abinit/tests/tutorial/Refs/tpositron_2.abo

1116 lines
61 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h06 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI1/tutorial_tpositron_2/tpositron_2.abi
- output file -> tpositron_2.abo
- root for input files -> tpositron_2i
- root for output files -> tpositron_2o
- inpspheads : Reading pseudopotential header in XML form from
- /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 40 mpssoang = 2 mqgrid = 3001
natom = 15 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 36 mffmem = 1 mkmem = 3
mpw = 1173 nfft = 64000 nkpt = 3
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 54 nfftf = 157464
================================================================================
P This job should need less than 36.645 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.935 Mbytes ; DEN or POT disk file : 1.203 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 40 mpssoang = 2 mqgrid = 3001
natom = 15 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 36 mffmem = 1 mkmem = 1
mpw = 1139 nfft = 64000 nkpt = 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 54 nfftf = 157464
================================================================================
P This job should need less than 35.061 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.628 Mbytes ; DEN or POT disk file : 1.203 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0261212902E+01 1.0261212902E+01 1.0261212902E+01 Bohr
amu 2.80855000E+01
chkprim 0
ecut 8.00000000E+00 Hartree
- fftalg 512
getden1 0
getden2 1
istwfk1 2 3 7
istwfk2 2
ixc -1012
jdtset 1 2
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 0
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen1 2.90230929E+01
kptrlen2 3.00000000E+01
P mkmem1 3
P mkmem2 1
natom 15
nband1 36
nband2 36
ndtset 2
ngfft 40 40 40
ngfftdg 54 54 54
nkpt1 3
nkpt2 1
nstep 50
nsym 24
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ2 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
optforces 0
optstress 0
pawecutdg 1.50000000E+01 Hartree
positron1 0
positron2 1
prteig 0
prtwf 0
rprim 0.0000000000E+00 1.0000000000E+00 1.0000000000E+00
1.0000000000E+00 0.0000000000E+00 1.0000000000E+00
1.0000000000E+00 1.0000000000E+00 0.0000000000E+00
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 -0.0000000
0.5000000 0.0000000 -0.0000000 -0.0000000 0.0000000 0.5000000
0.5000000 0.0000000 -0.0000000 0.0000000 0.5000000 -0.0000000
0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.5000000
0.5000000 0.0000000 -0.0000000 0.0000000 0.5000000 -0.0000000
-0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000
-0.0000000 0.0000000 0.5000000 0.0000000 0.5000000 -0.0000000
0.5000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000
-0.0000000 0.0000000 0.5000000 0.0000000 0.5000000 -0.0000000
0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 -0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 -0.0000000
-0.0000000 0.0000000 0.5000000 0.5000000 0.0000000 -0.0000000
tolvrs 1.00000000E-08
typat 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
useylm 1
wtk1 0.12500 0.50000 0.37500
wtk2 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7150000000E+00 2.7150000000E+00 -2.4293545990E-33
2.7150000000E+00 -2.4293545990E-33 2.7150000000E+00
-2.4293545990E-33 2.7150000000E+00 2.7150000000E+00
5.4300000000E+00 2.7150000000E+00 2.7150000000E+00
2.7150000000E+00 5.4300000000E+00 2.7150000000E+00
2.7150000000E+00 2.7150000000E+00 5.4300000000E+00
5.4300000000E+00 5.4300000000E+00 5.4300000000E+00
1.3575000000E+00 1.3575000000E+00 1.3575000000E+00
4.0725000000E+00 4.0725000000E+00 1.3575000000E+00
4.0725000000E+00 1.3575000000E+00 4.0725000000E+00
1.3575000000E+00 4.0725000000E+00 4.0725000000E+00
6.7875000000E+00 4.0725000000E+00 4.0725000000E+00
4.0725000000E+00 6.7875000000E+00 4.0725000000E+00
4.0725000000E+00 4.0725000000E+00 6.7875000000E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.1306064508E+00 5.1306064508E+00 -4.5908148717E-33
5.1306064508E+00 -4.5908148717E-33 5.1306064508E+00
-4.5908148717E-33 5.1306064508E+00 5.1306064508E+00
1.0261212902E+01 5.1306064508E+00 5.1306064508E+00
5.1306064508E+00 1.0261212902E+01 5.1306064508E+00
5.1306064508E+00 5.1306064508E+00 1.0261212902E+01
1.0261212902E+01 1.0261212902E+01 1.0261212902E+01
2.5653032254E+00 2.5653032254E+00 2.5653032254E+00
7.6959096762E+00 7.6959096762E+00 2.5653032254E+00
7.6959096762E+00 2.5653032254E+00 7.6959096762E+00
2.5653032254E+00 7.6959096762E+00 7.6959096762E+00
1.2826516127E+01 7.6959096762E+00 7.6959096762E+00
7.6959096762E+00 1.2826516127E+01 7.6959096762E+00
7.6959096762E+00 7.6959096762E+00 1.2826516127E+01
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-9.8857149303E-18 9.8857149303E-18 5.0000000000E-01
9.8857149303E-18 5.0000000000E-01 -9.8857149303E-18
5.0000000000E-01 9.8857149303E-18 -9.8857149303E-18
9.8857149303E-18 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 9.8857149303E-18 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 -1.9771429861E-17
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
1.2500000000E-01 1.2500000000E-01 1.2500000000E-01
1.2500000000E-01 1.2500000000E-01 6.2500000000E-01
1.2500000000E-01 6.2500000000E-01 1.2500000000E-01
6.2500000000E-01 1.2500000000E-01 1.2500000000E-01
1.2500000000E-01 6.2500000000E-01 6.2500000000E-01
6.2500000000E-01 1.2500000000E-01 6.2500000000E-01
6.2500000000E-01 6.2500000000E-01 1.2500000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 15, nkpt: 3, mband: 36, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1173, }
cutoff_energies: {ecut: 8.0, pawecutdg: 15.0, }
electrons: {nelect: 6.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 10.2612129 10.2612129 G(1)= -0.0487272 0.0487272 0.0487272
R(2)= 10.2612129 0.0000000 10.2612129 G(2)= 0.0487272 -0.0487272 0.0487272
R(3)= 10.2612129 10.2612129 0.0000000 G(3)= 0.0487272 0.0487272 -0.0487272
Unit cell volume ucvol= 2.1608573E+03 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 40 40 40
ecut(hartree)= 8.000 => boxcut(ratio)= 2.16489
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 54 54 54
ecut(hartree)= 15.000 => boxcut(ratio)= 2.13510
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90944987
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.43309E-03 BB= 0.60633E-02
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.60149249
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1772 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
3.52801429E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 2330.375 2330.278
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 50, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -60.084602018211 -6.008E+01 3.126E-02 6.552E+00
ETOT 2 -60.161408195776 -7.681E-02 3.611E-03 1.120E+00
ETOT 3 -60.147057385966 1.435E-02 6.789E-04 2.389E-02
ETOT 4 -60.147230854265 -1.735E-04 1.241E-04 6.340E-03
ETOT 5 -60.147237297166 -6.443E-06 7.216E-05 3.352E-04
ETOT 6 -60.147231150204 6.147E-06 1.095E-04 5.428E-05
ETOT 7 -60.147231225728 -7.552E-08 1.290E-04 2.212E-06
ETOT 8 -60.147231262968 -3.724E-08 1.759E-04 7.896E-07
ETOT 9 -60.147231255433 7.535E-09 1.133E-04 8.810E-08
ETOT 10 -60.147231254157 1.276E-09 1.127E-04 9.697E-09
At SCF step 10 nres2 = 9.70E-09 < tolvrs= 1.00E-08 =>converged.
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 10.2612129, 10.2612129, ]
- [ 10.2612129, 0.0000000, 10.2612129, ]
- [ 10.2612129, 10.2612129, 0.0000000, ]
lattice_lengths: [ 14.51155, 14.51155, 14.51155, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.1608573E+03
convergence: {deltae: 1.276E-09, res2: 9.697E-09, residm: 1.127E-04, diffor: 0.000E+00, }
etotal : -6.01472313E+01
entropy : 0.00000000E+00
fermie : 2.03044719E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ -9.8857E-18, 9.8857E-18, 5.0000E-01, Si]
- [ 9.8857E-18, 5.0000E-01, -9.8857E-18, Si]
- [ 5.0000E-01, 9.8857E-18, -9.8857E-18, Si]
- [ 9.8857E-18, 5.0000E-01, 5.0000E-01, Si]
- [ 5.0000E-01, 9.8857E-18, 5.0000E-01, Si]
- [ 5.0000E-01, 5.0000E-01, -1.9771E-17, Si]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Si]
- [ 1.2500E-01, 1.2500E-01, 1.2500E-01, Si]
- [ 1.2500E-01, 1.2500E-01, 6.2500E-01, Si]
- [ 1.2500E-01, 6.2500E-01, 1.2500E-01, Si]
- [ 6.2500E-01, 1.2500E-01, 1.2500E-01, Si]
- [ 1.2500E-01, 6.2500E-01, 6.2500E-01, Si]
- [ 6.2500E-01, 1.2500E-01, 6.2500E-01, Si]
- [ 6.2500E-01, 6.2500E-01, 1.2500E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90945 1.56538244
2 1.90945 1.56538244
3 1.90945 1.56538244
4 1.90945 1.56538244
5 1.90945 1.49441295
6 1.90945 1.49441295
7 1.90945 1.49441295
8 1.90945 1.49441295
9 1.90945 1.57560893
10 1.90945 1.56949943
11 1.90945 1.56949943
12 1.90945 1.56949943
13 1.90945 1.56949943
14 1.90945 1.56949943
15 1.90945 1.56949943
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -1.557977773495632
Compensation charge over fine fft grid = -1.557998822267869
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.47277 73.83628 -0.00000 -0.00000 -0.00000 0.00004 0.00004 0.00004
73.83628 ********* -0.00074 -0.00074 -0.00074 0.00694 0.00694 0.00694
-0.00000 -0.00074 0.13273 -0.00000 -0.00000 -1.07092 0.00001 0.00001
-0.00000 -0.00074 -0.00000 0.13273 -0.00000 0.00001 -1.07092 0.00001
-0.00000 -0.00074 -0.00000 -0.00000 0.13273 0.00001 0.00001 -1.07092
0.00004 0.00694 -1.07092 0.00001 0.00001 7.67482 -0.00011 -0.00011
0.00004 0.00694 0.00001 -1.07092 0.00001 -0.00011 7.67482 -0.00011
0.00004 0.00694 0.00001 0.00001 -1.07092 -0.00011 -0.00011 7.67482
pawio_print_ij: WARNING -
The matrix seems to have high value(s) !
( 1 components have a value greater than 100.0).
It can cause instabilities during SCF convergence.
Action: you should check your atomic dataset (psp file)
and look for "high" projector functions...
Atom # 15
0.47290 73.87273 0.00000 -0.00002 0.00000 0.00000 0.00009 0.00000
73.87273 ********* 0.00000 -0.00161 0.00000 0.00000 0.00806 0.00000
0.00000 0.00000 0.13272 0.00000 -0.00000 -1.07121 0.00000 -0.00003
-0.00002 -0.00161 0.00000 0.13271 0.00000 0.00000 -1.07113 0.00000
0.00000 0.00000 -0.00000 0.00000 0.13272 -0.00003 0.00000 -1.07121
0.00000 0.00000 -1.07121 0.00000 -0.00003 7.68054 0.00000 0.00046
0.00009 0.00806 0.00000 -1.07113 0.00000 0.00000 7.67966 0.00000
0.00000 0.00000 -0.00003 0.00000 -1.07121 0.00046 0.00000 7.68054
pawio_print_ij: WARNING -
The matrix seems to have high value(s) !
( 1 components have a value greater than 100.0).
It can cause instabilities during SCF convergence.
Action: you should check your atomic dataset (psp file)
and look for "high" projector functions...
Augmentation waves occupancies Rhoij:
Atom # 1
1.47844 0.00011 -0.00120 -0.00120 -0.00120 -0.00001 -0.00001 -0.00001
0.00011 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000
-0.00120 -0.00000 1.15969 0.00329 0.00329 0.00812 0.00000 0.00000
-0.00120 -0.00000 0.00329 1.15969 0.00329 0.00000 0.00812 0.00000
-0.00120 -0.00000 0.00329 0.00329 1.15969 0.00000 0.00000 0.00812
-0.00001 0.00000 0.00812 0.00000 0.00000 0.00007 -0.00000 -0.00000
-0.00001 0.00000 0.00000 0.00812 0.00000 -0.00000 0.00007 -0.00000
-0.00001 0.00000 0.00000 0.00000 0.00812 -0.00000 -0.00000 0.00007
Atom # 15
1.47551 0.00011 0.00000 -0.01128 0.00000 0.00000 -0.00006 0.00000
0.00011 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.12603 0.00000 -0.05270 0.00794 0.00000 -0.00011
-0.01128 -0.00001 0.00000 1.19405 0.00000 0.00000 0.00812 0.00000
0.00000 0.00000 -0.05270 0.00000 1.12603 -0.00011 0.00000 0.00794
0.00000 0.00000 0.00794 0.00000 -0.00011 0.00007 0.00000 0.00000
-0.00006 0.00000 0.00000 0.00812 0.00000 0.00000 0.00007 0.00000
0.00000 0.00000 -0.00011 0.00000 0.00794 0.00000 0.00000 0.00007
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 11.957E-07; max= 11.270E-05
reduced coordinates (array xred) for 15 atoms
0.000000000000 0.000000000000 0.000000000000
-0.000000000000 0.000000000000 0.500000000000
0.000000000000 0.500000000000 -0.000000000000
0.500000000000 0.000000000000 -0.000000000000
0.000000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.500000000000
0.500000000000 0.500000000000 -0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.125000000000 0.125000000000 0.125000000000
0.125000000000 0.125000000000 0.625000000000
0.125000000000 0.625000000000 0.125000000000
0.625000000000 0.125000000000 0.125000000000
0.125000000000 0.625000000000 0.625000000000
0.625000000000 0.125000000000 0.625000000000
0.625000000000 0.625000000000 0.125000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
6 0.000000000000 0.000000000000 0.000000000000
7 0.000000000000 0.000000000000 0.000000000000
8 0.000000000000 0.000000000000 0.000000000000
9 0.000000000000 0.000000000000 0.000000000000
10 0.000000000000 0.000000000000 0.000000000000
11 0.000000000000 0.000000000000 0.000000000000
12 0.000000000000 0.000000000000 0.000000000000
13 0.000000000000 0.000000000000 0.000000000000
14 0.000000000000 0.000000000000 0.000000000000
15 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.71500000000000 2.71500000000000 -0.00000000000000
3 2.71500000000000 -0.00000000000000 2.71500000000000
4 -0.00000000000000 2.71500000000000 2.71500000000000
5 5.43000000000000 2.71500000000000 2.71500000000000
6 2.71500000000000 5.43000000000000 2.71500000000000
7 2.71500000000000 2.71500000000000 5.43000000000000
8 5.43000000000000 5.43000000000000 5.43000000000000
9 1.35750000000000 1.35750000000000 1.35750000000000
10 4.07250000000000 4.07250000000000 1.35750000000000
11 4.07250000000000 1.35750000000000 4.07250000000000
12 1.35750000000000 4.07250000000000 4.07250000000000
13 6.78750000000000 4.07250000000000 4.07250000000000
14 4.07250000000000 6.78750000000000 4.07250000000000
15 4.07250000000000 4.07250000000000 6.78750000000000
length scales= 10.261212901569 10.261212901569 10.261212901569 bohr
= 5.430000000000 5.430000000000 5.430000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.20304 Average Vxc (hartree)= -0.34707
Eigenvalues (hartree) for nkpt= 3 k points:
kpt# 1, nband= 36, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.25972 -0.17989 -0.17989 -0.17989 -0.15798 -0.11500 -0.11500 -0.10946
-0.10946 -0.10946 -0.09155 -0.07330 -0.07330 -0.07330 0.04454 0.06803
0.06803 0.06803 0.08441 0.08441 0.08441 0.12893 0.12893 0.12893
0.12895 0.12895 0.15761 0.15761 0.15761 0.20304 0.20304 0.20304
0.20403 0.20490 0.20490 0.22897
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.23432184067698E+01
hartree : 5.15956628174318E+00
xc : -3.56390095163746E+01
Ewald energy : -6.05835621191802E+01
psp_core : 1.63269192139636E+00
local_psp : -2.07370728544821E+01
spherical_terms : 2.76769233745481E+01
total_energy : -6.01472445055795E+01
total_energy_eV : -1.63668975836260E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.76972468709001E-01
Ewald energy : -6.05835621191802E+01
psp_core : 1.63269192139636E+00
xc_dc : -1.50781158770500E+01
spherical_terms : 1.44587272893858E+01
total_energy_dc : -6.01472312541571E+01
total_energy_dc_eV : -1.63668939777306E+03
...
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 15, nkpt: 1, mband: 36, nsppol: 1, nspinor: 1, nspden: 1, mpw: 1139, }
cutoff_energies: {ecut: 8.0, pawecutdg: 15.0, }
electrons: {nelect: 1.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 10.2612129 10.2612129 G(1)= -0.0487272 0.0487272 0.0487272
R(2)= 10.2612129 0.0000000 10.2612129 G(2)= 0.0487272 -0.0487272 0.0487272
R(3)= 10.2612129 10.2612129 0.0000000 G(3)= 0.0487272 0.0487272 -0.0487272
Unit cell volume ucvol= 2.1608573E+03 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 40 40 40
ecut(hartree)= 8.000 => boxcut(ratio)= 2.16489
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 54 54 54
ecut(hartree)= 15.000 => boxcut(ratio)= 2.13510
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/Psdj_paw_pw_std/Si.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90944987
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.43309E-03 BB= 0.60633E-02
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.60149249
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1772 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 2277.000 2277.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 50, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -60.576932832260 -6.058E+01 6.811E-02 4.519E-02
ETOT 2 -60.578390066111 -1.457E-03 3.979E-03 2.584E-02
ETOT 3 -60.578404380987 -1.431E-05 2.561E-03 5.390E-03
ETOT 4 -60.578407121176 -2.740E-06 1.215E-03 2.352E-03
ETOT 5 -60.578407764872 -6.437E-07 1.263E-03 2.181E-04
ETOT 6 -60.578407923485 -1.586E-07 8.516E-04 1.620E-05
ETOT 7 -60.578407964763 -4.128E-08 8.539E-04 3.526E-06
ETOT 8 -60.578407975817 -1.105E-08 7.483E-04 6.403E-07
ETOT 9 -60.578407978813 -2.996E-09 7.917E-04 5.324E-08
ETOT 10 -60.578407979536 -7.233E-10 5.868E-04 1.325E-09
At SCF step 10 nres2 = 1.33E-09 < tolvrs= 1.00E-08 =>converged.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 10.2612129, 10.2612129, ]
- [ 10.2612129, 0.0000000, 10.2612129, ]
- [ 10.2612129, 10.2612129, 0.0000000, ]
lattice_lengths: [ 14.51155, 14.51155, 14.51155, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.1608573E+03
convergence: {deltae: -7.233E-10, res2: 1.325E-09, residm: 5.868E-04, diffor: 0.000E+00, }
etotal : -6.05784080E+01
entropy : 0.00000000E+00
fermie : -4.31176721E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ -9.8857E-18, 9.8857E-18, 5.0000E-01, Si]
- [ 9.8857E-18, 5.0000E-01, -9.8857E-18, Si]
- [ 5.0000E-01, 9.8857E-18, -9.8857E-18, Si]
- [ 9.8857E-18, 5.0000E-01, 5.0000E-01, Si]
- [ 5.0000E-01, 9.8857E-18, 5.0000E-01, Si]
- [ 5.0000E-01, 5.0000E-01, -1.9771E-17, Si]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Si]
- [ 1.2500E-01, 1.2500E-01, 1.2500E-01, Si]
- [ 1.2500E-01, 1.2500E-01, 6.2500E-01, Si]
- [ 1.2500E-01, 6.2500E-01, 1.2500E-01, Si]
- [ 6.2500E-01, 1.2500E-01, 1.2500E-01, Si]
- [ 1.2500E-01, 6.2500E-01, 6.2500E-01, Si]
- [ 6.2500E-01, 1.2500E-01, 6.2500E-01, Si]
- [ 6.2500E-01, 6.2500E-01, 1.2500E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90945 0.00103739
2 1.90945 0.00103739
3 1.90945 0.00103739
4 1.90945 0.00103739
5 1.90945 0.00228163
6 1.90945 0.00228163
7 1.90945 0.00228163
8 1.90945 0.00228163
9 1.90945 0.00080436
10 1.90945 0.00116263
11 1.90945 0.00116263
12 1.90945 0.00116263
13 1.90945 0.00116263
14 1.90945 0.00116263
15 1.90945 0.00116263
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.001661456771314
Compensation charge over fine fft grid = -0.001675575990837
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
-Note: these are the positronic Dij
Atom # 1
2.28352 267.32160 0.00000 0.00000 0.00000 -0.00002 -0.00002 -0.00002
267.32160 ********* 0.00036 0.00036 0.00036 -0.00342 -0.00342 -0.00342
0.00000 0.00036 1.10708 0.00000 0.00000 -7.71869 -0.00002 -0.00002
0.00000 0.00036 0.00000 1.10708 0.00000 -0.00002 -7.71869 -0.00002
0.00000 0.00036 0.00000 0.00000 1.10708 -0.00002 -0.00002 -7.71869
-0.00002 -0.00342 -7.71869 -0.00002 -0.00002 52.08096 0.00022 0.00022
-0.00002 -0.00342 -0.00002 -7.71869 -0.00002 0.00022 52.08096 0.00022
-0.00002 -0.00342 -0.00002 -0.00002 -7.71869 0.00022 0.00022 52.08096
Atom # 15
2.28336 267.28124 0.00000 -0.00001 0.00000 0.00000 0.00014 0.00000
267.28124 ********* 0.00000 -0.00240 0.00000 0.00000 0.02933 0.00000
0.00000 0.00000 1.10707 0.00000 -0.00002 -7.71824 0.00000 0.00023
-0.00001 -0.00240 0.00000 1.10711 0.00000 0.00000 -7.71856 0.00000
0.00000 0.00000 -0.00002 0.00000 1.10707 0.00023 0.00000 -7.71824
0.00000 0.00000 -7.71824 0.00000 0.00023 52.07376 0.00000 -0.00228
0.00014 0.02933 0.00000 -7.71856 0.00000 0.00000 52.07697 0.00000
0.00000 0.00000 0.00023 0.00000 -7.71824 -0.00228 0.00000 52.07376
Augmentation waves occupancies Rhoij:
-Note: these are the positronic Rhoij
Atom # 1
0.00817 -0.00006 -0.00018 -0.00018 -0.00018 -0.00002 -0.00002 -0.00002
-0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00018 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00018 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00018 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Atom # 15
0.00892 -0.00007 0.00000 0.00052 0.00000 0.00000 0.00006 0.00000
-0.00007 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00052 -0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00006 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
--------------------------------------------------------------------------------
Results for electron-positron annihilation:
2 computations of positron lifetime have been performed (with different enhancement factors).
########## Lifetime computation 1
# Zero-positron density limit of Arponen and Pajanne provided by Boronski & Nieminen
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
# Enhancement factor of Boronski & Nieminen
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
Positron lifetime (ps) = 2.68899998E+02
Positron lifetime with IPM for core elec. (ps) = 2.71695232E+02
Annihilation rate (ns-1) = 3.71885463E+00
Annihilation rate with IPM for core elec. (ns-1) = 3.68059459E+00
Annihilation rate core/valence decomposition:
Core contribution to ann.rate (ns-1) = 1.58955337E-01
Valence contribution to ann.rate (ns-1) = 3.55989929E+00
Core contribution to ann.rate with IPM (ns-1) = 1.15122258E-01
Valence contribution to ann.rate with IPM (ns-1) = 3.56547233E+00
Annihilation rate PAW decomposition:
Plane-wave contribution to ann.rate (ns-1) = 3.68186803E+00
Plane-wave valence contribution to ann.rate (ns-1) = 3.56660625E+00
On-site core contribution to ann.rate (ns-1) = 4.36935524E-02
On-site valence contribution to ann.rate (ns-1) = -6.70696162E-03
Plane-wave contribution to ann.rate with IPM (ns-1) = 3.63165894E+00
Plane-wave core contrb. to ann.rate with IPM (ns-1) = 5.45846052E-02
########## Lifetime computation 2
# Zero-positron density limit of Arponen and Pajanne provided by Boronski & Nieminen
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
# Enhancement factor of Boronski & Nieminen IN THE RPA LIMIT
Ref.: Boronski and R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)
Positron lifetime (ps) = 2.46923233E+02
Positron lifetime with IPM for core elec. (ps) = 2.49277521E+02
Annihilation rate (ns-1) = 4.04984168E+00
Annihilation rate with IPM for core elec. (ns-1) = 4.01159316E+00
Annihilation rate core/valence decomposition:
Core contribution to ann.rate (ns-1) = 1.58918708E-01
Valence contribution to ann.rate (ns-1) = 3.89092297E+00
Core contribution to ann.rate with IPM (ns-1) = 1.15122258E-01
Valence contribution to ann.rate with IPM (ns-1) = 3.89647091E+00
Annihilation rate PAW decomposition:
Plane-wave contribution to ann.rate (ns-1) = 4.01286347E+00
Plane-wave valence contribution to ann.rate (ns-1) = 3.89762988E+00
On-site core contribution to ann.rate (ns-1) = 4.36851214E-02
On-site valence contribution to ann.rate (ns-1) = -6.70691261E-03
Plane-wave contribution to ann.rate with IPM (ns-1) = 3.96266437E+00
Plane-wave core contrb. to ann.rate with IPM (ns-1) = 5.45846052E-02
(*) IPM=Independent particle Model
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.252E-06; max= 58.684E-05
reduced coordinates (array xred) for 15 atoms
0.000000000000 0.000000000000 0.000000000000
-0.000000000000 0.000000000000 0.500000000000
0.000000000000 0.500000000000 -0.000000000000
0.500000000000 0.000000000000 -0.000000000000
0.000000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.500000000000
0.500000000000 0.500000000000 -0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.125000000000 0.125000000000 0.125000000000
0.125000000000 0.125000000000 0.625000000000
0.125000000000 0.625000000000 0.125000000000
0.625000000000 0.125000000000 0.125000000000
0.125000000000 0.625000000000 0.625000000000
0.625000000000 0.125000000000 0.625000000000
0.625000000000 0.625000000000 0.125000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
6 0.000000000000 0.000000000000 0.000000000000
7 0.000000000000 0.000000000000 0.000000000000
8 0.000000000000 0.000000000000 0.000000000000
9 0.000000000000 0.000000000000 0.000000000000
10 0.000000000000 0.000000000000 0.000000000000
11 0.000000000000 0.000000000000 0.000000000000
12 0.000000000000 0.000000000000 0.000000000000
13 0.000000000000 0.000000000000 0.000000000000
14 0.000000000000 0.000000000000 0.000000000000
15 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 2.71500000000000 2.71500000000000 -0.00000000000000
3 2.71500000000000 -0.00000000000000 2.71500000000000
4 -0.00000000000000 2.71500000000000 2.71500000000000
5 5.43000000000000 2.71500000000000 2.71500000000000
6 2.71500000000000 5.43000000000000 2.71500000000000
7 2.71500000000000 2.71500000000000 5.43000000000000
8 5.43000000000000 5.43000000000000 5.43000000000000
9 1.35750000000000 1.35750000000000 1.35750000000000
10 4.07250000000000 4.07250000000000 1.35750000000000
11 4.07250000000000 1.35750000000000 4.07250000000000
12 1.35750000000000 4.07250000000000 4.07250000000000
13 6.78750000000000 4.07250000000000 4.07250000000000
14 4.07250000000000 6.78750000000000 4.07250000000000
15 4.07250000000000 4.07250000000000 6.78750000000000
length scales= 10.261212901569 10.261212901569 10.261212901569 bohr
= 5.430000000000 5.430000000000 5.430000000000 angstroms
Fermi (or HOMO) energy (hartree) = -0.43118 Average Vxc (hartree)= -0.31513
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 36, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.43118 -0.34563 -0.33626 -0.33626 -0.33626 -0.29469 -0.26723 -0.26723
-0.26723 -0.25982 -0.25982 -0.24703 -0.20546 -0.20546 -0.20546 -0.07983
-0.06427 -0.06427 -0.06427 -0.03294 -0.03294 -0.03294 0.01690 0.01690
0.01690 0.01737 0.01737 0.02736 0.02736 0.02736 0.08188 0.08294
0.08415 0.09458 0.09576 0.09971
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 1.11932176576050E-01
local_psp : -5.49848386881383E-01
spherical_terms : -7.72686718332659E-03
positronic : -4.45643077488660E-01
electronic : -6.01472312541571E+01
electron_positron_interaction: 1.45172301507361E-02
total_energy : -6.05783571014950E+01
total_energy_eV : -1.64842092869694E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -4.31176720711844E-01
spherical_terms : 0.00000000000000E+00
electron_positron_dc: -1.45172348180143E-02
positronic : -4.45693955529861E-01
electronic : -6.01472312541571E+01
electron_positron_interaction: 1.45172301507361E-02
total_energy_dc : -6.05784079795362E+01
total_energy_dc_eV : -1.64842231315885E+03
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0261212902E+01 1.0261212902E+01 1.0261212902E+01 Bohr
amu 2.80855000E+01
chkprim 0
ecut 8.00000000E+00 Hartree
etotal1 -6.0147231254E+01
etotal2 -6.0578407980E+01
fcart1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
fcart2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
- fftalg 512
getden1 0
getden2 1
istwfk1 2 3 7
istwfk2 2
ixc -1012
jdtset 1 2
kpt1 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
kptopt1 1
kptopt2 0
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen1 2.90230929E+01
kptrlen2 3.00000000E+01
P mkmem1 3
P mkmem2 1
natom 15
nband1 36
nband2 36
ndtset 2
ngfft 40 40 40
ngfftdg 54 54 54
nkpt1 3
nkpt2 1
nstep 50
nsym 24
ntypat 1
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ2 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
optforces 0
optstress 0
pawecutdg 1.50000000E+01 Hartree
positron1 0
positron2 1
prteig 0
prtwf 0
rprim 0.0000000000E+00 1.0000000000E+00 1.0000000000E+00
1.0000000000E+00 0.0000000000E+00 1.0000000000E+00
1.0000000000E+00 1.0000000000E+00 0.0000000000E+00
shiftk1 0.00000000E+00 0.00000000E+00 0.00000000E+00
shiftk2 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
strten1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
strten2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 -0.0000000
0.5000000 0.0000000 -0.0000000 -0.0000000 0.0000000 0.5000000
0.5000000 0.0000000 -0.0000000 0.0000000 0.5000000 -0.0000000
0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 0.5000000
0.5000000 0.0000000 -0.0000000 0.0000000 0.5000000 -0.0000000
-0.0000000 0.0000000 0.5000000 0.0000000 0.0000000 0.0000000
-0.0000000 0.0000000 0.5000000 0.0000000 0.5000000 -0.0000000
0.5000000 0.0000000 -0.0000000 0.0000000 0.0000000 0.0000000
-0.0000000 0.0000000 0.5000000 0.0000000 0.5000000 -0.0000000
0.0000000 0.0000000 0.0000000 0.5000000 0.0000000 -0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.5000000 -0.0000000
-0.0000000 0.0000000 0.5000000 0.5000000 0.0000000 -0.0000000
tolvrs 1.00000000E-08
typat 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
useylm 1
wtk1 0.12500 0.50000 0.37500
wtk2 1.00000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.7150000000E+00 2.7150000000E+00 -2.4293545990E-33
2.7150000000E+00 -2.4293545990E-33 2.7150000000E+00
-2.4293545990E-33 2.7150000000E+00 2.7150000000E+00
5.4300000000E+00 2.7150000000E+00 2.7150000000E+00
2.7150000000E+00 5.4300000000E+00 2.7150000000E+00
2.7150000000E+00 2.7150000000E+00 5.4300000000E+00
5.4300000000E+00 5.4300000000E+00 5.4300000000E+00
1.3575000000E+00 1.3575000000E+00 1.3575000000E+00
4.0725000000E+00 4.0725000000E+00 1.3575000000E+00
4.0725000000E+00 1.3575000000E+00 4.0725000000E+00
1.3575000000E+00 4.0725000000E+00 4.0725000000E+00
6.7875000000E+00 4.0725000000E+00 4.0725000000E+00
4.0725000000E+00 6.7875000000E+00 4.0725000000E+00
4.0725000000E+00 4.0725000000E+00 6.7875000000E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.1306064508E+00 5.1306064508E+00 -4.5908148717E-33
5.1306064508E+00 -4.5908148717E-33 5.1306064508E+00
-4.5908148717E-33 5.1306064508E+00 5.1306064508E+00
1.0261212902E+01 5.1306064508E+00 5.1306064508E+00
5.1306064508E+00 1.0261212902E+01 5.1306064508E+00
5.1306064508E+00 5.1306064508E+00 1.0261212902E+01
1.0261212902E+01 1.0261212902E+01 1.0261212902E+01
2.5653032254E+00 2.5653032254E+00 2.5653032254E+00
7.6959096762E+00 7.6959096762E+00 2.5653032254E+00
7.6959096762E+00 2.5653032254E+00 7.6959096762E+00
2.5653032254E+00 7.6959096762E+00 7.6959096762E+00
1.2826516127E+01 7.6959096762E+00 7.6959096762E+00
7.6959096762E+00 1.2826516127E+01 7.6959096762E+00
7.6959096762E+00 7.6959096762E+00 1.2826516127E+01
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
-9.8857149303E-18 9.8857149303E-18 5.0000000000E-01
9.8857149303E-18 5.0000000000E-01 -9.8857149303E-18
5.0000000000E-01 9.8857149303E-18 -9.8857149303E-18
9.8857149303E-18 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 9.8857149303E-18 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 -1.9771429861E-17
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
1.2500000000E-01 1.2500000000E-01 1.2500000000E-01
1.2500000000E-01 1.2500000000E-01 6.2500000000E-01
1.2500000000E-01 6.2500000000E-01 1.2500000000E-01
6.2500000000E-01 1.2500000000E-01 1.2500000000E-01
1.2500000000E-01 6.2500000000E-01 6.2500000000E-01
6.2500000000E-01 1.2500000000E-01 6.2500000000E-01
6.2500000000E-01 6.2500000000E-01 1.2500000000E-01
znucl 14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Two-component density functional theory within the projector augmented-wave approach:
- Accurate and self-consistent computations of positron lifetimes and momentum distributions
- J. Wiktor, G. Jomard and M. Torrent, Phys. Rev. B 92, 125113 (2015).
- Comment: to be cited in case the computation of electron-positron annihilation properties within the 2-component DFT, i.e. positron/=0.
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#wiktor2015
-
- [2] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [3] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [4] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [5] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 12.0 wall= 12.6
================================================================================
Calculation completed.
.Delivered 44 WARNINGs and 6 COMMENTs to log file.
+Overall time at end (sec) : cpu= 12.0 wall= 12.6