abinit/tests/tutorial/Refs/tpaw1_addons/tpaw1_2.ecutdg24.abo

2875 lines
144 KiB
Plaintext

.Version 9.1.1 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu6.3 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Thu 12 Mar 2020.
- ( at 11h35 )
- input file -> tpaw1_2.in
- output file -> tpaw1_2.abo
- root for input files -> tpaw1_2.i
- root for output files -> tpaw1_2.o
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 88 nfft = 3375 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 3.584 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.228 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 121 nfft = 3375 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 3.707 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.312 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 159 nfft = 4096 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 3.980 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.410 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 18 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 198 nfft = 5832 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 4.529 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.510 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 5 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 5.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 18 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 250 nfft = 5832 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 4.750 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.643 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 6 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 6.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 291 nfft = 8000 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 5.401 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.748 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 7 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 7.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 20 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 333 nfft = 8000 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 5.580 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.856 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 8 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 8.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 24 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 384 nfft = 13824 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 7.076 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.986 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
DATASET 9 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 9.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 24 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 6 mffmem = 1 mkmem = 28
mpw = 439 nfft = 13824 nkpt = 28
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 13824
================================================================================
P This job should need less than 7.310 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.127 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 1
-
-outvars: echo values of preprocessed input variables --------
acell 6.7406531160E+00 6.7406531160E+00 6.7406531160E+00 Bohr
amu 1.20110000E+01
ecut1 8.00000000E+00 Hartree
ecut2 1.00000000E+01 Hartree
ecut3 1.20000000E+01 Hartree
ecut4 1.40000000E+01 Hartree
ecut5 1.60000000E+01 Hartree
ecut6 1.80000000E+01 Hartree
ecut7 2.00000000E+01 Hartree
ecut8 2.20000000E+01 Hartree
ecut9 2.40000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
- fftalg 312
getwfk -1
ixc -1012
jdtset 1 2 3 4 5 6 7 8 9
kpt -8.33333333E-02 -1.66666667E-01 0.00000000E+00
-8.33333333E-02 -3.33333333E-01 0.00000000E+00
-1.66666667E-01 -2.50000000E-01 0.00000000E+00
-8.33333333E-02 -2.50000000E-01 8.33333333E-02
-8.33333333E-02 5.00000000E-01 0.00000000E+00
-1.66666667E-01 -4.16666667E-01 0.00000000E+00
-8.33333333E-02 -4.16666667E-01 8.33333333E-02
-2.50000000E-01 -3.33333333E-01 0.00000000E+00
-1.66666667E-01 -3.33333333E-01 8.33333333E-02
-8.33333333E-02 -3.33333333E-01 1.66666667E-01
-8.33333333E-02 3.33333333E-01 0.00000000E+00
-1.66666667E-01 4.16666667E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 0.00000000E+00
-1.66666667E-01 5.00000000E-01 8.33333333E-02
-3.33333333E-01 -4.16666667E-01 0.00000000E+00
-2.50000000E-01 -4.16666667E-01 8.33333333E-02
-1.66666667E-01 -4.16666667E-01 1.66666667E-01
-8.33333333E-02 -4.16666667E-01 2.50000000E-01
-8.33333333E-02 1.66666667E-01 0.00000000E+00
-1.66666667E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 3.33333333E-01 0.00000000E+00
-3.33333333E-01 4.16666667E-01 0.00000000E+00
-4.16666667E-01 5.00000000E-01 0.00000000E+00
-3.33333333E-01 5.00000000E-01 8.33333333E-02
-2.50000000E-01 5.00000000E-01 1.66666667E-01
-8.33333333E-02 0.00000000E+00 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-4.16666667E-01 0.00000000E+00 0.00000000E+00
kptrlatt 6 -6 6 -6 6 6 -6 -6 6
kptrlen 4.04439187E+01
P mkmem 28
natom 2
nband 6
ndtset 9
ngfft1 15 15 15
ngfft2 15 15 15
ngfft3 16 16 16
ngfft4 18 18 18
ngfft5 18 18 18
ngfft6 20 20 20
ngfft7 20 20 20
ngfft8 24 24 24
ngfft9 24 24 24
ngfftdg 24 24 24
nkpt 28
nstep 20
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
pawecutdg 2.40000000E+01 Hartree
prtden 0
prteig 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs 1.00000000E-10
typat 1 1
useylm 1
wtk 0.02778 0.02778 0.02778 0.05556 0.02778 0.02778
0.05556 0.02778 0.05556 0.05556 0.02778 0.02778
0.02778 0.05556 0.02778 0.05556 0.05556 0.05556
0.02778 0.02778 0.02778 0.02778 0.02778 0.05556
0.05556 0.00926 0.00926 0.00926
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.9175000000E-01 8.9175000000E-01 8.9175000000E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6851632790E+00 1.6851632790E+00 1.6851632790E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
chkinp: Checking input parameters for consistency, jdtset= 5.
chkinp: Checking input parameters for consistency, jdtset= 6.
chkinp: Checking input parameters for consistency, jdtset= 7.
chkinp: Checking input parameters for consistency, jdtset= 8.
chkinp: Checking input parameters for consistency, jdtset= 9.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 88, }
cutoff_energies: {ecut: 8.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 8.000 => boxcut(ratio)= 2.31865
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 10.752290 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
7.04320401E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 83.056 83.010
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.385730686787 -1.139E+01 2.483E-01 5.741E+00
ETOT 2 -11.407335848935 -2.161E-02 1.163E-02 8.118E-01
ETOT 3 -11.404424164920 2.912E-03 5.506E-03 8.775E-03
ETOT 4 -11.404440151670 -1.599E-05 2.570E-03 1.638E-03
ETOT 5 -11.404443360262 -3.209E-06 9.059E-04 5.187E-05
ETOT 6 -11.404443407501 -4.724E-08 1.551E-04 1.894E-06
ETOT 7 -11.404443406785 7.158E-10 1.026E-04 7.703E-09
ETOT 8 -11.404443406808 -2.297E-11 2.365E-04 1.663E-09
ETOT 9 -11.404443406811 -3.215E-12 1.384E-04 6.837E-12
At SCF step 9 nres2 = 6.84E-12 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.18025384E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.18025384E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.18025384E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: -3.215E-12, res2: 6.837E-12, residm: 1.384E-04, diffor: null, }
etotal : -1.14044434E+01
entropy : 0.00000000E+00
fermie : 3.96403784E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.18025384E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.18025384E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.18025384E-03, ]
pressure_GPa: 3.4724E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.65469050
2 1.50737 2.65469050
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.153299615884632
Compensation charge over fine fft grid = 0.153311272942253
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.41137 -4.11522 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.11522 39.29723 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11718 0.00000 0.00000 0.37024 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11718 0.00000 0.00000 0.37024 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11718 0.00000 0.00000 0.37024
0.00000 0.00000 0.37024 0.00000 0.00000 1.55417 0.00000 0.00000
0.00000 0.00000 0.00000 0.37024 0.00000 0.00000 1.55417 0.00000
0.00000 0.00000 0.00000 0.00000 0.37024 0.00000 0.00000 1.55417
Atom # 2
0.41137 -4.11522 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.11522 39.29723 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11718 0.00000 0.00000 0.37024 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11718 0.00000 0.00000 0.37024 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11718 0.00000 0.00000 0.37024
0.00000 0.00000 0.37024 0.00000 0.00000 1.55417 0.00000 0.00000
0.00000 0.00000 0.00000 0.37024 0.00000 0.00000 1.55417 0.00000
0.00000 0.00000 0.00000 0.00000 0.37024 0.00000 0.00000 1.55417
Augmentation waves occupancies Rhoij:
Atom # 1
1.55576 0.00476 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00476 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.76377 0.00000 0.00000 0.08557 0.00000 0.00000
0.00000 0.00000 0.00000 1.76377 0.00000 0.00000 0.08557 0.00000
0.00000 0.00000 0.00000 0.00000 1.76377 0.00000 0.00000 0.08557
0.00000 0.00000 0.08557 0.00000 0.00000 0.00425 0.00000 0.00000
0.00000 0.00000 0.00000 0.08557 0.00000 0.00000 0.00425 0.00000
0.00000 0.00000 0.00000 0.00000 0.08557 0.00000 0.00000 0.00425
Atom # 2
1.55576 0.00476 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00476 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.76377 0.00000 0.00000 0.08557 0.00000 0.00000
0.00000 0.00000 0.00000 1.76377 0.00000 0.00000 0.08557 0.00000
0.00000 0.00000 0.00000 0.00000 1.76377 0.00000 0.00000 0.08557
0.00000 0.00000 0.08557 0.00000 0.00000 0.00425 0.00000 0.00000
0.00000 0.00000 0.00000 0.08557 0.00000 0.00000 0.00425 0.00000
0.00000 0.00000 0.00000 0.00000 0.08557 0.00000 0.00000 0.00425
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 13.111E-07; max= 13.836E-05
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 3.2225E-29; max dE/dt= 1.6829E-29; dE/dt below (all hartree)
1 -0.000000000000 -0.000000000000 0.000000000000
2 -0.000000000000 -0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.39640 Average Vxc (hartree)= -0.50331
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39537 0.27700 0.33348 0.36560 0.59671 0.67773
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 6.93485746337268E+00
hartree : 9.17689853509115E-01
xc : -4.35866606259368E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.42154071245033E+00
spherical_terms : 1.38976332546241E+00
total_energy : -1.14044427667624E+01
total_energy_eV : -3.10330669835773E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.73945594446194E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -6.72513370024337E-01
spherical_terms : 7.60671002829755E-01
total_energy_dc : -1.14044434068110E+01
total_energy_dc_eV : -3.10330687252381E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.18025384E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.18025384E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.18025384E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 3.4724E+01 GPa]
- sigma(1 1)= -3.47242608E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -3.47242608E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -3.47242608E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 121, }
cutoff_energies: {ecut: 10.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.07387
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 115.546 115.518
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.497711024938 -1.150E+01 6.070E-03 5.293E-01
ETOT 2 -11.496655224677 1.056E-03 9.003E-04 4.329E-02
ETOT 3 -11.496576026966 7.920E-05 1.050E-04 2.063E-04
ETOT 4 -11.496575769524 2.574E-07 2.482E-04 3.351E-07
ETOT 5 -11.496575772031 -2.507E-09 2.278E-05 4.366E-08
ETOT 6 -11.496575771954 7.642E-11 5.125E-05 1.188E-09
ETOT 7 -11.496575771951 3.491E-12 9.476E-06 6.266E-11
At SCF step 7 nres2 = 6.27E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.05587703E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.05587703E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.05587703E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: 3.491E-12, res2: 6.266E-11, residm: 9.476E-06, diffor: null, }
etotal : -1.14965758E+01
entropy : 0.00000000E+00
fermie : 3.54632517E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 1.05587703E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 1.05587703E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 1.05587703E-04, ]
pressure_GPa: -3.1065E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -7.98927100E-29, -3.99463550E-29, 1.59785420E-28, ]
- [ 7.98927100E-29, 3.99463550E-29, -1.59785420E-28, ]
force_length_stats: {min: 1.83057196E-28, max: 1.83057196E-28, mean: 1.83057196E-28, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.66851811
2 1.50737 2.66851811
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.227068254122803
Compensation charge over fine fft grid = 0.227084974978510
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40910 -4.08692 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.08692 38.94543 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11615 0.00000 0.00000 0.36159 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11615 0.00000 0.00000 0.36159 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11615 0.00000 0.00000 0.36159
0.00000 0.00000 0.36159 0.00000 0.00000 1.61927 0.00000 0.00000
0.00000 0.00000 0.00000 0.36159 0.00000 0.00000 1.61927 0.00000
0.00000 0.00000 0.00000 0.00000 0.36159 0.00000 0.00000 1.61927
Atom # 2
0.40910 -4.08692 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.08692 38.94543 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11615 0.00000 0.00000 0.36159 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11615 0.00000 0.00000 0.36159 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11615 0.00000 0.00000 0.36159
0.00000 0.00000 0.36159 0.00000 0.00000 1.61927 0.00000 0.00000
0.00000 0.00000 0.00000 0.36159 0.00000 0.00000 1.61927 0.00000
0.00000 0.00000 0.00000 0.00000 0.36159 0.00000 0.00000 1.61927
Augmentation waves occupancies Rhoij:
Atom # 1
1.65215 0.01288 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01288 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.62024 0.00000 0.00000 0.05789 0.00000 0.00000
0.00000 0.00000 0.00000 1.62024 0.00000 0.00000 0.05789 0.00000
0.00000 0.00000 0.00000 0.00000 1.62024 0.00000 0.00000 0.05789
0.00000 0.00000 0.05789 0.00000 0.00000 0.00225 0.00000 0.00000
0.00000 0.00000 0.00000 0.05789 0.00000 0.00000 0.00225 0.00000
0.00000 0.00000 0.00000 0.00000 0.05789 0.00000 0.00000 0.00225
Atom # 2
1.65215 0.01288 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01288 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.62024 0.00000 0.00000 0.05789 0.00000 0.00000
0.00000 0.00000 0.00000 1.62024 0.00000 0.00000 0.05789 0.00000
0.00000 0.00000 0.00000 0.00000 1.62024 0.00000 0.00000 0.05789
0.00000 0.00000 0.05789 0.00000 0.00000 0.00225 0.00000 0.00000
0.00000 0.00000 0.00000 0.05789 0.00000 0.00000 0.00225 0.00000
0.00000 0.00000 0.00000 0.00000 0.05789 0.00000 0.00000 0.00225
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 98.669E-09; max= 94.760E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 5.5510E-28; max dE/dt= 9.4243E-28; dE/dt below (all hartree)
1 -0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 1.0568812E-28 1.5978542E-28 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 5.4347012E-27 8.2164960E-27 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35463 Average Vxc (hartree)= -0.50188
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39258 0.26175 0.30471 0.33271 0.57900 0.65630
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 6.93399638901303E+00
hartree : 9.52141214234415E-01
xc : -4.31815443017425E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.61192028377378E+00
spherical_terms : 1.41390616072776E+00
total_energy : -1.14965775840355E+01
total_energy_eV : -3.12837785715461E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.22199577514605E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.20519649648243E-01
spherical_terms : 7.68290934245427E-01
total_energy_dc : -1.14965757719508E+01
total_energy_dc_eV : -3.12837736406130E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 1.05587703E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 1.05587703E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 1.05587703E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -3.1065E+00 GPa]
- sigma(1 1)= 3.10649695E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 3.10649695E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 3.10649695E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 159, }
cutoff_energies: {ecut: 12.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 12.000 => boxcut(ratio)= 2.15267
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS2_WFK
_setup2: Arith. and geom. avg. npw (full set) are 151.667 151.650
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.518775270903 -1.152E+01 1.980E-04 5.725E-02
ETOT 2 -11.518730305955 4.496E-05 1.707E-05 5.043E-03
ETOT 3 -11.518729279134 1.027E-06 2.678E-06 2.545E-05
ETOT 4 -11.518729255410 2.372E-08 5.840E-06 4.084E-08
ETOT 5 -11.518729255626 -2.162E-10 1.541E-06 3.068E-09
ETOT 6 -11.518729255618 7.242E-12 3.409E-06 1.288E-10
ETOT 7 -11.518729255617 1.723E-12 8.990E-07 2.898E-12
At SCF step 7 nres2 = 2.90E-12 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.99482611E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.99482611E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.99482611E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 3, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: 1.723E-12, res2: 2.898E-12, residm: 8.990E-07, diffor: null, }
etotal : -1.15187293E+01
entropy : 0.00000000E+00
fermie : 3.54337688E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.99482611E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.99482611E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.99482611E-04, ]
pressure_GPa: -1.4695E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -7.98927100E-29, 8.40779079E-45, 7.98927100E-29, ]
- [ 7.98927100E-29, -8.40779079E-45, -7.98927100E-29, ]
force_length_stats: {min: 1.12985354E-28, max: 1.12985354E-28, mean: 1.12985354E-28, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.66540091
2 1.50737 2.66540091
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.252497053771973
Compensation charge over fine fft grid = 0.252516063390000
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40844 -4.07886 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07886 38.84582 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11590 0.00000 0.00000 0.35942 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11590 0.00000 0.00000 0.35942 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11590 0.00000 0.00000 0.35942
0.00000 0.00000 0.35942 0.00000 0.00000 1.63594 0.00000 0.00000
0.00000 0.00000 0.00000 0.35942 0.00000 0.00000 1.63594 0.00000
0.00000 0.00000 0.00000 0.00000 0.35942 0.00000 0.00000 1.63594
Atom # 2
0.40844 -4.07886 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07886 38.84582 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11590 0.00000 0.00000 0.35942 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11590 0.00000 0.00000 0.35942 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11590 0.00000 0.00000 0.35942
0.00000 0.00000 0.35942 0.00000 0.00000 1.63594 0.00000 0.00000
0.00000 0.00000 0.00000 0.35942 0.00000 0.00000 1.63594 0.00000
0.00000 0.00000 0.00000 0.00000 0.35942 0.00000 0.00000 1.63594
Augmentation waves occupancies Rhoij:
Atom # 1
1.71274 0.01728 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01728 0.00025 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.55458 0.00000 0.00000 0.04758 0.00000 0.00000
0.00000 0.00000 0.00000 1.55458 0.00000 0.00000 0.04758 0.00000
0.00000 0.00000 0.00000 0.00000 1.55458 0.00000 0.00000 0.04758
0.00000 0.00000 0.04758 0.00000 0.00000 0.00163 0.00000 0.00000
0.00000 0.00000 0.00000 0.04758 0.00000 0.00000 0.00163 0.00000
0.00000 0.00000 0.00000 0.00000 0.04758 0.00000 0.00000 0.00163
Atom # 2
1.71274 0.01728 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01728 0.00025 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.55458 0.00000 0.00000 0.04758 0.00000 0.00000
0.00000 0.00000 0.00000 1.55458 0.00000 0.00000 0.04758 0.00000
0.00000 0.00000 0.00000 0.00000 1.55458 0.00000 0.00000 0.04758
0.00000 0.00000 0.04758 0.00000 0.00000 0.00163 0.00000 0.00000
0.00000 0.00000 0.00000 0.04758 0.00000 0.00000 0.00163 0.00000
0.00000 0.00000 0.00000 0.00000 0.04758 0.00000 0.00000 0.00163
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 13.973E-09; max= 89.896E-08
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 3.5620E-28; max dE/dt= 6.7316E-28; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 -0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 6.5232125E-29 7.9892710E-29 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 3.3543704E-27 4.1082480E-27 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35434 Average Vxc (hartree)= -0.50144
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39220 0.26088 0.30326 0.33186 0.57356 0.65129
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 3, }
comment : Components of total free energy in Hartree
kinetic : 6.91880742407307E+00
hartree : 9.60953792059796E-01
xc : -4.30271331233338E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.65836934579063E+00
spherical_terms : 1.42913840397293E+00
total_energy : -1.15187296720809E+01
total_energy_eV : -3.13440574686564E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 3, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.11210292628738E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.34082768164903E-01
spherical_terms : 7.70689853982044E-01
total_energy_dc : -1.15187292556168E+01
total_energy_dc_eV : -3.13440563354000E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.99482611E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.99482611E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.99482611E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.4695E+01 GPa]
- sigma(1 1)= 1.46952833E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.46952833E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.46952833E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 198, }
cutoff_energies: {ecut: 14.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 3.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 14.000 => boxcut(ratio)= 2.24902
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 17.703266 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS3_WFK
_setup2: Arith. and geom. avg. npw (full set) are 191.713 191.671
================================================================================
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.524950231472 -1.152E+01 6.756E-06 1.114E-02
ETOT 2 -11.524952201938 -1.970E-06 2.132E-06 1.083E-03
ETOT 3 -11.524953013457 -8.115E-07 1.391E-06 4.144E-06
ETOT 4 -11.524953005671 7.786E-09 2.091E-06 8.268E-09
ETOT 5 -11.524953005699 -2.871E-11 1.356E-06 4.082E-10
ETOT 6 -11.524953005696 3.498E-12 2.245E-06 3.273E-11
At SCF step 6 nres2 = 3.27E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.79660754E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.79660754E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.79660754E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 4, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: 3.498E-12, res2: 3.273E-11, residm: 2.245E-06, diffor: null, }
etotal : -1.15249530E+01
entropy : 0.00000000E+00
fermie : 3.53878444E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.79660754E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.79660754E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.79660754E-04, ]
pressure_GPa: -1.4112E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ 2.99597663E-29, 9.98658875E-30, -8.98792988E-29, ]
- [ -2.99597663E-29, -9.98658875E-30, 8.98792988E-29, ]
force_length_stats: {min: 9.52659850E-29, max: 9.52659850E-29, mean: 9.52659850E-29, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.66167767
2 1.50737 2.66167767
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.261678574153111
Compensation charge over fine fft grid = 0.261698079305879
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40823 -4.07618 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07618 38.81262 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11583 0.00000 0.00000 0.35873 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11583 0.00000 0.00000 0.35873 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11583 0.00000 0.00000 0.35873
0.00000 0.00000 0.35873 0.00000 0.00000 1.64135 0.00000 0.00000
0.00000 0.00000 0.00000 0.35873 0.00000 0.00000 1.64135 0.00000
0.00000 0.00000 0.00000 0.00000 0.35873 0.00000 0.00000 1.64135
Atom # 2
0.40823 -4.07618 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07618 38.81262 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11583 0.00000 0.00000 0.35873 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11583 0.00000 0.00000 0.35873 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11583 0.00000 0.00000 0.35873
0.00000 0.00000 0.35873 0.00000 0.00000 1.64135 0.00000 0.00000
0.00000 0.00000 0.00000 0.35873 0.00000 0.00000 1.64135 0.00000
0.00000 0.00000 0.00000 0.00000 0.35873 0.00000 0.00000 1.64135
Augmentation waves occupancies Rhoij:
Atom # 1
1.73176 0.01867 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01867 0.00028 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.52144 0.00000 0.00000 0.04300 0.00000 0.00000
0.00000 0.00000 0.00000 1.52144 0.00000 0.00000 0.04300 0.00000
0.00000 0.00000 0.00000 0.00000 1.52144 0.00000 0.00000 0.04300
0.00000 0.00000 0.04300 0.00000 0.00000 0.00138 0.00000 0.00000
0.00000 0.00000 0.00000 0.04300 0.00000 0.00000 0.00138 0.00000
0.00000 0.00000 0.00000 0.00000 0.04300 0.00000 0.00000 0.00138
Atom # 2
1.73176 0.01867 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01867 0.00028 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.52144 0.00000 0.00000 0.04300 0.00000 0.00000
0.00000 0.00000 0.00000 1.52144 0.00000 0.00000 0.04300 0.00000
0.00000 0.00000 0.00000 0.00000 1.52144 0.00000 0.00000 0.04300
0.00000 0.00000 0.04300 0.00000 0.00000 0.00138 0.00000 0.00000
0.00000 0.00000 0.00000 0.04300 0.00000 0.00000 0.00138 0.00000
0.00000 0.00000 0.00000 0.00000 0.04300 0.00000 0.00000 0.00138
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 15.433E-09; max= 22.455E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 3.4978E-28; max dE/dt= 4.7121E-28; dE/dt below (all hartree)
1 -0.000000000000 0.000000000000 -0.000000000000
2 -0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 0.00000000000000
frms,max,avg= 5.5001842E-29 8.9879299E-29 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 0.00000000000000
frms,max,avg= 2.8283082E-27 4.6217790E-27 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35388 Average Vxc (hartree)= -0.50130
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39199 0.26041 0.30289 0.33168 0.57307 0.65078
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 4, }
comment : Components of total free energy in Hartree
kinetic : 6.90814602374518E+00
hartree : 9.63306707776652E-01
xc : -4.29712176676831E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.67156775329713E+00
spherical_terms : 1.43882972721244E+00
total_energy : -1.15249536953938E+01
total_energy_eV : -3.13609938974087E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 4, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.08473853087902E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.38405521204780E-01
spherical_terms : 7.71525296483684E-01
total_energy_dc : -1.15249530056958E+01
total_energy_dc_eV : -3.13609920206450E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.79660754E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.79660754E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.79660754E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.4112E+01 GPa]
- sigma(1 1)= 1.41121042E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.41121042E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.41121042E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 5 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 5, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 250, }
cutoff_energies: {ecut: 16.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 4.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 16.000 => boxcut(ratio)= 2.10376
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS4_WFK
_setup2: Arith. and geom. avg. npw (full set) are 234.139 234.120
================================================================================
--- !BeginCycle
iteration_state: {dtset: 5, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.526704271727 -1.153E+01 4.301E-06 2.553E-03
ETOT 2 -11.526705759332 -1.488E-06 6.160E-06 2.608E-04
ETOT 3 -11.526706026213 -2.669E-07 2.700E-06 6.919E-07
ETOT 4 -11.526706024396 1.817E-09 6.424E-06 1.783E-09
ETOT 5 -11.526706024399 -3.464E-12 2.673E-06 5.736E-11
At SCF step 5 nres2 = 5.74E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.66011458E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.66011458E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.66011458E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 5, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: -3.464E-12, res2: 5.736E-11, residm: 2.673E-06, diffor: null, }
etotal : -1.15267060E+01
entropy : 0.00000000E+00
fermie : 3.53702615E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.66011458E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.66011458E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.66011458E-04, ]
pressure_GPa: -1.3711E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ 2.94604368E-28, -1.14845771E-28, 3.49530606E-29, ]
- [ -2.94604368E-28, 1.14845771E-28, -3.49530606E-29, ]
force_length_stats: {min: 3.18124191E-28, max: 3.18124191E-28, mean: 3.18124191E-28, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.65966431
2 1.50737 2.65966431
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.265142256225936
Compensation charge over fine fft grid = 0.265161980443321
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40815 -4.07522 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07522 38.80058 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11580 0.00000 0.00000 0.35847 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35847 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35847
0.00000 0.00000 0.35847 0.00000 0.00000 1.64339 0.00000 0.00000
0.00000 0.00000 0.00000 0.35847 0.00000 0.00000 1.64339 0.00000
0.00000 0.00000 0.00000 0.00000 0.35847 0.00000 0.00000 1.64339
Atom # 2
0.40815 -4.07522 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07522 38.80058 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11580 0.00000 0.00000 0.35847 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35847 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35847
0.00000 0.00000 0.35847 0.00000 0.00000 1.64339 0.00000 0.00000
0.00000 0.00000 0.00000 0.35847 0.00000 0.00000 1.64339 0.00000
0.00000 0.00000 0.00000 0.00000 0.35847 0.00000 0.00000 1.64339
Augmentation waves occupancies Rhoij:
Atom # 1
1.73744 0.01908 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01908 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.50479 0.00000 0.00000 0.04094 0.00000 0.00000
0.00000 0.00000 0.00000 1.50479 0.00000 0.00000 0.04094 0.00000
0.00000 0.00000 0.00000 0.00000 1.50479 0.00000 0.00000 0.04094
0.00000 0.00000 0.04094 0.00000 0.00000 0.00128 0.00000 0.00000
0.00000 0.00000 0.00000 0.04094 0.00000 0.00000 0.00128 0.00000
0.00000 0.00000 0.00000 0.00000 0.04094 0.00000 0.00000 0.00128
Atom # 2
1.73744 0.01908 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01908 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.50479 0.00000 0.00000 0.04094 0.00000 0.00000
0.00000 0.00000 0.00000 1.50479 0.00000 0.00000 0.04094 0.00000
0.00000 0.00000 0.00000 0.00000 1.50479 0.00000 0.00000 0.04094
0.00000 0.00000 0.04094 0.00000 0.00000 0.00128 0.00000 0.00000
0.00000 0.00000 0.00000 0.04094 0.00000 0.00000 0.00128 0.00000
0.00000 0.00000 0.00000 0.00000 0.04094 0.00000 0.00000 0.00128
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.792E-09; max= 26.730E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 9.9277E-28; max dE/dt= 2.0868E-27; dE/dt below (all hartree)
1 0.000000000000 -0.000000000000 -0.000000000000
2 -0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 0.00000000000000
2 -0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 1.8366909E-28 2.9460437E-28 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 0.00000000000000
2 -0.00000000000000 0.00000000000000 -0.00000000000000
frms,max,avg= 9.4446434E-27 1.5149164E-26 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35370 Average Vxc (hartree)= -0.50125
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39197 0.26029 0.30268 0.33148 0.57297 0.65056
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 5, }
comment : Components of total free energy in Hartree
kinetic : 6.90187691784242E+00
hartree : 9.63887009664945E-01
xc : -4.29507605203195E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.67540167072250E+00
spherical_terms : 1.44455315294831E+00
total_energy : -1.15267072763614E+01
total_energy_eV : -3.13657656338926E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 5, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.07881687944748E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.39862049245044E-01
spherical_terms : 7.71820970963525E-01
total_energy_dc : -1.15267060243994E+01
total_energy_dc_eV : -3.13657622271307E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.66011458E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.66011458E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.66011458E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.3711E+01 GPa]
- sigma(1 1)= 1.37105281E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.37105281E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.37105281E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 6 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 6, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 291, }
cutoff_energies: {ecut: 18.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 5.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 18.000 => boxcut(ratio)= 2.19706
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS5_WFK
_setup2: Arith. and geom. avg. npw (full set) are 279.481 279.445
================================================================================
--- !BeginCycle
iteration_state: {dtset: 6, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.526979834624 -1.153E+01 1.484E-06 2.783E-04
ETOT 2 -11.526980086934 -2.523E-07 3.230E-06 2.890E-05
ETOT 3 -11.526980122442 -3.551E-08 5.094E-06 4.913E-08
ETOT 4 -11.526980122291 1.513E-10 2.877E-06 1.733E-10
ETOT 5 -11.526980122291 1.563E-13 4.746E-06 3.468E-12
At SCF step 5 nres2 = 3.47E-12 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.62936158E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.62936158E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.62936158E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 6, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: 1.563E-13, res2: 3.468E-12, residm: 4.746E-06, diffor: null, }
etotal : -1.15269801E+01
entropy : 0.00000000E+00
fermie : 3.53697331E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.62936158E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.62936158E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.62936158E-04, ]
pressure_GPa: -1.3620E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -1.62282067E-29, 6.24161797E-30, 3.74497078E-30, ]
- [ 1.62282067E-29, -6.24161797E-30, -3.74497078E-30, ]
force_length_stats: {min: 1.77858734E-29, max: 1.77858734E-29, mean: 1.77858734E-29, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.65909611
2 1.50737 2.65909611
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.266057475927503
Compensation charge over fine fft grid = 0.266077579515046
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40813 -4.07498 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07498 38.79762 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840
0.00000 0.00000 0.35840 0.00000 0.00000 1.64390 0.00000 0.00000
0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64390 0.00000
0.00000 0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64390
Atom # 2
0.40813 -4.07498 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07498 38.79762 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840
0.00000 0.00000 0.35840 0.00000 0.00000 1.64390 0.00000 0.00000
0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64390 0.00000
0.00000 0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64390
Augmentation waves occupancies Rhoij:
Atom # 1
1.73948 0.01921 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01921 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.49936 0.00000 0.00000 0.04031 0.00000 0.00000
0.00000 0.00000 0.00000 1.49936 0.00000 0.00000 0.04031 0.00000
0.00000 0.00000 0.00000 0.00000 1.49936 0.00000 0.00000 0.04031
0.00000 0.00000 0.04031 0.00000 0.00000 0.00125 0.00000 0.00000
0.00000 0.00000 0.00000 0.04031 0.00000 0.00000 0.00125 0.00000
0.00000 0.00000 0.00000 0.00000 0.04031 0.00000 0.00000 0.00125
Atom # 2
1.73948 0.01921 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01921 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.49936 0.00000 0.00000 0.04031 0.00000 0.00000
0.00000 0.00000 0.00000 1.49936 0.00000 0.00000 0.04031 0.00000
0.00000 0.00000 0.00000 0.00000 1.49936 0.00000 0.00000 0.04031
0.00000 0.00000 0.04031 0.00000 0.00000 0.00125 0.00000 0.00000
0.00000 0.00000 0.00000 0.04031 0.00000 0.00000 0.00125 0.00000
0.00000 0.00000 0.00000 0.00000 0.04031 0.00000 0.00000 0.00125
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.106E-09; max= 47.463E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 4.6088E-29; max dE/dt= 8.4145E-29; dE/dt below (all hartree)
1 -0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 -0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 1.0268679E-29 1.6228207E-29 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 5.2803665E-28 8.3448787E-28 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35370 Average Vxc (hartree)= -0.50124
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39196 0.26026 0.30268 0.33146 0.57297 0.65047
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 6, }
comment : Components of total free energy in Hartree
kinetic : 6.89970808105188E+00
hartree : 9.63933133887086E-01
xc : -4.29452889062524E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.67601048522368E+00
spherical_terms : 1.44646439683582E+00
total_energy : -1.15269803981368E+01
total_energy_eV : -3.13665088360395E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 6, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.07846910096320E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.40169921886527E-01
spherical_terms : 7.71889523562341E-01
total_energy_dc : -1.15269801222905E+01
total_energy_dc_eV : -3.13665080854237E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.62936158E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.62936158E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.62936158E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.3620E+01 GPa]
- sigma(1 1)= 1.36200497E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.36200497E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.36200497E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 7 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 7, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 333, }
cutoff_energies: {ecut: 20.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 6.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 20.000 => boxcut(ratio)= 2.08431
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS6_WFK
_setup2: Arith. and geom. avg. npw (full set) are 327.250 327.242
================================================================================
--- !BeginCycle
iteration_state: {dtset: 7, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.526995695149 -1.153E+01 9.213E-06 2.797E-06
ETOT 2 -11.526995700029 -4.880E-09 5.175E-06 2.908E-07
ETOT 3 -11.526995700592 -5.622E-10 3.892E-06 2.964E-11
At SCF step 3 nres2 = 2.96E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.63219621E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.63219621E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.63219621E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 7, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: -5.622E-10, res2: 2.964E-11, residm: 3.892E-06, diffor: null, }
etotal : -1.15269957E+01
entropy : 0.00000000E+00
fermie : 3.53691492E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.63219621E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.63219621E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.63219621E-04, ]
pressure_GPa: -1.3628E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ 1.40436404E-30, -1.56040449E-31, -7.80202246E-31, ]
- [ -1.40436404E-30, 1.56040449E-31, 7.80202246E-31, ]
force_length_stats: {min: 1.61409496E-30, max: 1.61409496E-30, mean: 1.61409496E-30, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.65908138
2 1.50737 2.65908138
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.266049777689671
Compensation charge over fine fft grid = 0.266070189169801
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40813 -4.07498 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07498 38.79764 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840
0.00000 0.00000 0.35840 0.00000 0.00000 1.64389 0.00000 0.00000
0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64389 0.00000
0.00000 0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64389
Atom # 2
0.40813 -4.07498 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07498 38.79764 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35840
0.00000 0.00000 0.35840 0.00000 0.00000 1.64389 0.00000 0.00000
0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64389 0.00000
0.00000 0.00000 0.00000 0.00000 0.35840 0.00000 0.00000 1.64389
Augmentation waves occupancies Rhoij:
Atom # 1
1.73945 0.01921 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01921 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.49951 0.00000 0.00000 0.04032 0.00000 0.00000
0.00000 0.00000 0.00000 1.49951 0.00000 0.00000 0.04032 0.00000
0.00000 0.00000 0.00000 0.00000 1.49951 0.00000 0.00000 0.04032
0.00000 0.00000 0.04032 0.00000 0.00000 0.00125 0.00000 0.00000
0.00000 0.00000 0.00000 0.04032 0.00000 0.00000 0.00125 0.00000
0.00000 0.00000 0.00000 0.00000 0.04032 0.00000 0.00000 0.00125
Atom # 2
1.73945 0.01921 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01921 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.49951 0.00000 0.00000 0.04032 0.00000 0.00000
0.00000 0.00000 0.00000 1.49951 0.00000 0.00000 0.04032 0.00000
0.00000 0.00000 0.00000 0.00000 1.49951 0.00000 0.00000 0.04032
0.00000 0.00000 0.04032 0.00000 0.00000 0.00125 0.00000 0.00000
0.00000 0.00000 0.00000 0.04032 0.00000 0.00000 0.00125 0.00000
0.00000 0.00000 0.00000 0.00000 0.04032 0.00000 0.00000 0.00125
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 24.988E-09; max= 38.916E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 3.7434E-30; max dE/dt= 5.2591E-30; dE/dt below (all hartree)
1 0.000000000000 -0.000000000000 -0.000000000000
2 -0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 9.3189816E-31 1.4043640E-30 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 4.7920126E-29 7.2215297E-29 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35369 Average Vxc (hartree)= -0.50124
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39196 0.26026 0.30267 0.33146 0.57297 0.65040
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 7, }
comment : Components of total free energy in Hartree
kinetic : 6.89977344706357E+00
hartree : 9.63943636019877E-01
xc : -4.29453130798507E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.67604046348937E+00
spherical_terms : 1.44640574624500E+00
total_energy : -1.15269955762086E+01
total_energy_eV : -3.13665501376735E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 7, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.07834540358818E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.40173301254878E-01
spherical_terms : 7.71889694367113E-01
total_energy_dc : -1.15269957005916E+01
total_energy_dc_eV : -3.13665504761367E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.63219621E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.63219621E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.63219621E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.3628E+01 GPa]
- sigma(1 1)= 1.36283895E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.36283895E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.36283895E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 8 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 8, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 384, }
cutoff_energies: {ecut: 22.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 7.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 22.000 => boxcut(ratio)= 2.38478
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS7_WFK
_setup2: Arith. and geom. avg. npw (full set) are 377.398 377.368
================================================================================
--- !BeginCycle
iteration_state: {dtset: 8, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.527072865257 -1.153E+01 6.880E-06 5.612E-05
ETOT 2 -11.527072958457 -9.320E-08 4.957E-06 5.818E-06
ETOT 3 -11.527072969276 -1.082E-08 5.982E-06 2.191E-09
ETOT 4 -11.527072969270 5.159E-12 4.838E-06 1.140E-11
At SCF step 4 nres2 = 1.14E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.64347584E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.64347584E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.64347584E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 8, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: 5.159E-12, res2: 1.140E-11, residm: 4.838E-06, diffor: null, }
etotal : -1.15270730E+01
entropy : 0.00000000E+00
fermie : 3.53680692E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.64347584E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.64347584E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.64347584E-04, ]
pressure_GPa: -1.3662E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.65908246
2 1.50737 2.65908246
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.265961276424368
Compensation charge over fft grid = 0.265981351655714
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40813 -4.07501 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07501 38.79796 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11579 0.00000 0.00000 0.35842 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35842 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35842
0.00000 0.00000 0.35842 0.00000 0.00000 1.64380 0.00000 0.00000
0.00000 0.00000 0.00000 0.35842 0.00000 0.00000 1.64380 0.00000
0.00000 0.00000 0.00000 0.00000 0.35842 0.00000 0.00000 1.64380
Atom # 2
0.40813 -4.07501 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07501 38.79796 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11579 0.00000 0.00000 0.35842 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35842 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11579 0.00000 0.00000 0.35842
0.00000 0.00000 0.35842 0.00000 0.00000 1.64380 0.00000 0.00000
0.00000 0.00000 0.00000 0.35842 0.00000 0.00000 1.64380 0.00000
0.00000 0.00000 0.00000 0.00000 0.35842 0.00000 0.00000 1.64380
Augmentation waves occupancies Rhoij:
Atom # 1
1.73884 0.01917 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01917 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.50086 0.00000 0.00000 0.04045 0.00000 0.00000
0.00000 0.00000 0.00000 1.50086 0.00000 0.00000 0.04045 0.00000
0.00000 0.00000 0.00000 0.00000 1.50086 0.00000 0.00000 0.04045
0.00000 0.00000 0.04045 0.00000 0.00000 0.00126 0.00000 0.00000
0.00000 0.00000 0.00000 0.04045 0.00000 0.00000 0.00126 0.00000
0.00000 0.00000 0.00000 0.00000 0.04045 0.00000 0.00000 0.00126
Atom # 2
1.73884 0.01917 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01917 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.50086 0.00000 0.00000 0.04045 0.00000 0.00000
0.00000 0.00000 0.00000 1.50086 0.00000 0.00000 0.04045 0.00000
0.00000 0.00000 0.00000 0.00000 1.50086 0.00000 0.00000 0.04045
0.00000 0.00000 0.04045 0.00000 0.00000 0.00126 0.00000 0.00000
0.00000 0.00000 0.00000 0.04045 0.00000 0.00000 0.00126 0.00000
0.00000 0.00000 0.00000 0.00000 0.04045 0.00000 0.00000 0.00126
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 30.061E-09; max= 48.383E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35368 Average Vxc (hartree)= -0.50124
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39196 0.26024 0.30266 0.33144 0.57295 0.65029
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 8, }
comment : Components of total free energy in Hartree
kinetic : 6.90026614392252E+00
hartree : 9.63999895772226E-01
xc : -4.29456695571329E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.67619298781163E+00
spherical_terms : 1.44596826826335E+00
total_energy : -1.15270722696295E+01
total_energy_eV : -3.13667588310848E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 8, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.07756317484325E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.40171907505654E-01
spherical_terms : 7.71889254813540E-01
total_energy_dc : -1.15270729692704E+01
total_energy_dc_eV : -3.13667607349048E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.64347584E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.64347584E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.64347584E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.3662E+01 GPa]
- sigma(1 1)= 1.36615753E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.36615753E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.36615753E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 9 ==================================================================
- mpi_nproc: 1, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 9, }
dimensions: {natom: 2, nkpt: 28, mband: 6, nsppol: 1, nspinor: 1, nspden: 1, mpw: 439, }
cutoff_energies: {ecut: 24.0, pawecutdg: 24.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 8.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3703266 3.3703266 G(1)= -0.1483536 0.1483536 0.1483536
R(2)= 3.3703266 0.0000000 3.3703266 G(2)= 0.1483536 -0.1483536 0.1483536
R(3)= 3.3703266 3.3703266 0.0000000 G(3)= 0.1483536 0.1483536 -0.1483536
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm: opening atomic psp file ../../../Pspdir/C.LDA_PW-JTH.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/C.LDA_PW-JTH.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.50736703
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.33742E-02 BB= 0.20146E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.28249356
mmax= 500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for LDA-1/2 potential is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 432 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tpaw1_2.o_DS8_WFK
_setup2: Arith. and geom. avg. npw (full set) are 430.380 430.366
================================================================================
--- !BeginCycle
iteration_state: {dtset: 9, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-10, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -11.527205632259 -1.153E+01 8.061E-06 7.471E-05
ETOT 2 -11.527205768419 -1.362E-07 4.788E-06 7.650E-06
ETOT 3 -11.527205783917 -1.550E-08 1.051E-05 2.178E-09
ETOT 4 -11.527205783914 2.675E-12 4.455E-06 1.043E-11
At SCF step 4 nres2 = 1.04E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.68001024E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.68001024E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.68001024E-04 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 9, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3703266, 3.3703266, ]
- [ 3.3703266, 0.0000000, 3.3703266, ]
- [ 3.3703266, 3.3703266, 0.0000000, ]
lattice_lengths: [ 4.76636, 4.76636, 4.76636, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.6567760E+01
convergence: {deltae: 2.675E-12, res2: 1.043E-11, residm: 4.455E-06, diffor: null, }
etotal : -1.15272058E+01
entropy : 0.00000000E+00
fermie : 3.53622825E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 4.68001024E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 4.68001024E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 4.68001024E-04, ]
pressure_GPa: -1.3769E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.50737 2.65897671
2 1.50737 2.65897671
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.265972842233431
Compensation charge over fft grid = 0.265992888428234
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.40813 -4.07502 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07502 38.79809 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11580 0.00000 0.00000 0.35843 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35843 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35843
0.00000 0.00000 0.35843 0.00000 0.00000 1.64371 0.00000 0.00000
0.00000 0.00000 0.00000 0.35843 0.00000 0.00000 1.64371 0.00000
0.00000 0.00000 0.00000 0.00000 0.35843 0.00000 0.00000 1.64371
Atom # 2
0.40813 -4.07502 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-4.07502 38.79809 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.11580 0.00000 0.00000 0.35843 0.00000 0.00000
0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35843 0.00000
0.00000 0.00000 0.00000 0.00000 -0.11580 0.00000 0.00000 0.35843
0.00000 0.00000 0.35843 0.00000 0.00000 1.64371 0.00000 0.00000
0.00000 0.00000 0.00000 0.35843 0.00000 0.00000 1.64371 0.00000
0.00000 0.00000 0.00000 0.00000 0.35843 0.00000 0.00000 1.64371
Augmentation waves occupancies Rhoij:
Atom # 1
1.73839 0.01915 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01915 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.50192 0.00000 0.00000 0.04054 0.00000 0.00000
0.00000 0.00000 0.00000 1.50192 0.00000 0.00000 0.04054 0.00000
0.00000 0.00000 0.00000 0.00000 1.50192 0.00000 0.00000 0.04054
0.00000 0.00000 0.04054 0.00000 0.00000 0.00126 0.00000 0.00000
0.00000 0.00000 0.00000 0.04054 0.00000 0.00000 0.00126 0.00000
0.00000 0.00000 0.00000 0.00000 0.04054 0.00000 0.00000 0.00126
Atom # 2
1.73839 0.01915 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01915 0.00029 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.50192 0.00000 0.00000 0.04054 0.00000 0.00000
0.00000 0.00000 0.00000 1.50192 0.00000 0.00000 0.04054 0.00000
0.00000 0.00000 0.00000 0.00000 1.50192 0.00000 0.00000 0.04054
0.00000 0.00000 0.04054 0.00000 0.00000 0.00126 0.00000 0.00000
0.00000 0.00000 0.00000 0.04054 0.00000 0.00000 0.00126 0.00000
0.00000 0.00000 0.00000 0.00000 0.04054 0.00000 0.00000 0.00126
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 36.374E-09; max= 44.547E-07
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.89175000000000 0.89175000000000 0.89175000000000
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 6.740653116003 6.740653116003 6.740653116003 bohr
= 3.567000000000 3.567000000000 3.567000000000 angstroms
Fermi (or HOMO) energy (hartree) = 0.35362 Average Vxc (hartree)= -0.50124
Eigenvalues (hartree) for nkpt= 28 k points:
kpt# 1, nband= 6, wtk= 0.02778, kpt= -0.0833 -0.1667 0.0000 (reduced coord)
-0.39196 0.26021 0.30262 0.33140 0.57291 0.65015
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 9, }
comment : Components of total free energy in Hartree
kinetic : 6.90059492581624E+00
hartree : 9.64069569381842E-01
xc : -4.29451914475968E+00
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
local_psp : -4.67644249638443E+00
spherical_terms : 1.44563881410246E+00
total_energy : -1.15272049659062E+01
total_energy_eV : -3.13671199160172E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 9, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 3.07637654906247E-01
Ewald energy : -1.27864121210521E+01
psp_core : 9.19865486989434E-01
xc_dc : -7.40195285744888E-01
spherical_terms : 7.71898480986895E-01
total_energy_dc : -1.15272057839144E+01
total_energy_dc_eV : -3.13671221419307E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 4.68001024E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 4.68001024E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 4.68001024E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.3769E+01 GPa]
- sigma(1 1)= 1.37690632E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.37690632E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.37690632E+01 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 6.7406531160E+00 6.7406531160E+00 6.7406531160E+00 Bohr
amu 1.20110000E+01
ecut1 8.00000000E+00 Hartree
ecut2 1.00000000E+01 Hartree
ecut3 1.20000000E+01 Hartree
ecut4 1.40000000E+01 Hartree
ecut5 1.60000000E+01 Hartree
ecut6 1.80000000E+01 Hartree
ecut7 2.00000000E+01 Hartree
ecut8 2.20000000E+01 Hartree
ecut9 2.40000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
etotal1 -1.1404443407E+01
etotal2 -1.1496575772E+01
etotal3 -1.1518729256E+01
etotal4 -1.1524953006E+01
etotal5 -1.1526706024E+01
etotal6 -1.1526980122E+01
etotal7 -1.1526995701E+01
etotal8 -1.1527072969E+01
etotal9 -1.1527205784E+01
fcart1 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart2 -7.9892710003E-29 -3.9946355002E-29 1.5978542001E-28
7.9892710003E-29 3.9946355002E-29 -1.5978542001E-28
fcart3 -7.9892710003E-29 8.4077907859E-45 7.9892710003E-29
7.9892710003E-29 -8.4077907859E-45 -7.9892710003E-29
fcart4 2.9959766251E-29 9.9865887504E-30 -8.9879298754E-29
-2.9959766251E-29 -9.9865887504E-30 8.9879298754E-29
fcart5 2.9460436814E-28 -1.1484577063E-28 3.4953060627E-29
-2.9460436814E-28 1.1484577063E-28 -3.4953060627E-29
fcart6 -1.6228206719E-29 6.2416179690E-30 3.7449707814E-30
1.6228206719E-29 -6.2416179690E-30 -3.7449707814E-30
fcart7 1.4043640430E-30 -1.5604044923E-31 -7.8020224613E-31
-1.4043640430E-30 1.5604044923E-31 7.8020224613E-31
fcart8 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart9 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
- fftalg 312
getwfk -1
ixc -1012
jdtset 1 2 3 4 5 6 7 8 9
kpt -8.33333333E-02 -1.66666667E-01 0.00000000E+00
-8.33333333E-02 -3.33333333E-01 0.00000000E+00
-1.66666667E-01 -2.50000000E-01 0.00000000E+00
-8.33333333E-02 -2.50000000E-01 8.33333333E-02
-8.33333333E-02 5.00000000E-01 0.00000000E+00
-1.66666667E-01 -4.16666667E-01 0.00000000E+00
-8.33333333E-02 -4.16666667E-01 8.33333333E-02
-2.50000000E-01 -3.33333333E-01 0.00000000E+00
-1.66666667E-01 -3.33333333E-01 8.33333333E-02
-8.33333333E-02 -3.33333333E-01 1.66666667E-01
-8.33333333E-02 3.33333333E-01 0.00000000E+00
-1.66666667E-01 4.16666667E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 0.00000000E+00
-1.66666667E-01 5.00000000E-01 8.33333333E-02
-3.33333333E-01 -4.16666667E-01 0.00000000E+00
-2.50000000E-01 -4.16666667E-01 8.33333333E-02
-1.66666667E-01 -4.16666667E-01 1.66666667E-01
-8.33333333E-02 -4.16666667E-01 2.50000000E-01
-8.33333333E-02 1.66666667E-01 0.00000000E+00
-1.66666667E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 3.33333333E-01 0.00000000E+00
-3.33333333E-01 4.16666667E-01 0.00000000E+00
-4.16666667E-01 5.00000000E-01 0.00000000E+00
-3.33333333E-01 5.00000000E-01 8.33333333E-02
-2.50000000E-01 5.00000000E-01 1.66666667E-01
-8.33333333E-02 0.00000000E+00 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-4.16666667E-01 0.00000000E+00 0.00000000E+00
kptrlatt 6 -6 6 -6 6 6 -6 -6 6
kptrlen 4.04439187E+01
P mkmem 28
natom 2
nband 6
ndtset 9
ngfft1 15 15 15
ngfft2 15 15 15
ngfft3 16 16 16
ngfft4 18 18 18
ngfft5 18 18 18
ngfft6 20 20 20
ngfft7 20 20 20
ngfft8 24 24 24
ngfft9 24 24 24
ngfftdg 24 24 24
nkpt 28
nstep 20
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
pawecutdg 2.40000000E+01 Hartree
prtden 0
prteig 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
strten1 -1.1802538354E-03 -1.1802538354E-03 -1.1802538354E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 1.0558770283E-04 1.0558770283E-04 1.0558770283E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 4.9948261065E-04 4.9948261065E-04 4.9948261065E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 4.7966075354E-04 4.7966075354E-04 4.7966075354E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten5 4.6601145799E-04 4.6601145799E-04 4.6601145799E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten6 4.6293615768E-04 4.6293615768E-04 4.6293615768E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten7 4.6321962083E-04 4.6321962083E-04 4.6321962083E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten8 4.6434758438E-04 4.6434758438E-04 4.6434758438E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten9 4.6800102438E-04 4.6800102438E-04 4.6800102438E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs 1.00000000E-10
typat 1 1
useylm 1
wtk 0.02778 0.02778 0.02778 0.05556 0.02778 0.02778
0.05556 0.02778 0.05556 0.05556 0.02778 0.02778
0.02778 0.05556 0.02778 0.05556 0.05556 0.05556
0.02778 0.02778 0.02778 0.02778 0.02778 0.05556
0.05556 0.00926 0.00926 0.00926
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.9175000000E-01 8.9175000000E-01 8.9175000000E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6851632790E+00 1.6851632790E+00 1.6851632790E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 14.3 wall= 14.4
================================================================================
Calculation completed.
.Delivered 17 WARNINGs and 41 COMMENTs to log file.
+Overall time at end (sec) : cpu= 14.3 wall= 14.4