abinit/tests/tutorial/Input/tpositron_2.abi

111 lines
4.1 KiB
Plaintext

# Input for Positron tutorial
# Second step of the tutorial on electron-positron annihilation
# Positron lifetime calculation within PAW
# Si monovacancy, "conventional" scheme
#Define the different datasets
ndtset 2 # 2 datasets
#FIRST DATASET
positron1 0 # Dataset 1 is a simple electronic GS calculation
#SECOND DATASET
positron2 1 # Dataset 2 is a positronic GS calculation
getden2 1 # in presence of the previous electronic density
kptopt2 0 # Use only k=gamma point
ixcpositron2 1 # We are using the Boronski and Nieminen parametrization
posocc2 1 # Occupation number for the positron
# (should be set <1 for bulk calculation with a small cell).
# Here the zero positron density limit is used,
# so results do not depend on posocc.
#-------------------------------------------------------------------------------
#Definition of data common to all datasets
#Definition of the unit cell
acell 3*5.43 angstrom # Lengths of the primitive vectors (exp. param. in angstrom)
rprim # 3 orthogonal primitive vectors (FCC lattice, non primitive cell)
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 0.0
chkprim 0 # Do not stop if cell is not primitive
#Definition of the atom types and pseudopotentials
ntypat 1 # There is only one type of atom
znucl 14 # Atomic number of the possible type(s) of atom. Here silicon.
pp_dirpath "$ABI_PSPDIR" # Path to the directory were
# pseudopotentials for tests are stored
pseudos "Psdj_paw_pw_std/Si.xml" # Name and location of the pseudopotential
#Definition of the atoms
natom 15 # There are 15 atoms
typat 15*1 # They all are of type 1, that is, Silicon
xred # Location of the 15 atoms (one triplet per atom):
0.0 0.0 0.0
0.0 0.0 0.5
0.0 0.5 0.0
0.5 0.0 0.0
0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0
0.5 0.5 0.5
0.125 0.125 0.125
0.125 0.125 0.625
0.125 0.625 0.125
0.625 0.125 0.125
0.125 0.625 0.625
0.625 0.125 0.625
0.625 0.625 0.125
# 0.625 0.625 0.625 # We remove one Si atom
#Definition of bands and occupation numbers
nband 36 # Compute 36 bands
occopt 1 # Automatic generation of occupation numbers, as a semiconductor
#Numerical parameters of the calculation : planewave basis set and k point grid
ecut 8. # Maximal plane-wave kinetic energy cut-off, in Hartree
pawecutdg 15. # Max. plane-wave kinetic energy cut-off, in Ha, for the PAW double grid
kptopt 1 # Automatic generation of k points, taking into account the symmetry
ngkpt 2 2 2 # This is a 2 2 2 grid based on the primitive vectors of the recip. space
nshiftk 1 # We do not shift the grid in order to have Gamma point in it
shiftk 0. 0. 0.
#Parameters for the SCF procedure
nstep 50 # Maximal number of SCF cycles
tolvrs 1.0d-8 # Will stop when, twice in a row, the difference
# between two consecutive evaluations of potential residual
# differ by less than tolvrs
#Miscelaneous parameters
prtwf 0 # Do not print wavefunctions
prtden 1 # Print density (electronic and/or positronic)
prteig 0 # Do not print eigenvalues
optforces 0 # Forces computation is not relevant here
optstress 0 # Stress tensor computation is not relevant here
##############################################################
# This section is used only for regression testing of ABINIT #
##############################################################
#%%<BEGIN TEST_INFO>
#%% [setup]
#%% executable = abinit
#%% [files]
#%% files_to_test =
#%% tpositron_2.abo, tolnlines= 0, tolabs= 0.0, tolrel= 0.0, fld_options= -easy
#%% [paral_info]
#%% max_nprocs = 10
#%% [extra_info]
#%% authors = J. Wiktor
#%% keywords = POSITRON,PAW
#%% description =
#%% Input for Positron tutorial
#%% Second step of the tutorial on electron-positron annihilation
#%% Positron lifetime calculation within PAW
#%% Si monovacancy, "conventional" scheme
#%%<END TEST_INFO>