abinit/tests/tutorespfn/TutoNLO/PART1-DFPT/anaddb.out

529 lines
23 KiB
Plaintext

Version 4.4.4 of ANADDB
(sequential version, prepared for a MacOSX computer)
Copyright (C) 1998-2004 ABINIT group .
ANADDB comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
Starting date : Fri 29 Apr 2005.
================================================================================
-outvars9: echo values of input variables ----------------------
Flags :
dieflag 1
nlflag 1
elaflag 3
instrflag 1
piezoflag 3
Miscellaneous information :
eivec 1
asr 1
chneut 2
Frequency information :
nfreq 1
frmin 0.00000000E+00
frmax 1.00000000E+01
Non-linear response information :
alphon 1
prtmbm 1
ramansr 1
First list of wavevector (reduced coord.) :
nph1l 1
qph1l
0.00000000E+00 0.00000000E+00 0.00000000E+00 1.000E+00
Second list of wavevector (cart. coord.) :
nph2l 1
qph2l
1.00000000E+00 0.00000000E+00 0.00000000E+00 0.000E+00
================================================================================
read the DDB information and perform some checks
-begin at tcpu 0.050 and twall 0.034 sec
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3197589 5.3197589 G(1)= -0.0939892 0.0939892 0.0939892
R(2)= 5.3197589 0.0000000 5.3197589 G(2)= 0.0939892 -0.0939892 0.0939892
R(3)= 5.3197589 5.3197589 0.0000000 G(3)= 0.0939892 0.0939892 -0.0939892
Unit cell volume ucvol= 3.0109659E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Now the whole DDB is in central memory
================================================================================
Dielectric Tensor and Effective Charges
-begin at tcpu 0.200 and twall 0.276 sec
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 -0.005634 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 -0.005634 0.000000
2 3 0.000000 0.000000
3 1 0.000000 0.000000
3 2 0.000000 0.000000
3 3 -0.005634 0.000000
Effective charge tensors after
imposition of the charge neutrality,
and eventual restriction to some part :
atom displacement
1 1 2.105999E+00 -3.215706E-11 4.424949E-09
1 2 -4.446649E-09 2.105999E+00 -4.426264E-09
1 3 4.470201E-09 3.261353E-11 2.105999E+00
2 1 -2.105999E+00 3.215706E-11 -4.424949E-09
2 2 4.446649E-09 -2.105999E+00 4.426264E-09
2 3 -4.470201E-09 -3.261353E-11 -2.105999E+00
Now, the imaginary part of the dynamical matrix is zeroed
Non-linear optical coefficients d (pm/V)
0.000001 0.000000 0.000001 32.772254 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 32.772254 0.000000
0.000000 0.000000 0.000001 0.000000 0.000001 32.772254
The violation of the Raman sum rule
by the first-order electronic dielectric tensors is as follows
atom
displacement
1 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 -0.000377572
0.000000000 -0.000377572 0.000000000
2 0.000000000 0.000000000 -0.000377572
0.000000000 0.000000001 0.000000000
-0.000377572 0.000000000 0.000000000
3 0.000000000 -0.000377572 0.000000000
-0.000377572 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
First-order change in the electronic dielectric
susceptibility tensor (Bohr^-1)
induced by an atomic displacement
(after imposing the sum over all atoms to vanish)
atom displacement
1 1 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 -0.099889084
0.000000000 -0.099889084 0.000000000
1 2 0.000000000 0.000000000 -0.099889084
0.000000000 -0.000000001 0.000000000
-0.099889084 0.000000000 0.000000000
1 3 0.000000000 -0.099889084 0.000000000
-0.099889084 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
2 1 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.099889084
0.000000000 0.099889084 0.000000000
2 2 0.000000000 0.000000000 0.099889084
0.000000000 0.000000001 0.000000000
0.099889084 0.000000000 0.000000000
2 3 0.000000000 0.099889084 0.000000000
0.099889084 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
================================================================================
Treat the first list of vectors
-begin at tcpu 0.200 and twall 0.285 sec
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.641481E-03 1.641481E-03
1.641481E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 3.602635E+02 3.602635E+02
- 3.602635E+02
Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 0.00000000E+00 -2.32020410E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 0.00000000E+00 -2.32020410E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 2.32020410E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 2.32020410E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 2.32020410E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 2.32020410E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 4 Energy 1.641481E-03
; 1 1.38067657E-03 0.00000000E+00 3.61137941E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -4.97223545E-04 0.00000000E+00 -1.30056736E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 5 Energy 1.641481E-03
; 1 0.00000000E+00 3.86630690E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 -1.39237448E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 6 Energy 1.641481E-03
; 1 3.61137941E-03 0.00000000E+00 -1.38067657E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -1.30056735E-03 0.00000000E+00 4.97223544E-04
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Analysis of degeneracies and characters (maximum tolerance=1.00E-06 a.u.)
Symmetry characters of vibration mode # 1
degenerate with vibration modes # 2 to 3
3.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0 0.0 0.0 0.0 0.0 1.0 -1.0 -1.0 1.0
0.0 0.0 0.0 0.0 1.0 1.0 -1.0 -1.0
Symmetry characters of vibration mode # 4
degenerate with vibration modes # 5 to 6
3.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0 0.0 0.0 0.0 0.0 1.0 -1.0 -1.0 1.0
0.0 0.0 0.0 0.0 1.0 1.0 -1.0 -1.0
================================================================================
Treat the second list of vectors
-begin at tcpu 0.210 and twall 0.293 sec
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.641481E-03 1.641481E-03
1.791368E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 3.602635E+02 3.602635E+02
- 3.931598E+02
Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 0.00000000E+00 -2.32020410E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 0.00000000E+00 -2.32020410E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 -2.32020410E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 -2.32020410E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 2.32020410E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 2.32020410E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 4 Energy 1.641481E-03
; 1 0.00000000E+00 0.00000000E+00 3.86630690E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 0.00000000E+00 -1.39237448E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 5 Energy 1.641481E-03
; 1 0.00000000E+00 3.86630690E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 -1.39237448E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 6 Energy 1.791368E-03
; 1 3.86630690E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -1.39237448E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Raman susceptibility of zone-center phonons, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
-----------------------------------------------------------------------
Mod 1 ( 0.00 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Mod 2 ( 0.00 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Mod 3 ( 0.00 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Mod 4 ( 360.26 cm-1)
; 0.000000000 -0.009114814 -0.000000001
; -0.009114814 0.000000000 0.000000000
; -0.000000001 0.000000000 0.000000000
Mod 5 ( 360.26 cm-1)
; 0.000000000 0.000000001 -0.009114814
; 0.000000001 0.000000000 0.000000000
; -0.009114814 0.000000000 0.000000000
Mod 6 ( 393.16 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 -0.013439375
; 0.000000000 -0.013439375 0.000000000
Mode effective charges
Mode number. x y z length
; 1 0.000 0.000 0.000 0.000
; 2 0.000 0.000 0.000 0.000
; 3 0.000 0.000 0.000 0.000
; 4 2.695 0.000 0.000 2.695
; 5 0.000 2.695 0.000 2.695
; 6 0.000 0.000 -2.695 2.695
Oscillator strengths (in a.u. ; 1 a.u.=253.2638413 m3/s2)
Mode number. xx yy zz xy xz yz
; 1 Real 2.4964E-22 1.6906E-25 2.1185E-24 -6.4964E-24 2.2997E-23 -5.9845E-25
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
; 2 Real 1.6909E-25 2.7737E-23 1.6906E-25 2.1657E-24 -1.6908E-25 -2.1654E-24
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
; 3 Real 1.4373E-22 1.6906E-25 2.7737E-23 -4.9294E-24 -6.3140E-23 2.1655E-24
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
; 4 Real 1.2265E-04 1.0561E-26 8.9770E-24 1.1381E-15 -3.3182E-14 -3.0791E-25
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
; 5 Real 1.0559E-26 1.2265E-04 1.0559E-26 -1.1380E-15 -1.0559E-26 1.1380E-15
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
; 6 Real 1.3231E-25 1.0559E-26 1.2265E-04 -3.7378E-26 4.0285E-15 -1.1380E-15
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Electronic dielectric tensor
9.94846084 0.00000000 0.00000000
0.00000000 9.94846084 0.00000000
0.00000000 0.00000000 9.94846084
Full dielectric tensor at frequency 0.0000E+00 Hartree
1.18482363E+01 -7.39540860E-11 -3.88534183E-09
3.36062673E-09 1.18482363E+01 3.56077480E-09
-3.92827420E-09 8.25137356E-11 1.18482363E+01
Generalized Lyddane-Sachs-Teller relation at zero frequency :
Direction Dielectric constant
1.00000 0.00000 0.00000 1.18482363E+01
Raman susceptibilities of transverse zone-center phonon modes
-------------------------------------------------------------
Mod 1 ( 0.00 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Mod 2 ( 0.00 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Mod 3 ( 0.00 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Mod 4 ( 360.26 cm-1)
; 0.000000000 0.000000000 0.000000000
; 0.000000000 0.000000000 -0.009114814
; 0.000000000 -0.009114814 0.000000000
Mod 5 ( 360.26 cm-1)
; 0.000000000 0.000000000 -0.009114814
; 0.000000000 0.000000000 0.000000000
; -0.009114814 0.000000000 0.000000000
Mod 6 ( 360.26 cm-1)
; 0.000000000 0.009114814 0.000000000
; 0.009114814 0.000000000 0.000000000
; 0.000000000 0.000000000 0.000000000
Output of the EO tensor (pm/V) in Voigt notations
=================================================
Mode by mode decomposition
Mode 4 ( 360.26 cm-1)
0.000000002 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
-0.000000002 0.000000000 0.000000000
0.533097548 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
-0.000000001 0.000000000 0.000000000
Mode 5 ( 360.26 cm-1)
0.000000000 -0.000000001 0.000000000
0.000000000 0.000000003 0.000000000
0.000000000 0.000000002 0.000000000
0.000000000 0.000000003 0.000000000
0.000000000 0.533097549 0.000000000
0.000000000 0.000000003 0.000000000
Mode 6 ( 360.26 cm-1)
0.000000000 0.000000000 0.000000002
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000002
0.000000000 0.000000000 0.000000001
0.000000000 0.000000000 0.000000002
0.000000000 0.000000000 0.533097549
Electronic contribution to the EO tensor
-0.000000032 -0.000000020 -0.000000012
-0.000000001 0.000000000 -0.000000010
-0.000000021 -0.000000015 -0.000000032
-1.324507791 -0.000000011 -0.000000015
-0.000000012 -1.324507791 -0.000000021
-0.000000020 -0.000000001 -1.324507791
Total EO tensor (pm/V) in Voigt notations
-0.000000031 -0.000000022 -0.000000010
-0.000000001 0.000000003 -0.000000010
-0.000000023 -0.000000013 -0.000000031
-0.791410242 -0.000000008 -0.000000014
-0.000000012 -0.791410242 -0.000000019
-0.000000021 0.000000001 -0.791410242
================================================================================
Calculation of the internal-strain tensor
-begin at tcpu 0.210 and twall 0.301sec
Force-response internal strain tensor(Unit:Hartree/bohr)
Atom dir strainxx strainyy strainzz strainyz strainxz strainxy
1 x 0.0000000 0.0000000 0.0000000 0.1586801 0.0000000 0.0000000
1 y 0.0000000 0.0000000 0.0000000 0.0000000 0.1586801 0.0000000
1 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.1586801
2 x 0.0000000 0.0000000 0.0000000 -0.1586801 0.0000000 0.0000000
2 y 0.0000000 0.0000000 0.0000000 0.0000000 -0.1586801 0.0000000
2 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.1586801
Displacement-response internal strain tensor (Unit:Bohr)
Atom dir strainxx strainyy strainzz strainyz strainxz strainxy
1 x 0.0000000 0.0000000 0.0000000 0.8142816 0.0000000 0.0000000
1 y 0.0000000 0.0000000 0.0000000 0.0000000 0.8142816 0.0000000
1 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8142814
2 x 0.0000000 0.0000000 0.0000000 -0.8142816 0.0000000 0.0000000
2 y 0.0000000 0.0000000 0.0000000 0.0000000 -0.8142816 0.0000000
2 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.8142814
================================================================================
Calculation of the elastic and compliances tensor
-begin at tcpu 0.210 and twall 0.303sec
Elastic Tensor(clamped ion)(Unit:10^2GP,VOIGT notation):
1.1376259 0.5724193 0.5724193 0.0000000 0.0000001 0.0000000
0.5724193 1.1376259 0.5724193 0.0000000 0.0000001 0.0000000
0.5724193 0.5724193 1.1376259 0.0000000 0.0000001 0.0000000
0.0000000 0.0000000 0.0000000 0.7849251 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.7849251 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7849251
Elastic Tensor(relaxed ion)(Unit:10^2GP,VOIGT notation):
1.1376259 0.5724193 0.5724193 0.0000000 0.0000001 0.0000000
0.5724193 1.1376259 0.5724193 0.0000000 0.0000001 0.0000000
0.5724193 0.5724193 1.1376259 0.0000000 0.0000001 0.0000000
0.0000000 0.0000000 0.0000000 0.5324149 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.5324149 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.5324150
Compliance Tensor(clamped on) (Unit: 10^-2GP^-1):
1.3255509 -0.4437140 -0.4437140 0.0000000 0.0000000 0.0000000
-0.4437140 1.3255508 -0.4437140 0.0000000 0.0000000 0.0000000
-0.4437140 -0.4437140 1.3255508 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 1.2740069 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 1.2740069 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.2740069
Compliance Tensor(relaxeded ion)(Unit: 10^-2GP^-1):
1.3255509 -0.4437140 -0.4437140 0.0000000 0.0000000 0.0000000
-0.4437140 1.3255508 -0.4437140 0.0000000 0.0000000 0.0000000
-0.4437140 -0.4437140 1.3255508 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 1.8782344 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 1.8782344 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.8782341
================================================================================
Calculation of the piezoelectric tensor
-begin at tcpu 0.220 and twall 0.307sec
Proper piezoelectric constants(clamped ion)(Unit:c/m^2)
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
-0.69401355 0.00000000 0.00000000
0.00000000 -0.69401359 0.00000000
0.00000000 0.00000000 -0.69401363
Proper piezoelectric constants(relaxed ion)(Unit:c/m^2)
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
-0.04228758 0.00000000 0.00000000
0.00000000 -0.04228758 0.00000000
0.00000000 0.00000000 -0.04228777
================================================================================
+Total cpu time 0.220 and wall time 0.309 sec
anaddb : the run completed succesfully.