abinit/tests/tutorespfn/Refs/tnlo_4.abo

568 lines
25 KiB
Plaintext

.Version 10.1.4.5 of ANADDB, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ANADDB comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h05 )
================================================================================
-outvars_anaddb: echo values of input variables ----------------------
Flags :
dieflag 1
nlflag 1
elaflag 3
instrflag 1
piezoflag 3
Miscellaneous information :
eivec 1
asr 1
chneut 2
Frequency information :
nfreq 1
frmin 0.00000000E+00
frmax 1.00000000E+01
Non-linear response information :
alphon 1
prtmbm 1
ramansr 1
First list of wavevector (reduced coord.) :
nph1l 1
qph1l
0.00000000E+00 0.00000000E+00 0.00000000E+00 1.000E+00
Second list of wavevector (cart. coord.) :
nph2l 1
qph2l
1.00000000E+00 0.00000000E+00 0.00000000E+00 0.000E+00
================================================================================
read the DDB information and perform some checks
==== Info on the Cryst% object ====
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.0481150 5.0481150 G(1)= -0.0990469 0.0990469 0.0990469
R(2)= 5.0481150 0.0000000 5.0481150 G(2)= 0.0990469 -0.0990469 0.0990469
R(3)= 5.0481150 5.0481150 0.0000000 G(3)= 0.0990469 0.0990469 -0.0990469
Unit cell volume ucvol= 2.5728693E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Time-reversal symmetry is present
Reduced atomic positions [iatom, xred, symbol]:
1) 0.2500000 0.2500000 0.2500000 P
2) 0.0000000 0.0000000 0.0000000 Al
DDB file with 2 blocks has been read.
================================================================================
Dielectric Tensor and Effective Charges
anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 -0.001266 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 -0.001266 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 -0.001266 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 -2.207969E+00 -2.509276E-18 -2.443297E-18
1 2 -2.509276E-18 -2.207969E+00 2.575255E-18
1 3 2.509276E-18 2.509276E-18 -2.207969E+00
2 1 2.207969E+00 2.509276E-18 2.443297E-18
2 2 2.509276E-18 2.207969E+00 -2.575255E-18
2 3 -2.509276E-18 -2.509276E-18 2.207969E+00
Now, the imaginary part of the dynamical matrix is zeroed
Non-linear optical coefficients d (pm/V)
-0.000005 0.000000 -0.000003 8.934453 -0.000001 -0.000003
-0.000003 -0.000001 -0.000002 -0.000001 8.934453 0.000000
-0.000001 -0.000001 -0.000005 -0.000002 -0.000003 8.934453
The violation of the Raman sum rule
by the first-order electronic dielectric tensors is as follows
atom
displacement
1 -0.000000005 -0.000000000 -0.000000000
-0.000000000 -0.000000000 -0.000021870
-0.000000000 -0.000021870 0.000000005
2 0.000000005 -0.000000005 -0.000021875
-0.000000005 -0.000000010 -0.000000005
-0.000021875 -0.000000005 -0.000000005
3 -0.000000005 -0.000021875 -0.000000005
-0.000021875 0.000000000 -0.000000005
-0.000000005 -0.000000005 -0.000000005
First-order change in the electronic dielectric
susceptibility tensor (Bohr^-1)
induced by an atomic displacement
(after imposing the sum over all atoms to vanish)
atom displacement
1 1 -0.000000006 0.000000000 0.000000000
0.000000000 -0.000000000 0.043617192
0.000000000 0.043617192 0.000000006
1 2 0.000000006 -0.000000006 0.043617186
-0.000000006 -0.000000013 -0.000000006
0.043617186 -0.000000006 -0.000000006
1 3 -0.000000006 0.043617186 -0.000000006
0.043617186 0.000000000 -0.000000006
-0.000000006 -0.000000006 -0.000000006
2 1 0.000000006 -0.000000000 -0.000000000
-0.000000000 0.000000000 -0.043617192
-0.000000000 -0.043617192 -0.000000006
2 2 -0.000000006 0.000000006 -0.043617186
0.000000006 0.000000013 0.000000006
-0.043617186 0.000000006 0.000000006
2 3 0.000000006 -0.043617186 0.000000006
-0.043617186 -0.000000000 0.000000006
0.000000006 0.000000006 0.000000006
================================================================================
Treat the first list of vectors
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 2.110819E-03 2.110819E-03
2.110819E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 4.632713E+02 4.632713E+02
- 4.632713E+02
Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector - absolute values smaller than 1.0d-7 are set to zero)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 0.00000000E+00 0.00000000E+00 3.07661655E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 0.00000000E+00 3.07661647E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 0.00000000E+00 -3.07661655E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 -3.07661647E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 3.07661655E-03 0.00000000E+00 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 3.07661647E-03 0.00000000E+00 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 4 Energy 2.110819E-03
- 1 0.00000000E+00 0.00000000E+00 2.87150608E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 0.00000000E+00 -3.29637788E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 5 Energy 2.110819E-03
- 1 0.00000000E+00 -2.87150608E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 3.29637788E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 6 Energy 2.110819E-03
- 1 2.87150608E-03 0.00000000E+00 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 -3.29637788E-03 0.00000000E+00 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Analysis of degeneracies and characters (maximum tolerance=1.00E-06 a.u.)
For each vibration mode, or group of modes if degenerate,
the characters are given for each symmetry operation (see the list in the log file).
Symmetry characters of vibration mode # 1
degenerate with vibration modes # 2 to 3
3.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0 -0.0 -0.0 0.0 -0.0 1.0 -1.0 -1.0 1.0
0.0 -0.0 0.0 -0.0 1.0 1.0 -1.0 -1.0
Symmetry characters of vibration mode # 4
degenerate with vibration modes # 5 to 6
3.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 -1.0 0.0 -0.0 0.0 -0.0 1.0 -1.0 -1.0 1.0
0.0 0.0 -0.0 -0.0 1.0 1.0 -1.0 -1.0
================================================================================
The alphon input variable is non-zero, will mix the degenerate phonon modes
in order to align the mode effective charges with the cartesian axes.
Mode effective charges
Mode number. x y z length
- 1 0.000000 -0.000000 -0.000000 0.000000
- 2 0.000000 0.000000 0.000000 0.000000
- 3 -0.000000 -0.000000 0.000000 0.000000
- 4 0.000000 0.000000 -3.115158 3.115158
- 5 -0.000000 3.115158 0.000000 3.115158
- 6 -3.115158 0.000000 0.000000 3.115158
Oscillator strengths (in a.u. ; 1 a.u.=253.2638413 m3/s2). Set to zero if abs()<tol14.
Mode number. xx yy zz xy xz yz trace
- 1 Real 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- 2 Real 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- 3 Real 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- 4 Real 0.0000E+00 0.0000E+00 1.8546E-04 0.0000E+00 0.0000E+00 0.0000E+00 1.8546E-04
- Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- 5 Real 0.0000E+00 1.8546E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.8546E-04
- Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
- 6 Real 1.8546E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.8546E-04
- Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Electronic dielectric tensor
6.12216718 0.00000000 0.00000000
0.00000000 6.12216718 0.00000000
0.00000000 0.00000000 6.12216718
Relaxed ion dielectric tensor
8.15521897 0.00000000 0.00000000
0.00000000 8.15521897 0.00000000
0.00000000 0.00000000 8.15521897
Frequency dependent dielectric constant:
Full dielectric tensor at frequency 0.0000E+00 Hartree
8.15521897 0.00000000 0.00000000
0.00000000 8.15521897 0.00000000
0.00000000 0.00000000 8.15521897
Raman susceptibilities of transverse zone-center phonon modes
-------------------------------------------------------------
Mod 1 ( 0.00 cm-1)
- -0.000000000 0.000000000 -0.000000000
- 0.000000000 -0.000000000 -0.000000000
- -0.000000000 -0.000000000 -0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000000000
Mod 2 ( 0.00 cm-1)
- -0.000000000 0.000000000 -0.000000000
- 0.000000000 0.000000000 0.000000000
- -0.000000000 0.000000000 0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000000000
Mod 3 ( 0.00 cm-1)
- -0.000000000 -0.000000000 0.000000000
- -0.000000000 -0.000000000 0.000000000
- 0.000000000 0.000000000 0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000000000
Mod 4 ( 463.27 cm-1)
- -0.000000001 0.004315218 -0.000000001
- 0.004315218 0.000000000 -0.000000001
- -0.000000001 -0.000000001 -0.000000001
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000037242
Mod 5 ( 463.27 cm-1)
- -0.000000001 0.000000001 -0.004315218
- 0.000000001 0.000000001 0.000000001
- -0.004315218 0.000000001 0.000000001
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000037242
Mod 6 ( 463.27 cm-1)
- -0.000000001 0.000000000 0.000000000
- 0.000000000 -0.000000000 0.004315218
- 0.000000000 0.004315218 0.000000001
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000037242
Output of the EO tensor (pm/V) in Voigt notations
=================================================
Mode by mode decomposition
Mode 4 ( 463.27 cm-1)
0.000000000 0.000000000 -0.000000078
-0.000000000 -0.000000000 0.000000000
0.000000000 0.000000000 -0.000000078
0.000000000 0.000000000 -0.000000078
0.000000000 0.000000000 -0.000000078
-0.000000000 -0.000000000 0.536131045
Mode 5 ( 463.27 cm-1)
-0.000000000 0.000000078 0.000000000
0.000000000 -0.000000156 -0.000000000
0.000000000 -0.000000078 -0.000000000
0.000000000 -0.000000078 -0.000000000
-0.000000000 0.536131045 0.000000000
0.000000000 -0.000000078 -0.000000000
Mode 6 ( 463.27 cm-1)
-0.000000078 0.000000000 0.000000000
-0.000000000 0.000000000 0.000000000
0.000000078 -0.000000000 -0.000000000
0.536131123 -0.000000000 -0.000000000
0.000000000 -0.000000000 -0.000000000
0.000000000 -0.000000000 -0.000000000
Electronic contribution to the EO tensor
0.000000585 0.000000271 0.000000130
-0.000000038 0.000000083 0.000000158
0.000000326 0.000000185 0.000000585
-0.953493192 0.000000158 0.000000185
0.000000130 -0.953493192 0.000000326
0.000000271 -0.000000038 -0.953493192
Total EO tensor (pm/V) in Voigt notations
0.000000507 0.000000349 0.000000052
-0.000000038 -0.000000073 0.000000158
0.000000404 0.000000107 0.000000507
-0.417362069 0.000000080 0.000000107
0.000000130 -0.417362147 0.000000247
0.000000271 -0.000000116 -0.417362147
================================================================================
Treat the second list of vectors
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 2.110819E-03 2.110819E-03
2.436219E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 4.632713E+02 4.632713E+02
- 5.346882E+02
Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector - absolute values smaller than 1.0d-7 are set to zero)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 0.00000000E+00 0.00000000E+00 3.07661655E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 0.00000000E+00 3.07661647E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 0.00000000E+00 -3.07661655E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 -3.07661647E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
- 1 3.07661654E-03 0.00000000E+00 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 3.07661648E-03 0.00000000E+00 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 4 Energy 2.110819E-03
- 1 0.00000000E+00 0.00000000E+00 2.87150608E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 0.00000000E+00 -3.29637788E-03
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 5 Energy 2.110819E-03
- 1 0.00000000E+00 2.87150608E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
- 2 0.00000000E+00 -3.29637788E-03 0.00000000E+00
- 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 6 Energy 2.436219E-03
; 1 2.87150609E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -3.29637787E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Raman susceptibility of zone-center phonons, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
-----------------------------------------------------------------------
Mod 1 ( 0.00 cm-1)
- -0.000000000 0.000000000 -0.000000000
- 0.000000000 -0.000000000 -0.000000000
- -0.000000000 -0.000000000 -0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000000000
Mod 2 ( 0.00 cm-1)
- -0.000000000 0.000000000 -0.000000000
- 0.000000000 0.000000000 0.000000000
- -0.000000000 0.000000000 0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000000000
Mod 3 ( 0.00 cm-1)
- -0.000000000 -0.000000000 0.000000000
- -0.000000000 0.000000000 0.000000000
- 0.000000000 0.000000000 -0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000000000
Mod 4 ( 463.27 cm-1)
- -0.000000001 0.004315218 -0.000000001
- 0.004315218 0.000000000 -0.000000001
- -0.000000001 -0.000000001 -0.000000001
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000037242
Mod 5 ( 463.27 cm-1)
- 0.000000001 -0.000000001 0.004315218
- -0.000000001 -0.000000001 -0.000000001
- 0.004315218 -0.000000001 -0.000000001
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000037242
Mod 6 ( 534.69 cm-1)
; -0.000000002 -0.000000001 -0.000000000
; -0.000000001 0.000000000 0.006863765
; -0.000000000 0.006863765 -0.000000000
Spherical averages : G0= 0.000000000 G1= 0.000000000 G2= 0.000094223
Generalized Lyddane-Sachs-Teller relation at zero frequency :
Direction Dielectric constant
1.00000 0.00000 0.00000 8.15521897
================================================================================
Calculation of the internal-strain tensor
Force-response internal strain tensor(Unit:Hartree/bohr)
Atom dir strainxx strainyy strainzz strainyz strainxz strainxy
1 x 0.0000000 0.0000000 0.0000000 -0.2038947 0.0000000 -0.0000000
1 y 0.0000000 0.0000000 0.0000000 -0.0000000 -0.2038947 -0.0000000
1 z 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 -0.2038947
2 x -0.0000000 -0.0000000 -0.0000000 0.2038947 -0.0000000 0.0000000
2 y -0.0000000 -0.0000000 -0.0000000 0.0000000 0.2038947 0.0000000
2 z -0.0000000 -0.0000000 -0.0000000 0.0000000 -0.0000000 0.2038947
Displacement-response internal strain tensor (Unit:Bohr)
Atom dir strainxx strainyy strainzz strainyz strainxz strainxy
1 x 0.0000000 0.0000000 0.0000000 -0.8704551 0.0000000 -0.0000000
1 y 0.0000000 0.0000000 0.0000000 -0.0000000 -0.8704551 -0.0000000
1 z 0.0000000 0.0000000 0.0000000 -0.0000000 0.0000000 -0.8704551
2 x -0.0000000 -0.0000000 -0.0000000 0.8704551 -0.0000000 0.0000000
2 y -0.0000000 -0.0000000 -0.0000000 0.0000000 0.8704551 0.0000000
2 z -0.0000000 -0.0000000 -0.0000000 0.0000000 -0.0000000 0.8704551
================================================================================
Calculation of the elastic and compliances tensor (Voigt notation)
Elastic Tensor (clamped ion) (unit:10^2GP):
1.6696205 0.9094163 0.9094163 0.0000000 0.0000000 0.0000000
0.9094163 1.6696206 0.9094163 0.0000000 0.0000000 0.0000000
0.9094163 0.9094163 1.6696206 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 1.2086646 -0.0000000 0.0000000
-0.0000000 -0.0000000 -0.0000000 -0.0000000 1.2086646 0.0000000
-0.0000000 -0.0000000 -0.0000000 0.0000000 0.0000000 1.2086646
Elastic Tensor (relaxed ion) (unit:10^2GP):
(at fixed electric field boundary condition)
1.6696205 0.9094163 0.9094163 0.0000000 0.0000000 0.0000000
0.9094163 1.6696206 0.9094163 0.0000000 0.0000000 0.0000000
0.9094163 0.9094163 1.6696206 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.8027616 -0.0000000 -0.0000000
0.0000000 0.0000000 0.0000000 -0.0000000 0.8027616 0.0000000
-0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 0.8027616
Compliance Tensor (clamped ion) (unit: 10^-2GP^-1):
0.9725106 -0.3429253 -0.3429253 0.0000000 -0.0000000 0.0000000
-0.3429253 0.9725106 -0.3429253 -0.0000000 -0.0000000 0.0000000
-0.3429253 -0.3429253 0.9725106 -0.0000000 -0.0000000 -0.0000000
0.0000000 0.0000000 -0.0000000 0.8273594 0.0000000 -0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.8273594 -0.0000000
0.0000000 0.0000000 -0.0000000 -0.0000000 -0.0000000 0.8273594
Compliance Tensor (relaxed ion) (unit: 10^-2GP^-1):
(at fixed electric field boundary condition)
0.9725106 -0.3429253 -0.3429253 0.0000000 -0.0000000 0.0000000
-0.3429253 0.9725106 -0.3429253 -0.0000000 -0.0000000 -0.0000000
-0.3429253 -0.3429253 0.9725106 -0.0000000 -0.0000000 -0.0000000
0.0000000 -0.0000000 -0.0000000 1.2456999 0.0000000 0.0000000
0.0000000 -0.0000000 0.0000000 0.0000000 1.2456999 -0.0000000
0.0000000 0.0000000 -0.0000000 0.0000000 0.0000000 1.2456999
================================================================================
Calculation of the tensor related to piezoelectric effetc
(Elastic indices in Voigt notation)
Proper piezoelectric constants (clamped ion) (unit:c/m^2)
-0.00000000 -0.00000000 -0.00000000
-0.00000000 -0.00000000 -0.00000000
-0.00000000 -0.00000000 -0.00000000
-0.58864089 0.00000000 0.00000000
-0.00000000 -0.58864089 -0.00000000
0.00000000 0.00000000 -0.58864089
ddb_piezo : WARNING -
Acoustic sum rule violation met : the eigenvalues of accoustic mode
are too large at Gamma point
Increase cutoff energy or k-points sampling.
The three eigenvalues are: -3.451028E-04 -3.408730E-18 -3.451028E-04
Proper piezoelectric constants (relaxed ion) (unit:c/m^2)
-0.00000001 -0.00000000 -0.00000000
-0.00000002 -0.00000001 -0.00000002
-0.00000000 -0.00000000 -0.00000001
0.26741085 0.00000001 0.00000000
-0.00000000 0.26741086 -0.00000000
0.00000000 0.00000001 0.26741085
-
- Proc. 0 individual time (sec): cpu= 0.1 wall= 0.2
================================================================================
+Total cpu time 0.148 and wall time 0.208 sec
anaddb : the run completed succesfully.