.00000 0.00000 -0.02604 0.00000 0.00000 0.00214 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.05929 0.00000 0.00000 -0.02604 0.00000 0.00000 0.00214 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.05929 0.00000 0.00000 -0.02604 0.00000 0.00000 0.00214
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.819E-08; max= 12.107E-06
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35750000000000 1.35750000000000 1.35750000000000
length scales= 10.261212901569 10.261212901569 10.261212901569 bohr
= 5.430000000000 5.430000000000 5.430000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.21489 Average Vxc (hartree)= -0.34879
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 14, wtk= 0.01563, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-4.74460 -4.73832 -3.12448 -3.12448 -3.12448 -3.08630 -3.08630 -3.08630
-0.22523 0.21489 0.21489 0.21489 0.30738 0.30738
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 8.20730033291436E+00
hartree : 5.78460176094821E+01
xc : -3.35019835498968E+00
Ewald energy : -7.55952464681649E+01
psp_core : 1.70689274860386E+00
local_psp : -1.71103896592391E+02
spherical_terms : -2.13539815271175E+01
total_energy : -2.03643112251663E+02
total_energy_eV : -5.54141089792507E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.61491844979120E+01
Ewald energy : -7.55952464681649E+01
psp_core : 1.70689274860386E+00
xc_dc : -5.68216536399878E+01
spherical_terms : -1.67839314971835E+01
total_energy_dc : -2.03643123354644E+02
total_energy_dc_eV : -5.54141120005256E+03
...
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 14, nsppol: 1, nspinor: 1, nspden: 1, mpw: 142, }
cutoff_energies: {ecut: 8.0, pawecutdg: 15.0, }
electrons: {nelect: 1.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1306065 5.1306065 G(1)= -0.0974544 0.0974544 0.0974544
R(2)= 5.1306065 0.0000000 5.1306065 G(2)= 0.0974544 -0.0974544 0.0974544
R(3)= 5.1306065 5.1306065 0.0000000 G(3)= 0.0974544 0.0974544 -0.0974544
Unit cell volume ucvol= 2.7010716E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.000 => boxcut(ratio)= 2.16489
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 27 27 27
ecut(hartree)= 15.000 => boxcut(ratio)= 2.05836
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Si_paw_pw_12el.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 12), orbitals= 0 0 0 1 1 1
Spheres core radius: rc_sph= 1.60149249
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.43309E-03 BB= 0.60633E-02
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.40144648
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1772 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 283.000 283.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 50, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -204.11290799566 -2.041E+02 3.649E+01 7.393E-02
ETOT 2 -204.11799753632 -5.090E-03 6.202E+01 3.053E-02
ETOT 3 -204.11811237623 -1.148E-04 3.587E+01 1.040E-04
ETOT 4 -204.11812402937 -1.165E-05 2.434E+00 4.324E-06
ETOT 5 -204.11812840780 -4.378E-06 9.254E-01 7.550E-07
ETOT 6 -204.11812947967 -1.072E-06 3.231E-02 1.720E-08
ETOT 7 -204.11812974182 -2.621E-07 1.009E-02 1.332E-08
ETOT 8 -204.11812980886 -6.704E-08 2.055E-04 2.182E-09
At SCF step 8 nres2 = 2.18E-09 < tolvrs= 1.00E-08 =>converged.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1306065, 5.1306065, ]
- [ 5.1306065, 0.0000000, 5.1306065, ]
- [ 5.1306065, 5.1306065, 0.0000000, ]
lattice_lengths: [ 7.25577, 7.25577, 7.25577, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7010716E+02
convergence: {deltae: -6.704E-08, res2: 2.182E-09, residm: 2.055E-04, diffor: 0.000E+00, }
etotal : -2.04118130E+02
entropy : 0.00000000E+00
fermie : -4.75006454E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.60149 0.01086526
2 1.60149 0.01092660
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.000258302779581
Compensation charge over fine fft grid = 0.000259272466926
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
-Note: these are the positronic Dij
Atom # 1
27.66201 -8.18194 -24.25856 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-8.18194 2.31744 6.64833 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-24.25856 6.64833 18.41981 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 24.92419 0.00000 0.00000 -5.35258 0.00000 0.00000 -32.93716 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 24.92419 0.00000 0.00000 -5.35258 0.00000 0.00000 -32.93716 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 24.92419 0.00000 0.00000 -5.35258 0.00000 0.00000 -32.93716
0.00000 0.00000 0.00000 -5.35258 0.00000 0.00000 1.11802 0.00000 0.00000 6.72635 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -5.35258 0.00000 0.00000 1.11802 0.00000 0.00000 6.72635 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -5.35258 0.00000 0.00000 1.11802 0.00000 0.00000 6.72635
0.00000 0.00000 0.00000 -32.93716 0.00000 0.00000 6.72635 0.00000 0.00000 38.97949 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -32.93716 0.00000 0.00000 6.72635 0.00000 0.00000 38.97949 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -32.93716 0.00000 0.00000 6.72635 0.00000 0.00000 38.97949
Atom # 2
27.66201 -8.18194 -24.25856 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-8.18194 2.31744 6.64833 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-24.25856 6.64833 18.41981 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 24.92419 0.00000 0.00000 -5.35258 0.00000 0.00000 -32.93716 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 24.92419 0.00000 0.00000 -5.35258 0.00000 0.00000 -32.93716 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 24.92419 0.00000 0.00000 -5.35258 0.00000 0.00000 -32.93716
0.00000 0.00000 0.00000 -5.35258 0.00000 0.00000 1.11802 0.00000 0.00000 6.72635 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -5.35258 0.00000 0.00000 1.11802 0.00000 0.00000 6.72635 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -5.35258 0.00000 0.00000 1.11802 0.00000 0.00000 6.72635
0.00000 0.00000 0.00000 -32.93716 0.00000 0.00000 6.72635 0.00000 0.00000 38.97949 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -32.93716 0.00000 0.00000 6.72635 0.00000 0.00000 38.97949 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -32.93716 0.00000 0.00000 6.72635 0.00000 0.00000 38.97949
Augmentation waves occupancies Rhoij:
-Note: these are the positronic Rhoij
Atom # 1
0.00179 0.01575 -0.00329 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01575 0.13843 -0.02888 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00329 -0.02888 0.00603 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Atom # 2
0.00179 0.01575 -0.00329 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01575 0.13843 -0.02888 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00329 -0.02888 0.00603 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
--------------------------------------------------------------------------------
Results for electron-positron annihilation:
2 computations of positron lifetime have been performed (with different enhancement factors).
########## Lifetime computation 1
# Zero-positron density limit of Arponen and Pajanne provided by Boronski & Nieminen
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
# Enhancement factor of Boronski & Nieminen
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
Positron lifetime (ps) = 2.46140614E+02
Positron lifetime with IPM for core elec. (ps) = 2.46156419E+02
Annihilation rate (ns-1) = 4.06271839E+00
Annihilation rate with IPM for core elec. (ns-1) = 4.06245754E+00
Annihilation rate core/valence decomposition:
Core contribution to ann.rate (ns-1) = 2.74346972E-03
Valence contribution to ann.rate (ns-1) = 4.05997492E+00
Core contribution to ann.rate with IPM (ns-1) = 2.44510900E-03
Valence contribution to ann.rate with IPM (ns-1) = 4.06001243E+00
Annihilation rate PAW decomposition:
Plane-wave contribution to ann.rate (ns-1) = 3.99080819E+00
Plane-wave valence contribution to ann.rate (ns-1) = 3.99080819E+00
On-site core contribution to ann.rate (ns-1) = 2.74346972E-03
On-site valence contribution to ann.rate (ns-1) = 6.91667400E-02
Plane-wave contribution to ann.rate with IPM (ns-1) = 3.99080819E+00
Plane-wave core contrb. to ann.rate with IPM (ns-1) = 0.00000000E+00
########## Lifetime computation 2
# Zero-positron density limit of Arponen and Pajanne provided by Boronski & Nieminen
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
# Enhancement factor of Boronski & Nieminen IN THE RPA LIMIT
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
Positron lifetime (ps) = 2.11470610E+02
Positron lifetime with IPM for core elec. (ps) = 2.11482276E+02
Annihilation rate (ns-1) = 4.72878950E+00
Annihilation rate with IPM for core elec. (ns-1) = 4.72852865E+00
Annihilation rate core/valence decomposition:
Core contribution to ann.rate (ns-1) = 2.74346980E-03
Valence contribution to ann.rate (ns-1) = 4.72604603E+00
Core contribution to ann.rate with IPM (ns-1) = 2.44510900E-03
Valence contribution to ann.rate with IPM (ns-1) = 4.72608354E+00
Annihilation rate PAW decomposition:
Plane-wave contribution to ann.rate (ns-1) = 4.65687459E+00
Plane-wave valence contribution to ann.rate (ns-1) = 4.65687459E+00
On-site core contribution to ann.rate (ns-1) = 2.74346980E-03
On-site valence contribution to ann.rate (ns-1) = 6.91714435E-02
Plane-wave contribution to ann.rate with IPM (ns-1) = 4.65687459E+00
Plane-wave core contrb. to ann.rate with IPM (ns-1) = 0.00000000E+00
(*) IPM=Independent particle Model
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.488E-06; max= 20.555E-05
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35750000000000 1.35750000000000 1.35750000000000
length scales= 10.261212901569 10.261212901569 10.261212901569 bohr
= 5.430000000000 5.430000000000 5.430000000000 angstroms
Fermi (or HOMO) energy (hartree) = -0.47501 Average Vxc (hartree)= -0.31670
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 14, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.47501 0.04263 0.04263 0.04263 0.05187 0.08613 0.08613 0.08613
0.24236 0.24236 0.30469 0.36919 0.36919 0.36921
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 6.01796091036134E-02
local_psp : -1.00782299814298E+00
spherical_terms : -2.96660152235424E-03
positronic : -9.50609990561744E-01
electronic : -2.03643123354644E+02
electron_positron_interaction: 4.75624772380981E-01
total_energy : -2.04118108572825E+02
total_energy_eV : -5.55433620515230E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -4.75006454214061E-01
spherical_terms : 0.00000000000000E+00
electron_positron_dc: -4.75624772381133E-01
positronic : -9.50631226595205E-01
electronic : -2.03643123354644E+02
electron_positron_interaction: 4.75624772380981E-01
total_energy_dc : -2.04118129808858E+02
total_energy_dc_eV : -5.55433678301416E+03
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0261212902E+01 1.0261212902E+01 1.0261212902E+01 Bohr
amu 2.80855000E+01
ecut 8.00000000E+00 Hartree
etotal1 -2.0364312335E+02
etotal2 -2.0411812981E+02
fcart1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
fcart2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
- fftalg 512
getden1 0
getden2 1
istwfk1 2 0 3 0 0 0 7 0
istwfk2 2
ixc -1012
jdtset 1 2
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 2.50000000E-01
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 0
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen1 2.90230929E+01
kptrlen2 3.00000000E+01
P mkmem1 8
P mkmem2 1
natom 2
nband1 14
nband2 14
ndtset 2
ngfft 20 20 20
ngfftdg 27 27 27
nkpt1 8
nkpt2 1
nstep 50
nsym 48
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
0.000000 0.000000
occ2 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000
optforces 0
optstress 0
pawecutdg 1.50000000E+01 Hartree
positron1 0
positron2 1
prteig 0
prtwf 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
strten1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
strten2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs 1.00000000E-08
typat 1 1
useylm 1
wtk1 0.01563 0.12500 0.06250 0.09375 0.37500 0.18750
0.04688 0.09375
wtk2 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3575000000E+00 1.3575000000E+00 1.3575000000E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5653032254E+00 2.5653032254E+00 2.5653032254E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Two-component density functional theory within the projector augmented-wave approach:
- Accurate and self-consistent computations of positron lifetimes and momentum distributions
- J. Wiktor, G. Jomard and M. Torrent, Phys. Rev. B 92, 125113 (2015).
- Comment: to be cited in case the computation of electron-positron annihilation properties within the 2-component DFT, i.e. positron/=0.
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#wiktor2015
-
- [2] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [3] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [4] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.5 wall= 3.5
================================================================================
Calculation completed.
.Delivered 2 WARNINGs and 6 COMMENTs to log file.
+Overall time at end (sec) : cpu= 2.5 wall= 3.5