abinit/tests/tutoparal/Refs/tucalc_crpa_5.out

6511 lines
306 KiB
Plaintext

.Version 9.1.4 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu9.1 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Mon 25 May 2020.
- ( at 11h34 )
- input file -> tucrpa_5.in
- output file -> tucrpa_5.out
- root for input files -> tucrpa_I
- root for output files -> tucrpa_O
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
DATASET 1 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 100 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 16.543 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 2 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 100 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 14.193 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 3 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 100 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 16.671 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 4 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 300
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 100 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 15.517 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 1
-
-outvars: echo values of preprocessed input variables --------
acell 7.2605000000E+00 7.2605000000E+00 7.2605000000E+00 Bohr
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
dmatpuopt 1
dmftbandf1 0
dmftbandf2 25
dmftbandf3 0
dmftbandf4 0
dmftbandi1 0
dmftbandi2 21
dmftbandi3 0
dmftbandi4 0
dmft_solv1 5
dmft_solv2 0
dmft_solv3 5
dmft_solv4 5
ecut1 1.20000000E+01 Hartree
ecut2 1.20000000E+01 Hartree
ecut3 1.19824785E+01 Hartree
ecut4 1.19824785E+01 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 0.00000000E+00 Hartree
ecuteps3 2.99561963E+00 Hartree
ecuteps4 0.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 0.00000000E+00 Hartree
ecutsigx4 1.98459801E+01 Hartree
ecutwfn1 0.00000000E+00 Hartree
ecutwfn2 0.00000000E+00 Hartree
ecutwfn3 1.19824785E+01 Hartree
ecutwfn4 1.19824785E+01 Hartree
- fftalg 312
freqremax1 0.00000000E+00 Hartree
freqremax2 0.00000000E+00 Hartree
freqremax3 1.10247976E+00 Hartree
freqremax4 0.00000000E+00 Hartree
freqspmax1 0.00000000E+00 Hartree
freqspmax2 0.00000000E+00 Hartree
freqspmax3 0.00000000E+00 Hartree
freqspmax4 1.10247976E+00 Hartree
getden1 0
getden2 -1
getden3 0
getden4 0
getscr1 0
getscr2 0
getscr3 0
getscr4 3
getwfk1 0
getwfk2 0
getwfk3 -1
getwfk4 2
gwcalctyp1 0
gwcalctyp2 0
gwcalctyp3 2
gwcalctyp4 2
- gwpara1 2
- gwpara2 2
- gwpara3 1
- gwpara4 2
iscf1 17
iscf2 -2
iscf3 17
iscf4 17
ixc -1012
jdtset 1 2 3 4
kpt 1.25000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 3.75000000E-01
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen 2.90420000E+01
kssform 3
lpawu 2 -1 -1
P mkmem 1
mqgrid1 0
mqgrid2 0
mqgrid3 0
mqgrid4 300
mqgriddg1 0
mqgriddg2 0
mqgriddg3 0
mqgriddg4 300
natom 5
nband 100
nbandkss1 0
nbandkss2 -1
nbandkss3 0
nbandkss4 0
nbdbuf1 0
nbdbuf2 4
nbdbuf3 0
nbdbuf4 0
ndtset 4
nfreqim1 -1
nfreqim2 -1
nfreqim3 0
nfreqim4 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 50
nfreqre4 -1
nfreqsp1 0
nfreqsp2 0
nfreqsp3 0
nfreqsp4 50
ngfft 24 24 24
ngfftdg 30 30 30
nkpt 4
nline 5
nnsclo 2
npweps1 0
npweps2 0
npweps3 93
npweps4 0
npwsigx1 0
npwsigx2 0
npwsigx3 0
npwsigx4 1647
npwwfn1 0
npwwfn2 0
npwwfn3 751
npwwfn4 751
nstep 40
nsym 48
ntypat 3
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 3
optdriver4 4
optforces1 2
optforces2 0
optforces3 2
optforces4 2
- paral_atom1 1
- paral_atom2 1
- paral_atom3 0
- paral_atom4 0
pawecutdg 2.00000000E+01 Hartree
pawoptosc 1
pawprtvol 3
plowan_bandi1 0
plowan_bandi2 21
plowan_bandi3 0
plowan_bandi4 0
plowan_bandf1 0
plowan_bandf2 25
plowan_bandf3 0
plowan_bandf4 0
plowan_compute1 0
plowan_compute2 1
plowan_compute3 10
plowan_compute4 10
plowan_natom 1
plowan_nt 1
plowan_realspace 1
plowan_it1 0 0 0
plowan_it2 0 0 0
plowan_it3 0 0 0
plowan_it4 0 0 0
plowan_iatom1 1
plowan_iatom2 1
plowan_iatom3 1
plowan_iatom4 1
plowan_nbl1 1
plowan_nbl2 1
plowan_nbl3 1
plowan_nbl4 1
plowan_lcalc1 2
plowan_lcalc2 2
plowan_lcalc3 2
plowan_lcalc4 2
plowan_projcalc1 -2
plowan_projcalc2 -2
plowan_projcalc3 -2
plowan_projcalc4 -2
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
symchi 0
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
symsigma 0
tolvrs1 1.00000000E-13
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-15
tolvrs4 1.00000000E-15
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-18
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tsmear 3.67493254E-03 Hartree
typat 1 2 3 3 3
ucrpa 1
ucrpa_bands1 -1 -1
ucrpa_bands2 -1 -1
ucrpa_bands3 21 25
ucrpa_bands4 -1 -1
usepawu1 1
usepawu2 10
usepawu3 1
usepawu4 1
useylm 1
wtk 0.12500 0.37500 0.37500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9210455615E+00 1.9210455615E+00 1.9210455615E+00
1.9210455615E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 1.9210455615E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.9210455615E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.6302500000E+00 3.6302500000E+00 3.6302500000E+00
3.6302500000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 3.6302500000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.6302500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 23.00000 38.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
2.42644211E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 756.500 756.488
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 40, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -151.88047514227 -1.519E+02 2.061E+00 1.918E+01
ETOT 2 -152.36095595316 -4.805E-01 8.289E-03 1.488E+02
ETOT 3 -151.97028700038 3.907E-01 7.168E-04 4.174E+00
ETOT 4 -151.94072711428 2.956E-02 6.349E-04 1.288E+00
ETOT 5 -151.92946288338 1.126E-02 1.019E-03 1.653E-01
ETOT 6 -151.92845249063 1.010E-03 3.219E-04 3.301E-03
ETOT 7 -151.92842649066 2.600E-05 9.340E-05 1.824E-03
ETOT 8 -151.92841168003 1.481E-05 2.125E-05 3.273E-04
ETOT 9 -151.92840920202 2.478E-06 1.324E-05 1.311E-05
ETOT 10 -151.92840909961 1.024E-07 1.286E-05 2.424E-07
ETOT 11 -151.92840909774 1.869E-09 1.239E-05 1.517E-11
ETOT 12 -151.92840909774 -1.222E-12 1.174E-05 6.740E-11
ETOT 13 -151.92840909774 1.421E-13 1.093E-05 6.308E-14
At SCF step 13 nres2 = 6.31E-14 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030256E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030256E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030256E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: 1.421E-13, res2: 6.308E-14, residm: 1.093E-05, diffor: null, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423680E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.09030256E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.09030256E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.09030256E-03, ]
pressure_GPa: -6.1499E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156105
2 2.20670 7.30899762
3 1.41465 4.59018625
4 1.41465 4.59018625
5 1.41465 4.59018625
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 5.992978814767638
Compensation charge over fine fft grid = 5.993710068169802
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 47.604E-09; max= 10.925E-06
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.28542 Average Vxc (hartree)= -0.43944
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband=100, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54658 0.54847 0.77480
0.83718 0.83718 0.87088 0.89669 0.95447 0.95447 0.99397 0.99397
1.04714 1.05324 1.05324 1.07697 1.13021 1.23036 1.23036 1.32423
1.33968 1.33968 1.35482 1.35482 1.38807 1.46331 1.50815 1.50815
1.55253 1.55253 1.58593 1.61525 1.61525 1.67442 1.69118 1.69118
1.72579 1.73909 1.79596 1.79596 1.82507 1.84667 1.88646 1.88646
1.89106 1.91752 1.91752 1.93610 1.96441 1.96762 1.96762 2.04206
2.04206 2.09952 2.09952 2.14630 2.14630 2.17678 2.19885 2.20030
2.20030 2.22229 2.29436 2.29436 2.34414 2.40198 2.40198 2.41204
2.44752 2.44752 2.54172 2.54172
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 1.70703 1.36110 1.36110 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 4.22101101715411E+01
hartree : 3.42934572955419E+01
xc : -1.94923345890660E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
local_psp : -1.09494290828760E+02
spherical_terms : 8.43864085029317E+00
internal : -1.51925010166005E+02
'-kT*entropy' : -3.39894393162311E-03
total_energy : -1.51928409109937E+02
total_energy_eV : -4.13418225952962E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.47235864740936E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
xc_dc : -3.05329761494700E+01
spherical_terms : 1.21214553531383E+00
internal : -1.51925010153806E+02
'-kT*entropy' : -3.39894393162311E-03
total_energy_dc : -1.51928409097737E+02
total_energy_dc_eV : -4.13418225919765E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030256E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030256E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030256E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.1499E+01 GPa]
- sigma(1 1)= 6.14988141E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.14988141E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.14988141E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--------------------------------------------------------------------------------
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
prteigrs : about to open file tucrpa_O_DS2_EIG
Non-SCF case, kpt 1 ( 0.12500 0.12500 0.12500), residuals and eigenvalues=
1.63E-19 9.34E-19 3.93E-19 9.10E-19 8.75E-20 3.18E-20 1.89E-19 6.98E-19
9.94E-19 1.02E-19 1.41E-19 2.27E-19 4.35E-19 6.58E-19 1.24E-19 3.29E-19
7.52E-19 4.78E-19 5.20E-19 2.57E-19 2.61E-19 6.77E-19 1.45E-19 2.14E-19
1.11E-19 3.60E-19 9.26E-19 1.92E-19 6.49E-19 7.39E-19 4.04E-19 8.83E-19
1.03E-19 5.80E-19 1.26E-19 2.75E-19 2.30E-19 7.05E-20 3.13E-19 7.33E-20
1.42E-19 2.15E-19 8.05E-20 1.06E-19 8.30E-20 8.73E-19 5.37E-20 4.62E-19
3.71E-19 1.92E-19 2.37E-19 2.25E-19 2.58E-19 3.56E-19 1.17E-19 3.06E-19
2.71E-19 2.15E-19 2.84E-19 6.24E-19 2.01E-19 3.60E-19 7.60E-19 8.02E-19
6.72E-19 1.47E-19 4.56E-19 1.91E-19 6.32E-19 2.06E-19 1.56E-19 5.69E-19
6.97E-19 7.84E-19 3.19E-19 7.54E-19 4.01E-19 5.28E-19 4.66E-19 3.70E-19
6.64E-19 3.64E-19 1.20E-19 2.28E-19 4.02E-19 3.40E-19 2.15E-19 8.28E-19
9.44E-19 4.36E-19 3.20E-19 3.84E-19 4.52E-19 5.79E-19 7.01E-19 7.03E-19
4.73E-17 4.59E-17 5.51E-08 1.25E-07
-2.1011E+00 -1.1520E+00 -1.1520E+00 -1.1520E+00 -9.6527E-01 -4.2839E-01
-3.8629E-01 -3.8629E-01 -3.0392E-01 -3.0392E-01 -2.9801E-01 8.3122E-02
9.7741E-02 9.7741E-02 1.4333E-01 1.4333E-01 1.6821E-01 1.8079E-01
1.9240E-01 1.9240E-01 2.7895E-01 2.8264E-01 2.8264E-01 3.7033E-01
3.7033E-01 4.4811E-01 4.4811E-01 4.8883E-01 5.4658E-01 5.4658E-01
5.4847E-01 7.7480E-01 8.3718E-01 8.3718E-01 8.7088E-01 8.9669E-01
9.5447E-01 9.5447E-01 9.9397E-01 9.9397E-01 1.0471E+00 1.0532E+00
1.0532E+00 1.0770E+00 1.1302E+00 1.2304E+00 1.2304E+00 1.3242E+00
1.3397E+00 1.3397E+00 1.3548E+00 1.3548E+00 1.3881E+00 1.4633E+00
1.5082E+00 1.5082E+00 1.5525E+00 1.5525E+00 1.5859E+00 1.6153E+00
1.6153E+00 1.6744E+00 1.6912E+00 1.6912E+00 1.7258E+00 1.7391E+00
1.7960E+00 1.7960E+00 1.8251E+00 1.8467E+00 1.8865E+00 1.8865E+00
1.8911E+00 1.9175E+00 1.9175E+00 1.9361E+00 1.9644E+00 1.9676E+00
1.9676E+00 2.0421E+00 2.0421E+00 2.0995E+00 2.0995E+00 2.1463E+00
2.1463E+00 2.1768E+00 2.1988E+00 2.2003E+00 2.2003E+00 2.2223E+00
2.2944E+00 2.2944E+00 2.3441E+00 2.4020E+00 2.4020E+00 2.4120E+00
2.4475E+00 2.4475E+00 2.5417E+00 2.5417E+00
prteigrs : nnsclo,ikpt= 40 1 max resid (incl. the buffer)= 1.25202E-07
prteigrs : prtvol=0 or 1, do not print more k-points.
prteigrs : nnsclo,ikpt= 40 2 max resid (incl. the buffer)= 7.92810E-06
prteigrs : nnsclo,ikpt= 40 3 max resid (incl. the buffer)= 4.13030E-09
prteigrs : nnsclo,ikpt= 40 4 max resid (incl. the buffer)= 1.69881E-05
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.937E-19, diffor: 0.000E+00, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423680E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156105
2 2.20670 7.30899762
3 1.41465 4.59018625
4 1.41465 4.59018625
5 1.41465 4.59018625
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = 5.992978790998858
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
(This is PAW atomic orbital occupations)
(For Wannier orbital occupations, refer to DFT+DMFT occupations above)
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
======================================================================================
== Start computation of Projected Local Orbitals Wannier functions == -1
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
(The band structure is shifted by fermie = 7.7667 eV )
Wannier band structure for atom 1
1 -0.176 -0.076 -0.076 2.310 2.310
2 -0.038 0.989 1.009 2.297 3.960
3 1.017 1.075 1.344 3.024 5.194
4 1.484 1.520 1.520 5.121 5.121
Print the psichi coefficients in data.plowann
======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using conjugate gradient wavefunctions and energies (kssform=3)
outkss: Not allowed options found !
Program does not stop but _KSS file will not be created...
outkss: see the log file for more information.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.630E-20; max= 99.372E-20
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS2_EIG
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband=100, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54658 0.54847 0.77480
0.83718 0.83718 0.87088 0.89669 0.95447 0.95447 0.99397 0.99397
1.04714 1.05324 1.05324 1.07697 1.13021 1.23036 1.23036 1.32423
1.33968 1.33968 1.35482 1.35482 1.38807 1.46331 1.50815 1.50815
1.55253 1.55253 1.58593 1.61525 1.61525 1.67442 1.69118 1.69118
1.72579 1.73909 1.79596 1.79596 1.82507 1.84667 1.88646 1.88646
1.89106 1.91752 1.91752 1.93610 1.96441 1.96762 1.96762 2.04206
2.04206 2.09952 2.09952 2.14630 2.14630 2.17678 2.19885 2.20030
2.20030 2.22229 2.29436 2.29436 2.34414 2.40198 2.40198 2.41204
2.44752 2.44752 2.54172 2.54172
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 3, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 18x 18x 18
total number of points = 5832
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.3156 eV
The bare interaction (for a renorm. wfn ) = 23.0248 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 23
- Remaining bands to be divided among processors nbcw = 77
- Number of bands treated by each node ~19
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978790998858
Compensation charge over fine fft grid = 5.993710068169802
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
2 6.122449E-01 0.000000E+00
3 1.224490E+00 0.000000E+00
4 1.836735E+00 0.000000E+00
5 2.448980E+00 0.000000E+00
6 3.061224E+00 0.000000E+00
7 3.673469E+00 0.000000E+00
8 4.285714E+00 0.000000E+00
9 4.897959E+00 0.000000E+00
10 5.510204E+00 0.000000E+00
11 6.122449E+00 0.000000E+00
12 6.734694E+00 0.000000E+00
13 7.346939E+00 0.000000E+00
14 7.959184E+00 0.000000E+00
15 8.571429E+00 0.000000E+00
16 9.183673E+00 0.000000E+00
17 9.795918E+00 0.000000E+00
18 1.040816E+01 0.000000E+00
19 1.102041E+01 0.000000E+00
20 1.163265E+01 0.000000E+00
21 1.224490E+01 0.000000E+00
22 1.285714E+01 0.000000E+00
23 1.346939E+01 0.000000E+00
24 1.408163E+01 0.000000E+00
25 1.469388E+01 0.000000E+00
26 1.530612E+01 0.000000E+00
27 1.591837E+01 0.000000E+00
28 1.653061E+01 0.000000E+00
29 1.714286E+01 0.000000E+00
30 1.775510E+01 0.000000E+00
31 1.836735E+01 0.000000E+00
32 1.897959E+01 0.000000E+00
33 1.959184E+01 0.000000E+00
34 2.020408E+01 0.000000E+00
35 2.081633E+01 0.000000E+00
36 2.142857E+01 0.000000E+00
37 2.204082E+01 0.000000E+00
38 2.265306E+01 0.000000E+00
39 2.326531E+01 0.000000E+00
40 2.387755E+01 0.000000E+00
41 2.448980E+01 0.000000E+00
42 2.510204E+01 0.000000E+00
43 2.571429E+01 0.000000E+00
44 2.632653E+01 0.000000E+00
45 2.693878E+01 0.000000E+00
46 2.755102E+01 0.000000E+00
47 2.816327E+01 0.000000E+00
48 2.877551E+01 0.000000E+00
49 2.938776E+01 0.000000E+00
50 3.000000E+01 0.000000E+00
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
2 -0.000 -29.822 -4.528 -0.332 -0.332 -0.334 -0.334 -8.128 -7.830
-0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -29.990 -4.665 -0.312 -0.312 -0.315 -0.315 -8.226 -7.924
0.000 -0.295 -0.172 0.011 0.011 0.011 0.011 -0.140 -0.137
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -30.557 -5.131 -0.240 -0.240 -0.243 -0.243 -8.554 -8.238
0.000 -0.336 -0.210 0.020 0.020 0.020 0.020 -0.165 -0.161
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -31.731 -6.117 -0.056 -0.056 -0.059 -0.059 -9.233 -8.884
0.000 -0.451 -0.314 0.050 0.050 0.050 0.050 -0.231 -0.222
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -34.044 -8.140 0.400 0.400 0.397 0.397 -10.577 -10.165
0.000 -1.604 -1.337 0.451 0.451 0.451 0.451 -0.834 -0.747
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -37.836 -11.636 1.219 1.219 1.216 1.216 -12.761 -12.379
0.000 -3.619 -3.328 0.442 0.442 0.442 0.442 -2.464 -2.369
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 0.000 -32.893 -5.994 -2.365 -2.365 -2.369 -2.369 -10.942 -10.412
0.000 -13.493 -12.830 4.789 4.789 4.790 4.790 -7.278 -6.994
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -20.006 6.187 -7.110 -7.110 -7.117 -7.117 -2.472 -2.768
0.000 -10.598 -9.412 2.668 2.668 2.668 2.668 -6.216 -5.759
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -31.685 -3.601 -4.249 -4.249 -4.253 -4.253 -9.795 -9.514
0.000 -6.554 -4.809 -1.124 -1.124 -1.128 -1.128 -5.537 -5.157
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -36.548 -10.588 -4.890 -4.890 -4.893 -4.893 -13.604 -13.563
0.000 -7.386 -5.989 -0.535 -0.535 -0.537 -0.537 -5.155 -4.947
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -20.663 6.423 1.362 1.362 1.357 1.357 2.713 2.518
0.000 -32.559 -28.930 -8.419 -8.419 -8.423 -8.423 -27.466 -26.919
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -24.524 3.421 -2.493 -2.493 -2.500 -2.500 -1.959 -2.071
0.000 -5.677 -4.587 -1.198 -1.198 -1.203 -1.203 -4.035 -3.897
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
2 -0.000 -20.365 5.861 2.328 2.328 2.327 2.327 2.622 2.349
0.000 -24.968 -20.635 -7.486 -7.486 -7.488 -7.488 -18.808 -18.244
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
2 -0.000 -18.622 9.617 4.107 4.107 4.097 4.097 6.637 6.031
-0.000 -8.075 -5.958 -1.132 -1.132 -1.133 -1.133 -4.565 -4.499
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
2 -0.000 -29.524 -0.395 2.381 2.381 2.369 2.369 -0.037 -0.549
-0.000 -9.454 -7.746 0.946 0.946 0.937 0.937 -2.276 -2.353
No. of calculated frequencies > 15, stop printing
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 5.2978
dielectric constant without local fields = 5.4957
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 59.23 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.189 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.189 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
Upper and lower wings at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.186 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
-0.003 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.186 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
-0.003 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
Upper and lower wings at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.177 -0.001 0.001 -0.002 0.002 -0.003 0.003 -0.001 0.001
-0.004 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.177 -0.001 0.001 -0.002 0.002 -0.003 0.003 -0.001 0.001
-0.004 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
Upper and lower wings at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.157 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.000 -0.000
-0.006 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.157 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.000 -0.000
-0.006 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
Upper and lower wings at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.121 0.000 -0.000 0.001 -0.001 0.001 -0.001 0.002 -0.002
-0.042 0.001 -0.001 0.002 -0.002 0.003 -0.003 0.002 -0.002
1 2 3 4 5 6 7 8 9
0.121 0.000 -0.000 0.001 -0.001 0.001 -0.001 0.002 -0.002
-0.042 0.001 -0.001 0.002 -0.002 0.003 -0.003 0.002 -0.002
Upper and lower wings at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.194 -0.001 0.001 -0.003 0.003 -0.004 0.004 0.000 -0.000
-0.071 0.002 -0.002 0.003 -0.003 0.005 -0.005 0.003 -0.003
1 2 3 4 5 6 7 8 9
0.194 -0.001 0.001 -0.003 0.003 -0.004 0.004 0.000 -0.000
-0.071 0.002 -0.002 0.003 -0.003 0.005 -0.005 0.003 -0.003
Upper and lower wings at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.148 0.001 -0.001 0.003 -0.003 0.004 -0.004 0.004 -0.004
-0.101 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.005 -0.005
1 2 3 4 5 6 7 8 9
0.148 0.001 -0.001 0.003 -0.003 0.004 -0.004 0.004 -0.004
-0.101 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.005 -0.005
Upper and lower wings at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
-0.014 0.008 -0.008 0.015 -0.015 0.023 -0.023 0.015 -0.015
-0.265 0.013 -0.013 0.025 -0.025 0.038 -0.038 0.023 -0.023
1 2 3 4 5 6 7 8 9
-0.014 0.008 -0.008 0.015 -0.015 0.023 -0.023 0.015 -0.015
-0.265 0.013 -0.013 0.025 -0.025 0.038 -0.038 0.023 -0.023
Upper and lower wings at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.205 -0.002 0.002 -0.004 0.004 -0.006 0.006 -0.002 0.002
-0.162 0.005 -0.005 0.009 -0.009 0.014 -0.014 0.011 -0.011
1 2 3 4 5 6 7 8 9
0.205 -0.002 0.002 -0.004 0.004 -0.006 0.006 -0.002 0.002
-0.162 0.005 -0.005 0.009 -0.009 0.014 -0.014 0.011 -0.011
Upper and lower wings at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.160 -0.003 0.003 -0.007 0.007 -0.010 0.010 -0.002 0.002
-0.198 0.008 -0.008 0.017 -0.017 0.025 -0.025 0.013 -0.013
1 2 3 4 5 6 7 8 9
0.160 -0.003 0.003 -0.007 0.007 -0.010 0.010 -0.002 0.002
-0.198 0.008 -0.008 0.017 -0.017 0.025 -0.025 0.013 -0.013
Upper and lower wings at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.219 -0.002 0.002 -0.004 0.004 -0.005 0.005 -0.005 0.005
-0.136 0.009 -0.009 0.018 -0.018 0.027 -0.027 0.009 -0.009
1 2 3 4 5 6 7 8 9
0.219 -0.002 0.002 -0.004 0.004 -0.005 0.005 -0.005 0.005
-0.136 0.009 -0.009 0.018 -0.018 0.027 -0.027 0.009 -0.009
Upper and lower wings at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.156 -0.006 0.006 -0.011 0.011 -0.017 0.017 -0.004 0.004
-0.044 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.002 -0.002
1 2 3 4 5 6 7 8 9
0.156 -0.006 0.006 -0.011 0.011 -0.017 0.017 -0.004 0.004
-0.044 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.002 -0.002
Upper and lower wings at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.013 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.004 -0.004
-0.089 0.003 -0.003 0.006 -0.006 0.009 -0.009 0.004 -0.004
1 2 3 4 5 6 7 8 9
0.013 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.004 -0.004
-0.089 0.003 -0.003 0.006 -0.006 0.009 -0.009 0.004 -0.004
Upper and lower wings at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.120 -0.012 0.012 -0.024 0.024 -0.036 0.036 0.005 -0.005
-0.138 0.010 -0.010 0.020 -0.020 0.029 -0.029 0.006 -0.006
1 2 3 4 5 6 7 8 9
0.120 -0.012 0.012 -0.024 0.024 -0.036 0.036 0.005 -0.005
-0.138 0.010 -0.010 0.020 -0.020 0.029 -0.029 0.006 -0.006
Upper and lower wings at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.238 -0.019 0.019 -0.039 0.039 -0.058 0.058 -0.004 0.004
-0.456 0.020 -0.020 0.040 -0.040 0.060 -0.060 0.024 -0.024
1 2 3 4 5 6 7 8 9
0.238 -0.019 0.019 -0.039 0.039 -0.058 0.058 -0.004 0.004
-0.456 0.020 -0.020 0.040 -0.040 0.060 -0.060 0.024 -0.024
Upper and lower wings at the 16 th omega 9.1837 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.160 -0.017 0.017 -0.035 0.035 -0.052 0.052 0.003 -0.003
-0.261 0.011 -0.011 0.022 -0.022 0.033 -0.033 0.018 -0.018
1 2 3 4 5 6 7 8 9
0.160 -0.017 0.017 -0.035 0.035 -0.052 0.052 0.003 -0.003
-0.261 0.011 -0.011 0.022 -0.022 0.033 -0.033 0.018 -0.018
Upper and lower wings at the 17 th omega 9.7959 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.115 -0.021 0.021 -0.041 0.041 -0.062 0.062 0.001 -0.001
-0.332 0.008 -0.008 0.016 -0.016 0.023 -0.023 0.015 -0.015
1 2 3 4 5 6 7 8 9
0.115 -0.021 0.021 -0.041 0.041 -0.062 0.062 0.001 -0.001
-0.332 0.008 -0.008 0.016 -0.016 0.023 -0.023 0.015 -0.015
Upper and lower wings at the 18 th omega 10.4082 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.063 -0.022 0.022 -0.045 0.045 -0.067 0.067 -0.000 0.000
-0.372 0.005 -0.005 0.011 -0.011 0.016 -0.016 0.025 -0.025
1 2 3 4 5 6 7 8 9
0.063 -0.022 0.022 -0.045 0.045 -0.067 0.067 -0.000 0.000
-0.372 0.005 -0.005 0.011 -0.011 0.016 -0.016 0.025 -0.025
Upper and lower wings at the 19 th omega 11.0204 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.139 -0.021 0.021 -0.043 0.043 -0.064 0.064 0.002 -0.002
-0.501 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.042 -0.042
1 2 3 4 5 6 7 8 9
0.139 -0.021 0.021 -0.043 0.043 -0.064 0.064 0.002 -0.002
-0.501 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.042 -0.042
Upper and lower wings at the 20 th omega 11.6327 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.175 -0.027 0.027 -0.054 0.054 -0.081 0.081 -0.016 0.016
-0.272 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.014 -0.014
1 2 3 4 5 6 7 8 9
0.175 -0.027 0.027 -0.054 0.054 -0.081 0.081 -0.016 0.016
-0.272 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.014 -0.014
Upper and lower wings at the 21 th omega 12.2449 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.061 -0.028 0.028 -0.057 0.057 -0.085 0.085 -0.007 0.007
-0.359 -0.007 0.007 -0.013 0.013 -0.020 0.020 0.018 -0.018
1 2 3 4 5 6 7 8 9
0.061 -0.028 0.028 -0.057 0.057 -0.085 0.085 -0.007 0.007
-0.359 -0.007 0.007 -0.013 0.013 -0.020 0.020 0.018 -0.018
Upper and lower wings at the 22 th omega 12.8571 0.0000 [eV]
1 2 3 4 5 6 7 8 9
-0.261 -0.046 0.046 -0.093 0.093 -0.139 0.139 0.011 -0.011
-0.426 -0.015 0.015 -0.030 0.030 -0.044 0.044 0.021 -0.021
1 2 3 4 5 6 7 8 9
-0.261 -0.046 0.046 -0.093 0.093 -0.139 0.139 0.011 -0.011
-0.426 -0.015 0.015 -0.030 0.030 -0.044 0.044 0.021 -0.021
Upper and lower wings at the 23 th omega 13.4694 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.460 -0.006 0.006 -0.012 0.012 -0.018 0.018 -0.024 0.024
-1.159 -0.037 0.037 -0.075 0.075 -0.112 0.112 0.045 -0.045
1 2 3 4 5 6 7 8 9
0.460 -0.006 0.006 -0.012 0.012 -0.018 0.018 -0.024 0.024
-1.159 -0.037 0.037 -0.075 0.075 -0.112 0.112 0.045 -0.045
Upper and lower wings at the 24 th omega 14.0816 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.750 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.021 0.021
-0.702 -0.033 0.033 -0.066 0.066 -0.099 0.099 0.033 -0.033
1 2 3 4 5 6 7 8 9
0.750 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.021 0.021
-0.702 -0.033 0.033 -0.066 0.066 -0.099 0.099 0.033 -0.033
Upper and lower wings at the 25 th omega 14.6939 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.435 -0.011 0.011 -0.022 0.022 -0.033 0.033 -0.013 0.013
-0.256 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.014 -0.014
1 2 3 4 5 6 7 8 9
0.435 -0.011 0.011 -0.022 0.022 -0.033 0.033 -0.013 0.013
-0.256 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.014 -0.014
Upper and lower wings at the 26 th omega 15.3061 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.339 -0.014 0.014 -0.028 0.028 -0.042 0.042 -0.014 0.014
-0.644 -0.043 0.043 -0.085 0.085 -0.128 0.128 0.030 -0.030
1 2 3 4 5 6 7 8 9
0.339 -0.014 0.014 -0.028 0.028 -0.042 0.042 -0.014 0.014
-0.644 -0.043 0.043 -0.085 0.085 -0.128 0.128 0.030 -0.030
Upper and lower wings at the 27 th omega 15.9184 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.638 0.016 -0.016 0.031 -0.031 0.047 -0.047 -0.028 0.028
-0.303 -0.011 0.011 -0.022 0.022 -0.032 0.032 0.017 -0.017
1 2 3 4 5 6 7 8 9
0.638 0.016 -0.016 0.031 -0.031 0.047 -0.047 -0.028 0.028
-0.303 -0.011 0.011 -0.022 0.022 -0.032 0.032 0.017 -0.017
Upper and lower wings at the 28 th omega 16.5306 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.510 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.021 0.021
-0.415 -0.002 0.002 -0.004 0.004 -0.006 0.006 0.031 -0.031
1 2 3 4 5 6 7 8 9
0.510 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.021 0.021
-0.415 -0.002 0.002 -0.004 0.004 -0.006 0.006 0.031 -0.031
Upper and lower wings at the 29 th omega 17.1429 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.454 -0.012 0.012 -0.023 0.023 -0.035 0.035 -0.020 0.020
-0.568 -0.035 0.035 -0.070 0.070 -0.105 0.105 0.031 -0.031
1 2 3 4 5 6 7 8 9
0.454 -0.012 0.012 -0.023 0.023 -0.035 0.035 -0.020 0.020
-0.568 -0.035 0.035 -0.070 0.070 -0.105 0.105 0.031 -0.031
Upper and lower wings at the 30 th omega 17.7551 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.554 0.009 -0.009 0.018 -0.018 0.027 -0.027 -0.021 0.021
-0.217 -0.007 0.007 -0.015 0.015 -0.022 0.022 0.015 -0.015
1 2 3 4 5 6 7 8 9
0.554 0.009 -0.009 0.018 -0.018 0.027 -0.027 -0.021 0.021
-0.217 -0.007 0.007 -0.015 0.015 -0.022 0.022 0.015 -0.015
Upper and lower wings at the 31 th omega 18.3673 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.340 0.002 -0.002 0.005 -0.005 0.007 -0.007 -0.001 0.001
-0.298 -0.014 0.014 -0.029 0.029 -0.043 0.043 0.030 -0.030
1 2 3 4 5 6 7 8 9
0.340 0.002 -0.002 0.005 -0.005 0.007 -0.007 -0.001 0.001
-0.298 -0.014 0.014 -0.029 0.029 -0.043 0.043 0.030 -0.030
Upper and lower wings at the 32 th omega 18.9796 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.555 0.010 -0.010 0.019 -0.019 0.029 -0.029 -0.034 0.034
-0.591 -0.000 0.000 -0.001 0.001 -0.001 0.001 0.072 -0.072
1 2 3 4 5 6 7 8 9
0.555 0.010 -0.010 0.019 -0.019 0.029 -0.029 -0.034 0.034
-0.591 -0.000 0.000 -0.001 0.001 -0.001 0.001 0.072 -0.072
Upper and lower wings at the 33 th omega 19.5918 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.484 -0.004 0.004 -0.008 0.008 -0.012 0.012 -0.036 0.036
-0.238 -0.005 0.005 -0.011 0.011 -0.016 0.016 0.027 -0.027
1 2 3 4 5 6 7 8 9
0.484 -0.004 0.004 -0.008 0.008 -0.012 0.012 -0.036 0.036
-0.238 -0.005 0.005 -0.011 0.011 -0.016 0.016 0.027 -0.027
Upper and lower wings at the 34 th omega 20.2041 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.313 -0.017 0.017 -0.034 0.034 -0.051 0.051 -0.032 0.032
-0.315 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.046 -0.046
1 2 3 4 5 6 7 8 9
0.313 -0.017 0.017 -0.034 0.034 -0.051 0.051 -0.032 0.032
-0.315 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.046 -0.046
Upper and lower wings at the 35 th omega 20.8163 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.171 -0.009 0.009 -0.018 0.018 -0.026 0.026 -0.013 0.013
-0.651 -0.024 0.024 -0.047 0.047 -0.071 0.071 0.069 -0.069
1 2 3 4 5 6 7 8 9
0.171 -0.009 0.009 -0.018 0.018 -0.026 0.026 -0.013 0.013
-0.651 -0.024 0.024 -0.047 0.047 -0.071 0.071 0.069 -0.069
Upper and lower wings at the 36 th omega 21.4286 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.303 -0.006 0.006 -0.012 0.012 -0.019 0.019 -0.033 0.033
-0.410 -0.031 0.031 -0.063 0.063 -0.094 0.094 0.049 -0.049
1 2 3 4 5 6 7 8 9
0.303 -0.006 0.006 -0.012 0.012 -0.019 0.019 -0.033 0.033
-0.410 -0.031 0.031 -0.063 0.063 -0.094 0.094 0.049 -0.049
Upper and lower wings at the 37 th omega 22.0408 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.323 0.010 -0.010 0.020 -0.020 0.030 -0.030 -0.050 0.050
-0.556 -0.027 0.027 -0.053 0.053 -0.080 0.080 0.054 -0.054
1 2 3 4 5 6 7 8 9
0.323 0.010 -0.010 0.020 -0.020 0.030 -0.030 -0.050 0.050
-0.556 -0.027 0.027 -0.053 0.053 -0.080 0.080 0.054 -0.054
Upper and lower wings at the 38 th omega 22.6531 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.546 0.019 -0.019 0.038 -0.038 0.057 -0.057 -0.077 0.077
-0.558 -0.020 0.020 -0.039 0.039 -0.059 0.059 0.053 -0.053
1 2 3 4 5 6 7 8 9
0.546 0.019 -0.019 0.038 -0.038 0.057 -0.057 -0.077 0.077
-0.558 -0.020 0.020 -0.039 0.039 -0.059 0.059 0.053 -0.053
Upper and lower wings at the 39 th omega 23.2653 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.362 0.025 -0.025 0.050 -0.050 0.075 -0.075 -0.062 0.062
-0.804 -0.027 0.027 -0.054 0.054 -0.081 0.081 0.114 -0.114
1 2 3 4 5 6 7 8 9
0.362 0.025 -0.025 0.050 -0.050 0.075 -0.075 -0.062 0.062
-0.804 -0.027 0.027 -0.054 0.054 -0.081 0.081 0.114 -0.114
Upper and lower wings at the 40 th omega 23.8776 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.460 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.091 0.091
-0.403 -0.028 0.028 -0.055 0.055 -0.083 0.083 0.029 -0.029
1 2 3 4 5 6 7 8 9
0.460 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.091 0.091
-0.403 -0.028 0.028 -0.055 0.055 -0.083 0.083 0.029 -0.029
Upper and lower wings at the 41 th omega 24.4898 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.258 -0.004 0.004 -0.007 0.007 -0.011 0.011 -0.094 0.094
-0.300 -0.017 0.017 -0.033 0.033 -0.050 0.050 0.023 -0.023
1 2 3 4 5 6 7 8 9
0.258 -0.004 0.004 -0.007 0.007 -0.011 0.011 -0.094 0.094
-0.300 -0.017 0.017 -0.033 0.033 -0.050 0.050 0.023 -0.023
Upper and lower wings at the 42 th omega 25.1020 0.0000 [eV]
1 2 3 4 5 6 7 8 9
-0.003 -0.028 0.028 -0.056 0.056 -0.084 0.084 -0.157 0.157
-0.655 -0.089 0.089 -0.178 0.178 -0.267 0.267 0.011 -0.011
1 2 3 4 5 6 7 8 9
-0.003 -0.028 0.028 -0.056 0.056 -0.084 0.084 -0.157 0.157
-0.655 -0.089 0.089 -0.178 0.178 -0.267 0.267 0.011 -0.011
Upper and lower wings at the 43 th omega 25.7143 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.331 0.064 -0.064 0.127 -0.127 0.191 -0.191 -0.104 0.104
-0.712 -0.055 0.055 -0.110 0.110 -0.165 0.165 0.030 -0.030
1 2 3 4 5 6 7 8 9
0.331 0.064 -0.064 0.127 -0.127 0.191 -0.191 -0.104 0.104
-0.712 -0.055 0.055 -0.110 0.110 -0.165 0.165 0.030 -0.030
Upper and lower wings at the 44 th omega 26.3265 0.0000 [eV]
1 2 3 4 5 6 7 8 9
-0.109 0.063 -0.063 0.125 -0.125 0.188 -0.188 -0.099 0.099
-0.804 -0.027 0.027 -0.054 0.054 -0.080 0.080 0.028 -0.028
1 2 3 4 5 6 7 8 9
-0.109 0.063 -0.063 0.125 -0.125 0.188 -0.188 -0.099 0.099
-0.804 -0.027 0.027 -0.054 0.054 -0.080 0.080 0.028 -0.028
Upper and lower wings at the 45 th omega 26.9388 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.024 0.130 -0.130 0.260 -0.260 0.391 -0.391 -0.121 0.121
-0.883 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.010 0.010
1 2 3 4 5 6 7 8 9
0.024 0.130 -0.130 0.260 -0.260 0.391 -0.391 -0.121 0.121
-0.883 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.010 0.010
Upper and lower wings at the 46 th omega 27.5510 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.171 0.023 -0.023 0.045 -0.045 0.068 -0.068 -0.058 0.058
-0.708 -0.015 0.015 -0.030 0.030 -0.045 0.045 0.019 -0.019
1 2 3 4 5 6 7 8 9
0.171 0.023 -0.023 0.045 -0.045 0.068 -0.068 -0.058 0.058
-0.708 -0.015 0.015 -0.030 0.030 -0.045 0.045 0.019 -0.019
Upper and lower wings at the 47 th omega 28.1633 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.506 0.097 -0.097 0.193 -0.193 0.290 -0.290 -0.151 0.151
-0.882 -0.010 0.010 -0.020 0.020 -0.030 0.030 0.018 -0.018
1 2 3 4 5 6 7 8 9
0.506 0.097 -0.097 0.193 -0.193 0.290 -0.290 -0.151 0.151
-0.882 -0.010 0.010 -0.020 0.020 -0.030 0.030 0.018 -0.018
Upper and lower wings at the 48 th omega 28.7755 0.0000 [eV]
1 2 3 4 5 6 7 8 9
-0.441 0.198 -0.198 0.396 -0.396 0.595 -0.595 -0.223 0.223
-1.033 0.029 -0.029 0.058 -0.058 0.087 -0.087 -0.093 0.093
1 2 3 4 5 6 7 8 9
-0.441 0.198 -0.198 0.396 -0.396 0.595 -0.595 -0.223 0.223
-1.033 0.029 -0.029 0.058 -0.058 0.087 -0.087 -0.093 0.093
Upper and lower wings at the 49 th omega 29.3878 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.554 0.045 -0.045 0.091 -0.091 0.136 -0.136 -0.065 0.065
-1.186 0.060 -0.060 0.120 -0.120 0.180 -0.180 -0.041 0.041
1 2 3 4 5 6 7 8 9
0.554 0.045 -0.045 0.091 -0.091 0.136 -0.136 -0.065 0.065
-1.186 0.060 -0.060 0.120 -0.120 0.180 -0.180 -0.041 0.041
Upper and lower wings at the 50 th omega 30.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.491 0.058 -0.058 0.116 -0.116 0.174 -0.174 -0.038 0.038
-1.238 0.042 -0.042 0.085 -0.085 0.127 -0.127 -0.049 0.049
1 2 3 4 5 6 7 8 9
0.491 0.058 -0.058 0.116 -0.116 0.174 -0.174 -0.038 0.038
-1.238 0.042 -0.042 0.085 -0.085 0.127 -0.127 -0.049 0.049
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.531 -4.713 -4.093 -4.714 -4.098 -4.713 -4.093 -1.090 -1.341
0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
2 -4.713 -30.986 -8.295 -1.037 -1.202 -1.039 -1.204 -9.777 -6.816
0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.730 -4.797 -4.147 -4.799 -4.151 -4.798 -4.146 -1.111 -1.329
-0.274 -0.109 -0.076 -0.109 -0.076 -0.109 -0.076 -0.034 0.004
2 -4.797 -31.248 -8.472 -1.028 -1.188 -1.030 -1.190 -9.908 -6.894
-0.109 -0.394 -0.225 -0.013 -0.000 -0.013 -0.000 -0.183 -0.116
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -17.409 -5.083 -4.324 -5.084 -4.329 -5.083 -4.324 -1.177 -1.284
-0.329 -0.131 -0.089 -0.131 -0.089 -0.131 -0.089 -0.036 0.009
2 -5.083 -32.168 -9.089 -0.971 -1.126 -0.973 -1.128 -10.366 -7.160
-0.131 -0.481 -0.281 0.005 0.012 0.005 0.012 -0.224 -0.138
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -18.837 -5.668 -4.683 -5.669 -4.687 -5.668 -4.683 -1.284 -1.166
-0.479 -0.182 -0.121 -0.182 -0.121 -0.182 -0.121 -0.037 0.030
2 -5.668 -34.400 -10.518 -0.643 -0.890 -0.646 -0.892 -11.440 -7.763
-0.182 -1.439 -0.773 0.418 0.222 0.418 0.221 -0.674 -0.351
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -21.986 -6.922 -5.396 -6.922 -5.400 -6.922 -5.396 -1.346 -0.780
-1.245 -0.510 -0.339 -0.510 -0.339 -0.510 -0.339 -0.069 0.052
2 -6.922 -36.737 -12.610 -0.925 -0.760 -0.927 -0.762 -12.572 -8.506
-0.510 -1.589 -1.165 0.210 0.210 0.210 0.209 -0.700 -0.463
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -24.472 -8.672 -6.469 -8.673 -6.474 -8.672 -6.469 -2.775 -1.475
-12.043 -3.805 -1.960 -3.804 -1.959 -3.805 -1.960 1.924 2.832
2 -8.672 -39.646 -14.413 -1.553 -1.118 -1.554 -1.120 -14.155 -9.275
-3.805 -14.971 -10.630 4.454 3.376 4.455 3.375 -6.145 -3.385
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -28.519 -10.700 -7.415 -10.701 -7.418 -10.701 -7.415 -3.920 -1.141
-11.289 -4.662 -2.092 -4.662 -2.094 -4.661 -2.093 -0.337 1.709
2 -10.700 -38.808 -14.022 -5.112 -3.172 -5.115 -3.176 -14.678 -9.339
-4.662 -10.268 -7.646 1.184 1.811 1.187 1.810 -4.216 -1.946
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.686 -0.335 -3.853 -0.339 -3.859 -0.339 -3.852 -5.239 -6.831
-18.308 -8.587 -4.590 -8.586 -4.592 -8.586 -4.591 -3.279 0.420
2 -0.335 -23.651 -2.875 -5.999 -5.745 -6.008 -5.742 -9.686 -8.324
-8.587 -18.866 -14.331 0.088 1.443 0.088 1.441 -9.761 -5.629
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -4.375 -0.253 -2.482 -0.255 -2.488 -0.254 -2.481 -0.855 -3.365
-18.348 -12.448 -8.852 -12.447 -8.853 -12.447 -8.853 -8.661 -3.194
2 -0.253 -25.713 -2.476 -6.072 -5.619 -6.072 -5.621 -9.344 -7.401
-12.448 -19.057 -14.536 -7.232 -4.577 -7.231 -4.573 -13.220 -7.794
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -3.380 1.802 -0.732 1.802 -0.731 1.800 -0.732 0.494 -3.144
-9.105 -6.406 -4.960 -6.405 -4.960 -6.405 -4.959 -4.764 -1.997
2 1.802 -28.831 -5.611 -3.273 -3.411 -3.280 -3.420 -11.560 -8.923
-6.406 -12.373 -8.856 -4.809 -3.475 -4.806 -3.476 -9.207 -5.638
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -9.175 1.545 -1.752 1.548 -1.743 1.543 -1.752 3.609 -0.335
-10.831 -8.648 -5.297 -8.639 -5.275 -8.652 -5.298 -6.394 -2.731
2 1.545 -23.985 -1.720 -1.676 -2.771 -1.685 -2.782 -4.369 -4.187
-8.648 -27.876 -20.702 -10.444 -6.118 -10.465 -6.134 -23.928 -14.528
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.271 3.897 0.231 3.890 0.216 3.896 0.231 3.044 -0.688
-7.571 -4.899 -4.007 -4.896 -4.002 -4.898 -4.008 -2.969 -1.675
2 3.897 -16.426 5.759 2.395 0.775 2.388 0.758 2.913 0.170
-4.899 -15.631 -11.664 -5.532 -4.171 -5.527 -4.176 -12.697 -7.655
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -11.792 0.386 -2.883 0.375 -2.902 0.383 -2.882 0.221 -2.263
-24.714 -14.737 -12.523 -14.734 -12.524 -14.736 -12.527 -7.285 -5.405
2 0.386 -20.311 1.710 2.687 0.603 2.665 0.600 2.552 -1.398
-14.737 -25.282 -19.145 -12.097 -8.424 -12.083 -8.433 -15.776 -10.540
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -8.825 2.470 -0.749 2.460 -0.762 2.467 -0.746 0.364 -0.932
-9.242 -3.074 -3.427 -3.072 -3.423 -3.074 -3.428 -0.959 0.101
2 2.470 -23.195 1.518 1.989 1.355 1.974 1.356 -2.531 -3.346
-3.074 -14.822 -9.743 -1.645 -0.783 -1.652 -0.797 -8.878 -6.083
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.542 9.028 3.440 9.032 3.449 9.027 3.442 6.319 2.980
-11.578 -5.007 -5.736 -5.014 -5.751 -5.007 -5.737 -3.844 -1.718
2 9.028 -21.003 3.936 7.303 5.359 7.295 5.353 4.896 0.557
-5.007 -18.701 -11.356 -3.954 -3.108 -3.951 -3.098 -12.739 -8.549
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 66.34 [%]
--------------------------------------------------------------------------------
q-point number 3 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.023 -2.567 -2.272 -4.383 -4.382 -2.568 -2.275 -1.152 -1.215
-0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
2 -2.567 -28.842 -6.239 -1.175 -1.180 0.355 -0.016 -9.220 -7.573
0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.191 -2.639 -2.310 -4.440 -4.439 -2.640 -2.313 -1.158 -1.201
-0.214 -0.076 -0.046 -0.085 -0.085 -0.076 -0.046 -0.020 0.002
2 -2.639 -29.088 -6.401 -1.160 -1.165 0.360 -0.002 -9.329 -7.657
-0.076 -0.367 -0.198 -0.004 -0.004 -0.001 0.012 -0.161 -0.130
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.775 -2.894 -2.445 -4.624 -4.623 -2.896 -2.448 -1.168 -1.142
-0.267 -0.102 -0.060 -0.095 -0.095 -0.102 -0.060 -0.016 0.012
2 -2.894 -29.945 -6.964 -1.096 -1.101 0.391 0.051 -9.702 -7.942
-0.102 -0.445 -0.250 0.007 0.007 0.009 0.020 -0.193 -0.152
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.100 -3.508 -2.768 -4.958 -4.957 -3.509 -2.771 -1.129 -0.957
-0.441 -0.194 -0.108 -0.114 -0.114 -0.194 -0.108 0.006 0.051
2 -3.508 -31.956 -8.267 -0.890 -0.895 0.603 0.232 -10.580 -8.571
-0.194 -1.058 -0.588 0.049 0.049 0.409 0.223 -0.618 -0.373
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -17.277 -5.089 -3.611 -5.361 -5.360 -5.090 -3.614 -0.743 -0.277
-2.270 -1.204 -0.670 0.020 0.020 -1.204 -0.670 0.488 0.669
2 -5.089 -35.173 -10.648 -0.030 -0.034 -0.360 -0.062 -11.058 -9.092
-1.204 -2.150 -1.604 0.361 0.361 -0.068 0.276 -0.474 -0.342
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -15.533 -3.365 -2.508 -8.524 -8.522 -3.366 -2.512 -3.534 -2.685
-13.523 -9.168 -5.305 2.096 2.096 -9.168 -5.304 3.924 4.536
2 -3.365 -35.643 -10.925 -1.581 -1.585 1.366 1.017 -13.477 -11.390
-9.168 -17.397 -11.169 8.119 8.118 -4.970 -3.414 -0.427 0.503
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.077 -1.197 -0.422 -11.496 -11.494 -1.198 -0.426 -4.527 -3.051
-8.130 -2.257 -0.462 -5.349 -5.349 -2.256 -0.462 -1.454 0.108
2 -1.197 -31.583 -8.525 -7.312 -7.316 3.378 3.087 -16.489 -13.903
-2.257 -10.895 -8.187 1.797 1.798 3.488 3.425 -5.181 -4.676
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.942 -0.696 -3.517 -6.339 -6.338 -0.700 -3.522 -6.958 -7.420
-10.560 -2.902 -0.111 -6.477 -6.477 -2.901 -0.113 -1.914 0.218
2 -0.696 -23.030 -2.511 -8.503 -8.506 -1.560 -1.089 -10.591 -9.035
-2.902 -14.908 -11.112 -0.382 -0.381 3.911 4.150 -9.513 -8.323
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -4.041 -0.400 -2.293 -0.953 -0.952 -0.401 -2.297 -1.125 -2.642
-12.308 -6.311 -3.678 -11.071 -11.071 -6.310 -3.677 -7.049 -4.285
2 -0.400 -24.367 -0.577 -5.317 -5.321 -6.130 -5.295 -8.174 -5.927
-6.311 -16.667 -12.717 -7.201 -7.201 -1.657 0.291 -13.936 -11.485
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.970 1.794 -0.801 0.205 0.206 1.791 -0.805 -0.260 -1.870
-7.712 -3.874 -3.007 -4.575 -4.574 -3.872 -3.004 -1.929 -0.889
2 1.794 -28.843 -5.993 -3.531 -3.536 -2.657 -2.737 -11.561 -9.160
-3.874 -9.862 -6.879 -3.672 -3.671 -1.691 -0.756 -7.126 -5.807
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.471 2.338 -0.720 -1.035 -1.034 2.338 -0.719 0.748 -1.299
-6.897 -3.421 -1.142 -7.874 -7.874 -3.422 -1.136 -4.940 -3.322
2 2.338 -18.287 2.431 -2.402 -2.405 -1.106 -1.603 -3.624 -2.402
-3.421 -25.737 -21.031 -6.467 -6.467 -4.641 -1.805 -21.040 -16.796
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.183 2.181 -1.336 0.555 0.556 2.178 -1.348 1.264 -0.575
-4.552 -1.811 -1.370 -3.955 -3.955 -1.808 -1.366 -1.869 -1.404
2 2.181 -18.892 5.012 -0.180 -0.181 0.447 -0.467 0.551 0.178
-1.811 -11.614 -8.866 -4.976 -4.980 -3.052 -2.099 -10.618 -8.256
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.598 2.530 -0.867 -1.227 -1.225 2.520 -0.883 -0.554 -1.810
-18.972 -7.622 -6.167 -18.162 -18.162 -7.618 -6.166 -9.586 -7.998
2 2.530 -20.192 3.317 2.908 2.901 4.264 2.251 1.280 0.060
-7.622 -19.857 -14.165 -12.276 -12.263 -4.668 -1.796 -15.833 -13.100
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.121 1.801 -1.415 3.737 3.739 1.792 -1.429 2.553 1.326
-7.704 -0.626 -1.347 -4.091 -4.091 -0.631 -1.360 -1.231 -0.364
2 1.801 -20.855 3.138 4.916 4.907 -0.515 -1.066 0.356 1.059
-0.626 -12.968 -8.316 -1.711 -1.712 0.289 1.117 -8.382 -6.458
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.280 4.532 0.779 4.134 4.137 4.533 0.788 3.458 1.486
-8.420 -3.656 -4.289 -3.798 -3.798 -3.660 -4.296 -2.844 -1.863
2 4.532 -26.132 0.510 4.643 4.634 1.530 0.643 -0.096 -0.406
-3.656 -20.631 -13.064 -1.762 -1.763 -4.621 -3.306 -11.444 -7.860
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 68.05 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.000000,-0.250000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.574 -2.379 -2.379 -0.036 -0.117 -2.379 -2.379 0.292 -0.033
-0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000
2 -2.379 -32.035 -7.021 0.041 -0.286 -1.378 -1.380 -8.632 -7.116
0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.677 -2.421 -2.421 -0.067 -0.115 -2.420 -2.420 0.285 -0.016
-0.124 -0.053 -0.053 -0.022 0.002 -0.053 -0.053 -0.005 0.016
2 -2.421 -32.241 -7.193 0.054 -0.267 -1.358 -1.360 -8.750 -7.200
-0.053 -0.337 -0.216 0.007 0.016 0.001 0.001 -0.159 -0.121
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -7.040 -2.564 -2.564 -0.187 -0.114 -2.564 -2.564 0.263 0.043
-0.160 -0.065 -0.065 -0.038 0.001 -0.065 -0.065 -0.007 0.022
2 -2.564 -32.939 -7.786 0.102 -0.201 -1.278 -1.279 -9.156 -7.483
-0.065 -0.393 -0.266 0.013 0.023 0.014 0.014 -0.193 -0.143
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -7.898 -2.883 -2.883 -0.510 -0.121 -2.883 -2.883 0.212 0.186
-0.281 -0.105 -0.105 -0.095 -0.003 -0.105 -0.105 -0.014 0.043
2 -2.883 -34.431 -9.078 0.217 -0.045 -1.031 -1.033 -10.032 -8.085
-0.105 -0.554 -0.414 0.027 0.043 0.064 0.064 -0.292 -0.208
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -9.889 -3.467 -3.467 -1.573 -0.380 -3.467 -3.467 -0.027 0.421
-1.871 -0.821 -0.821 -0.580 0.252 -0.822 -0.822 0.062 0.453
2 -3.467 -37.637 -11.941 0.552 0.302 -0.141 -0.143 -12.044 -9.443
-0.821 -2.305 -2.049 -0.007 0.294 0.684 0.684 -1.249 -0.777
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.022 -3.714 -3.714 2.635 1.453 -3.714 -3.714 0.605 0.104
-10.195 -0.814 -0.814 -10.708 -5.083 -0.814 -0.814 -3.064 -0.508
2 -3.714 -39.042 -13.110 1.716 0.949 -2.466 -2.468 -12.193 -9.991
-0.814 -10.611 -9.875 1.101 0.728 5.515 5.516 -7.606 -5.089
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -6.165 -3.771 -3.771 4.795 3.358 -3.771 -3.771 2.122 1.669
-4.334 -2.845 -2.845 0.598 1.403 -2.845 -2.845 0.242 1.238
2 -3.771 -33.518 -7.164 -0.737 -0.559 -6.849 -6.852 -8.408 -6.612
-2.845 -11.979 -11.352 3.902 3.462 2.381 2.380 -6.121 -4.128
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.837 -5.333 -5.333 3.360 0.483 -5.333 -5.333 -0.946 -1.615
-4.034 -2.200 -2.200 0.755 2.023 -2.200 -2.200 0.279 1.448
2 -5.333 -26.608 -0.683 -3.254 -1.108 -12.790 -12.791 -2.889 -2.611
-2.200 -11.353 -10.077 1.676 1.181 2.223 2.222 -7.482 -4.989
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.305 -0.709 -0.709 -0.912 -2.763 -0.708 -0.708 -0.969 -2.361
-6.047 -5.474 -5.474 -0.399 1.229 -5.477 -5.477 -1.433 0.337
2 -0.709 -31.046 -3.728 -4.714 -3.391 -5.628 -5.630 -9.093 -8.279
-5.474 -10.636 -8.880 -2.486 -0.627 -5.877 -5.877 -6.935 -4.192
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -1.734 0.059 0.059 2.175 -0.727 0.061 0.061 0.673 -1.106
-4.983 -3.030 -3.030 -0.277 0.035 -3.031 -3.031 0.470 1.115
2 0.059 -35.681 -9.622 -3.262 -3.211 -4.857 -4.860 -12.604 -12.056
-3.030 -8.412 -6.990 -1.170 -0.511 -2.516 -2.518 -5.366 -3.730
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.247 0.394 0.394 1.818 -0.981 0.396 0.395 1.010 -0.889
-3.421 -4.336 -4.336 1.649 2.962 -4.336 -4.336 -0.060 0.769
2 0.394 -25.826 1.040 -1.203 -1.910 -0.441 -0.446 -1.738 -2.767
-4.336 -30.883 -27.268 -1.513 0.127 -9.947 -9.949 -21.886 -17.008
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.995 -1.678 -1.678 1.617 -1.581 -1.678 -1.678 0.614 -0.884
-2.275 -1.952 -1.952 0.239 0.548 -1.955 -1.955 -0.036 0.268
2 -1.678 -25.421 1.825 -1.021 -0.671 -3.261 -3.263 0.900 -1.325
-1.952 -12.001 -10.567 -3.550 -2.587 -3.932 -3.931 -9.150 -6.644
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.148 1.473 1.473 3.174 -0.520 1.478 1.478 0.517 -0.925
-12.451 -10.957 -10.957 1.361 2.066 -10.957 -10.957 -0.199 0.587
2 1.473 -21.583 5.285 3.856 2.846 2.082 2.086 3.366 -0.486
-10.957 -30.554 -26.818 -4.902 -1.178 -15.278 -15.289 -15.931 -12.154
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.922 3.186 3.186 -0.183 -3.803 3.189 3.189 -0.477 -1.185
-5.292 -2.324 -2.324 3.262 1.431 -2.321 -2.321 1.462 2.118
2 3.186 -18.084 9.802 1.820 0.922 7.867 7.871 3.934 0.266
-2.324 -9.607 -7.407 0.426 0.268 -2.195 -2.196 -4.424 -3.781
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -2.040 1.557 1.557 0.641 -2.333 1.557 1.557 -0.039 -1.398
-4.623 -1.739 -1.739 -2.409 -3.334 -1.736 -1.736 -2.839 -1.388
2 1.557 -26.187 2.605 0.496 -0.508 4.663 4.663 -0.042 -1.954
-1.739 -10.319 -8.180 -1.861 -0.494 0.950 0.951 -5.738 -5.276
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 71.29 [%]
--------------------------------------------------------------------------------
q-point number 5 q = ( 0.500000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -24.780 -3.508 -4.913 -8.010 -6.848 -8.010 -6.849 -0.917 -1.074
0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000
2 -3.508 -31.984 -6.586 -1.118 -1.125 -1.115 -1.149 -5.942 -5.838
0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -25.038 -3.541 -5.021 -8.123 -6.930 -8.123 -6.931 -0.890 -1.069
-0.367 -0.055 -0.127 -0.158 -0.121 -0.158 -0.121 0.016 -0.006
2 -3.541 -32.115 -6.725 -1.105 -1.105 -1.102 -1.128 -6.008 -5.894
-0.055 -0.244 -0.177 0.005 0.014 0.005 0.014 -0.092 -0.087
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -25.944 -3.643 -5.403 -8.508 -7.215 -8.508 -7.217 -0.779 -1.045
-0.453 -0.057 -0.163 -0.190 -0.146 -0.190 -0.146 0.035 0.000
2 -3.643 -32.563 -7.207 -1.046 -1.025 -1.043 -1.049 -6.237 -6.084
-0.057 -0.281 -0.220 0.017 0.026 0.016 0.026 -0.114 -0.104
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -28.111 -3.724 -6.292 -9.356 -7.895 -9.356 -7.897 -0.367 -0.933
-1.487 0.228 -0.433 -0.524 -0.534 -0.524 -0.534 0.489 0.140
2 -3.724 -33.589 -8.303 -0.804 -0.759 -0.801 -0.783 -6.804 -6.537
0.228 -0.635 -0.596 0.289 0.255 0.289 0.256 -0.400 -0.331
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -30.267 -5.042 -7.894 -10.200 -8.140 -10.199 -8.141 -0.740 -0.991
-1.340 -0.287 -0.735 -0.422 -0.316 -0.423 -0.316 0.156 0.031
2 -5.042 -34.690 -9.784 -1.100 -0.870 -1.096 -0.893 -7.047 -6.710
-0.287 -0.677 -0.711 0.071 0.089 0.071 0.090 -0.250 -0.214
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -33.860 -5.335 -8.608 -12.650 -9.747 -12.650 -9.747 -0.362 -0.771
-12.661 -3.844 -9.986 -1.328 -0.572 -1.329 -0.571 1.806 0.967
2 -5.335 -37.124 -12.345 -0.947 -0.486 -0.942 -0.507 -8.654 -7.943
-3.844 -3.991 -5.754 0.799 1.150 0.803 1.153 -0.599 -0.039
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -39.971 -4.416 -9.090 -17.646 -13.000 -17.645 -13.001 0.059 -0.461
-9.433 -0.828 -2.731 -4.235 -2.040 -4.238 -2.038 2.127 2.222
2 -4.416 -40.887 -16.428 -0.399 0.379 -0.399 0.355 -11.762 -10.528
-0.828 -5.492 -6.503 1.690 2.085 1.698 2.093 -2.922 -1.566
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -8.102 -1.069 5.249 -4.367 -6.978 -4.361 -6.985 -5.932 -6.617
-26.651 -2.538 -11.500 -13.449 -8.311 -13.451 -8.307 3.238 1.719
2 -1.069 -26.218 3.138 -4.802 -5.799 -4.820 -5.833 -3.343 -5.708
-2.538 -13.228 -15.933 1.679 2.694 1.677 2.696 -8.238 -6.209
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.304 -4.681 -0.554 -4.915 -5.889 -4.908 -5.902 -5.810 -5.464
-22.364 -4.444 -12.070 -15.934 -11.207 -15.932 -11.198 -2.054 -5.003
2 -4.681 -27.953 0.514 -4.393 -4.735 -4.401 -4.755 -2.556 -4.440
-4.444 -9.872 -12.727 -2.143 -1.419 -2.143 -1.410 -7.027 -6.630
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.640 -1.913 2.821 -4.897 -5.828 -4.902 -5.834 -3.436 -2.911
-15.214 -5.591 -9.098 -10.375 -8.200 -10.373 -8.203 -3.201 -4.861
2 -1.913 -28.908 0.053 -2.445 -2.869 -2.455 -2.899 -3.394 -4.815
-5.591 -7.068 -9.140 -3.303 -2.648 -3.307 -2.639 -4.478 -4.851
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.099 -3.530 1.721 -0.526 -2.793 -0.526 -2.802 -2.157 -1.139
-21.026 -2.265 -7.596 -19.512 -13.948 -19.514 -13.961 -3.141 -6.207
2 -3.530 -28.973 0.823 -1.459 -2.625 -1.465 -2.678 -1.883 -3.249
-2.265 -12.325 -12.499 -2.386 -0.957 -2.422 -0.960 -8.146 -8.035
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -8.452 -1.015 6.235 5.339 1.045 5.338 1.045 -0.114 2.589
-11.521 -3.232 -4.869 -8.414 -6.783 -8.414 -6.788 -2.268 -3.275
2 -1.015 -24.407 5.326 -0.190 -0.319 -0.199 -0.357 0.858 -1.012
-3.232 -6.830 -7.105 -1.917 -1.478 -1.929 -1.480 -3.960 -4.236
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -21.508 -5.817 -0.829 -2.201 -4.599 -2.198 -4.603 -1.654 -0.573
-16.849 -9.031 -10.352 -9.046 -7.471 -9.048 -7.472 -3.995 -4.546
2 -5.817 -30.480 -2.927 -1.826 -2.172 -1.842 -2.240 -2.089 -4.555
-9.031 -11.682 -11.104 -3.784 -3.111 -3.831 -3.136 -4.663 -5.189
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.255 -3.366 0.028 -6.391 -8.195 -6.375 -8.197 -2.212 -0.955
-14.934 -2.788 -2.161 -8.977 -7.986 -8.983 -7.994 0.137 -0.691
2 -3.366 -30.291 -3.076 -2.012 -1.569 -1.993 -1.584 -3.434 -6.203
-2.788 -6.537 -8.089 -0.551 -0.296 -0.586 -0.334 -2.813 -4.277
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -11.353 3.475 12.504 8.644 2.563 8.646 2.555 4.104 6.475
-21.388 -5.640 -6.802 -14.398 -13.294 -14.393 -13.294 -2.331 -4.353
2 3.475 -27.770 4.543 4.587 3.464 4.607 3.425 0.731 -0.945
-5.640 -9.219 -11.467 -2.662 -2.014 -2.692 -2.028 -3.992 -6.957
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 64.95 [%]
--------------------------------------------------------------------------------
q-point number 6 q = ( 0.500000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -21.782 -1.869 -2.717 -7.504 -7.507 -6.481 -5.562 -1.047 -0.991
-0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000
2 -1.869 -30.655 -4.345 -1.132 -1.142 0.083 -0.152 -5.519 -6.399
0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -22.028 -1.890 -2.814 -7.592 -7.594 -6.596 -5.643 -1.016 -0.988
-0.335 -0.028 -0.094 -0.134 -0.134 -0.144 -0.107 0.020 -0.013
2 -1.890 -30.770 -4.469 -1.113 -1.123 0.096 -0.130 -5.570 -6.463
-0.028 -0.221 -0.148 0.011 0.011 0.018 0.026 -0.079 -0.102
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -22.892 -1.961 -3.170 -7.890 -7.892 -6.989 -5.921 -0.898 -0.969
-0.417 -0.034 -0.135 -0.158 -0.158 -0.176 -0.131 0.036 -0.007
2 -1.961 -31.163 -4.900 -1.035 -1.045 0.139 -0.054 -5.745 -6.676
-0.034 -0.253 -0.187 0.023 0.023 0.021 0.033 -0.093 -0.117
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -24.969 -2.095 -4.097 -8.586 -8.589 -7.815 -6.533 -0.551 -0.901
-1.063 0.099 -0.339 -0.554 -0.554 -0.193 -0.215 0.223 -0.042
2 -2.095 -32.045 -5.900 -0.784 -0.794 0.247 0.132 -6.134 -7.132
0.099 -0.481 -0.441 0.199 0.199 0.123 0.127 -0.250 -0.264
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -28.587 -3.263 -6.505 -8.430 -8.432 -10.274 -7.961 0.008 -0.115
-2.375 -0.945 -1.769 -0.145 -0.145 -0.859 -0.350 0.290 0.231
2 -3.263 -33.505 -7.823 -0.549 -0.559 -0.086 0.145 -6.350 -7.443
-0.945 -1.134 -1.361 0.190 0.190 -0.164 0.153 -0.140 -0.159
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -27.556 -1.204 -2.388 -11.161 -11.164 -10.520 -8.403 -0.136 -0.857
-20.371 -5.399 -17.419 5.169 5.169 -13.270 -9.956 5.961 7.148
2 -1.204 -34.549 -8.214 -0.587 -0.595 1.305 1.023 -7.959 -9.333
-5.399 -4.626 -7.631 3.633 3.633 -4.081 -2.370 1.329 1.789
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -27.762 0.942 1.602 -19.011 -19.014 -7.092 -4.844 -2.613 -5.838
-8.548 1.497 0.003 -4.911 -4.910 -3.997 -2.399 1.906 1.006
2 0.942 -36.266 -9.484 -2.132 -2.140 4.357 3.619 -11.115 -13.420
1.497 -4.946 -5.757 1.291 1.294 3.471 3.218 -3.662 -3.970
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.496 -0.834 3.013 -7.440 -7.443 -5.372 -7.436 -5.074 -4.189
-17.748 1.447 -3.318 -13.128 -13.127 -6.543 -2.992 1.325 -3.322
2 -0.834 -30.928 -1.504 -4.756 -4.767 -0.578 -1.482 -6.571 -7.697
1.447 -9.290 -10.716 0.541 0.544 3.740 3.944 -6.916 -8.417
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.479 -3.992 -0.083 -2.545 -2.553 -1.598 -3.214 -4.547 -3.025
-20.976 0.326 -5.593 -16.498 -16.497 -14.050 -9.844 -1.388 -6.993
2 -3.992 -26.103 3.558 -2.969 -2.974 -3.284 -3.529 -1.252 -2.098
0.326 -9.647 -11.917 -1.351 -1.350 2.314 2.123 -7.374 -9.599
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.193 -1.959 2.554 -4.675 -4.678 -3.737 -5.009 -3.013 -1.256
-10.231 -3.225 -5.614 -7.459 -7.459 -5.427 -3.949 -2.111 -4.703
2 -1.959 -28.733 0.221 -2.572 -2.582 -1.395 -2.102 -3.911 -4.680
-3.225 -5.039 -5.843 -1.944 -1.942 -0.612 -0.161 -2.704 -4.292
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.955 -2.121 3.195 -3.481 -3.487 -0.866 -2.965 -2.763 -1.476
-16.358 1.529 -2.177 -14.951 -14.951 -13.135 -9.212 -1.637 -5.365
2 -2.121 -27.304 2.040 -2.892 -2.894 -0.425 -1.536 -2.801 -3.490
1.530 -12.468 -11.149 -0.657 -0.649 2.377 2.903 -8.001 -10.960
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -9.495 -2.337 4.776 3.117 3.116 3.575 -0.479 -0.566 3.452
-8.624 -0.754 -1.521 -8.242 -8.244 -5.916 -4.515 -1.741 -4.398
2 -2.337 -24.310 5.411 -0.487 -0.489 -1.646 -1.529 0.022 0.815
-0.754 -4.902 -5.051 -1.950 -1.946 0.195 0.303 -3.651 -4.957
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.149 -3.612 2.429 -2.970 -2.973 -0.425 -2.857 -2.268 0.493
-12.513 -4.187 -3.643 -10.248 -10.249 -3.594 -2.846 -4.814 -7.243
2 -3.612 -29.474 -0.961 -1.942 -1.962 -0.019 -0.060 -3.037 -3.834
-4.187 -7.868 -7.704 -5.349 -5.314 1.095 0.997 -6.405 -7.475
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.955 -4.513 -1.746 -4.304 -4.308 -4.921 -6.929 -1.628 0.352
-13.997 -0.672 0.674 -9.125 -9.123 -6.919 -6.010 -0.069 -1.285
2 -4.513 -28.974 -0.375 -0.590 -0.628 -3.724 -2.732 -1.442 -3.343
-0.672 -5.971 -7.465 -0.725 -0.716 1.820 2.208 -3.992 -5.341
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.836 0.106 7.667 -0.042 -0.046 1.717 -3.163 1.589 4.722
-22.954 -4.687 -5.698 -14.238 -14.239 -17.354 -15.601 -1.811 -4.967
2 0.106 -28.739 2.448 2.069 2.038 0.100 -0.211 -1.279 -2.256
-4.687 -8.439 -11.474 -1.664 -1.666 -4.713 -3.015 -2.969 -6.318
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 65.63 [%]
--------------------------------------------------------------------------------
q-point number 7 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -18.105 0.061 -0.127 -6.090 -6.090 -6.088 -6.090 0.039 0.421
-0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000
2 0.061 -28.989 -1.613 -0.056 -0.056 -0.051 -0.077 -4.769 -5.458
0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -18.309 0.075 -0.184 -6.177 -6.177 -6.174 -6.177 0.071 0.422
-0.279 0.016 -0.040 -0.119 -0.119 -0.119 -0.119 0.033 0.001
2 0.075 -29.072 -1.699 -0.035 -0.035 -0.030 -0.056 -4.815 -5.517
0.016 -0.184 -0.100 0.024 0.024 0.024 0.024 -0.067 -0.089
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.017 0.118 -0.402 -6.469 -6.469 -6.467 -6.470 0.182 0.426
-0.341 0.018 -0.068 -0.142 -0.142 -0.142 -0.142 0.043 0.001
2 0.118 -29.347 -1.994 0.037 0.037 0.042 0.016 -4.968 -5.716
0.018 -0.202 -0.125 0.030 0.030 0.030 0.030 -0.079 -0.103
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -20.581 0.183 -0.991 -7.075 -7.075 -7.073 -7.076 0.425 0.426
-0.529 0.014 -0.174 -0.204 -0.204 -0.204 -0.204 0.068 -0.005
2 0.183 -29.892 -2.624 0.185 0.185 0.189 0.164 -5.275 -6.118
0.014 -0.247 -0.194 0.043 0.043 0.043 0.043 -0.106 -0.141
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -24.552 0.174 -3.049 -8.359 -8.359 -8.357 -8.359 1.012 0.386
-1.360 -0.050 -0.770 -0.391 -0.391 -0.391 -0.391 0.187 -0.022
2 0.174 -30.974 -4.073 0.500 0.500 0.504 0.480 -5.884 -6.929
-0.050 -0.389 -0.453 0.090 0.090 0.090 0.090 -0.175 -0.244
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.360 2.737 5.413 -8.814 -8.814 -8.813 -8.815 1.468 1.987
-25.496 -3.828 -22.383 -4.327 -4.327 -4.327 -4.327 2.316 -1.959
2 2.737 -32.309 -4.075 1.369 1.369 1.371 1.349 -7.024 -7.941
-3.828 -2.704 -6.548 0.355 0.355 0.355 0.356 -0.951 -1.857
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -18.803 3.650 8.988 -10.423 -10.423 -10.421 -10.424 1.333 1.837
-6.787 3.403 2.561 -4.153 -4.153 -4.153 -4.152 3.150 2.663
2 3.650 -33.301 -4.735 1.279 1.279 1.282 1.257 -7.864 -8.932
3.403 -3.892 -4.449 2.618 2.618 2.617 2.621 -3.035 -3.309
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -15.896 2.478 5.086 -6.572 -6.572 -6.570 -6.573 -0.179 -0.018
-10.641 2.032 1.303 -7.483 -7.483 -7.483 -7.482 1.619 -0.192
2 2.478 -32.481 -2.203 0.024 0.024 0.027 -0.005 -6.331 -6.925
2.032 -6.003 -6.760 0.445 0.445 0.441 0.449 -4.515 -5.425
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -4.283 -5.063 -1.649 1.799 1.799 1.801 1.799 -4.862 -2.896
-21.750 4.682 0.124 -15.983 -15.983 -15.984 -15.983 2.781 -2.244
2 -5.063 -23.561 8.016 -2.606 -2.606 -2.597 -2.623 1.075 0.783
4.682 -10.180 -12.437 2.164 2.164 2.156 2.159 -7.360 -9.377
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.445 -1.936 2.482 -3.364 -3.364 -3.362 -3.364 -2.378 -0.535
-3.723 -0.061 -0.819 -2.994 -2.994 -2.996 -2.995 -0.304 -1.494
2 -1.936 -28.064 1.173 -1.798 -1.798 -1.796 -1.817 -3.096 -3.959
-0.061 -2.323 -1.686 -0.030 -0.030 -0.042 -0.034 -1.079 -1.701
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -13.020 -2.099 2.531 -3.736 -3.736 -3.732 -3.735 -2.021 -0.552
-13.101 5.709 3.330 -10.890 -10.890 -10.891 -10.888 2.445 -0.287
2 -2.099 -26.641 2.420 -1.677 -1.677 -1.655 -1.685 -2.062 -3.207
5.709 -13.634 -10.769 3.215 3.215 3.211 3.236 -7.661 -9.679
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -9.902 -4.314 1.988 2.049 2.049 2.051 2.049 -2.391 0.916
-7.219 0.934 0.433 -7.434 -7.434 -7.435 -7.433 -0.637 -3.178
2 -4.314 -24.172 5.530 -1.980 -1.980 -2.003 -2.028 -0.156 0.042
0.934 -3.788 -4.259 -0.912 -0.912 -0.910 -0.895 -2.639 -4.210
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -17.556 -0.906 6.353 -0.207 -0.207 -0.201 -0.208 0.120 3.651
-8.489 0.905 3.600 -3.860 -3.860 -3.861 -3.857 0.284 -0.995
2 -0.906 -28.324 1.210 0.844 0.844 0.846 0.787 -1.708 -2.134
0.905 -3.754 -3.859 -0.474 -0.474 -0.490 -0.467 -1.965 -2.918
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.999 -6.735 -4.875 -4.726 -4.726 -4.726 -4.733 -3.363 -1.864
-13.354 3.082 5.864 -7.571 -7.571 -7.582 -7.581 2.994 2.311
2 -6.735 -28.115 2.195 -1.970 -1.970 -1.960 -2.030 -1.668 -3.492
3.082 -4.909 -6.801 1.959 1.959 1.929 1.930 -2.877 -4.220
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.886 -4.905 1.527 -3.551 -3.551 -3.543 -3.550 -2.241 -1.398
-21.290 -4.141 -5.819 -14.633 -14.633 -14.621 -14.621 -1.563 -5.111
2 -4.905 -28.848 1.967 -1.687 -1.687 -1.635 -1.696 -2.715 -4.080
-4.141 -7.503 -10.459 -1.773 -1.773 -1.737 -1.740 -3.026 -6.609
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 7 : 66.56 [%]
--------------------------------------------------------------------------------
q-point number 8 q = ( 0.500000, 0.500000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -30.228 -5.910 -8.243 -5.903 -8.242 -10.246 -8.683 -1.564 -1.023
0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000
2 -5.910 -33.766 -10.458 -0.968 -1.036 -3.004 -2.651 -4.468 -6.370
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -30.504 -5.974 -8.378 -5.968 -8.378 -10.353 -8.764 -1.548 -1.051
-0.409 -0.098 -0.175 -0.098 -0.175 -0.174 -0.135 0.009 -0.041
2 -5.974 -33.919 -10.623 -0.940 -1.023 -2.997 -2.638 -4.509 -6.464
-0.098 -0.273 -0.218 0.022 0.005 -0.016 -0.004 -0.061 -0.125
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -31.480 -6.191 -8.854 -6.184 -8.853 -10.712 -9.043 -1.475 -1.132
-0.506 -0.113 -0.221 -0.113 -0.221 -0.199 -0.160 0.023 -0.040
2 -6.191 -34.459 -11.207 -0.823 -0.958 -2.954 -2.582 -4.652 -6.794
-0.113 -0.325 -0.278 0.042 0.020 -0.003 0.007 -0.073 -0.157
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -33.922 -6.626 -10.010 -6.619 -10.008 -11.457 -9.725 -1.193 -1.195
-1.872 -0.164 -0.733 -0.164 -0.733 -0.505 -0.610 0.418 0.259
2 -6.626 -35.812 -12.692 -0.382 -0.652 -2.711 -2.358 -4.978 -7.592
-0.164 -1.034 -1.093 0.479 0.446 0.313 0.204 -0.193 -0.534
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -34.953 -7.577 -11.086 -7.571 -11.084 -11.672 -9.284 -1.882 -2.584
-1.202 -0.303 -0.636 -0.303 -0.635 -0.215 -0.153 0.035 -0.206
2 -7.577 -36.253 -13.257 -1.162 -1.624 -2.971 -2.348 -5.334 -8.250
-0.303 -0.683 -0.700 0.104 0.008 0.138 0.140 -0.182 -0.423
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -40.034 -8.598 -13.471 -8.592 -13.469 -14.300 -11.105 -1.398 -2.722
-9.212 -3.918 -7.395 -3.919 -7.394 4.489 4.035 -1.386 -6.001
2 -8.598 -39.119 -16.456 -0.407 -1.045 -3.021 -2.237 -6.100 -10.036
-3.918 -3.947 -5.087 -0.794 -2.708 3.203 2.836 -1.491 -4.168
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -48.495 -8.854 -15.688 -8.852 -15.687 -23.197 -17.609 0.968 0.742
-7.773 -1.178 -2.736 -1.172 -2.730 -4.062 -2.071 1.718 1.850
2 -8.854 -44.533 -22.416 2.081 2.137 -4.171 -2.619 -7.314 -12.660
-1.178 -4.738 -5.361 2.053 2.270 0.422 0.766 -1.078 -2.241
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.610 -4.090 -0.312 -4.082 -0.318 -8.591 -10.774 -3.942 -4.244
-29.017 -4.883 -13.090 -4.896 -13.086 -13.964 -8.772 4.133 1.272
2 -4.090 -23.905 2.704 -5.514 -5.448 -9.451 -10.043 -1.946 0.642
-4.883 -16.717 -19.210 4.956 4.407 1.630 2.927 -4.556 -10.846
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -26.677 -7.814 -8.335 -7.805 -8.338 -13.992 -13.326 -6.014 -6.548
-20.772 -7.158 -13.997 -7.166 -13.996 -14.249 -8.929 -1.088 -7.959
2 -7.814 -30.826 -6.176 -5.639 -6.128 -7.740 -7.398 -4.578 -5.072
-7.158 -9.800 -12.515 -0.590 -2.832 -4.420 -2.529 -3.894 -8.788
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -25.337 -5.880 -5.135 -5.866 -5.132 -13.297 -12.622 -3.874 -2.378
-19.063 -7.839 -13.521 -7.839 -13.523 -12.273 -9.514 -3.695 -8.655
2 -5.880 -31.176 -5.611 -3.138 -3.033 -6.818 -6.403 -3.753 -3.291
-7.839 -8.878 -11.290 -2.873 -4.555 -3.646 -2.898 -4.352 -8.333
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -17.347 -3.796 2.570 -3.777 2.573 -2.574 -3.636 -1.948 3.407
-33.757 -9.736 -21.320 -9.737 -21.323 -32.456 -25.305 -2.173 -12.026
2 -3.796 -29.800 -2.047 -2.850 -1.153 -3.711 -3.958 -2.522 0.028
-9.736 -14.253 -16.997 -0.174 -3.290 -10.187 -7.411 -5.605 -12.005
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -13.244 -2.059 5.007 -2.058 5.011 3.903 -0.809 0.004 5.767
-13.986 -5.387 -7.550 -5.401 -7.546 -10.177 -8.028 -1.809 -3.432
2 -2.059 -27.228 0.432 -2.154 -0.303 -0.852 -1.700 -0.911 2.385
-5.387 -7.680 -8.181 -1.247 -1.540 -3.083 -2.414 -3.146 -5.214
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -25.113 -6.522 -2.660 -6.495 -2.664 -3.626 -5.489 -1.400 1.156
-13.332 -6.473 -7.098 -6.512 -7.093 -7.143 -5.876 -2.856 -3.838
2 -6.522 -33.093 -7.523 -2.794 -2.541 -2.632 -2.853 -2.653 -2.229
-6.473 -8.786 -7.314 -2.750 -2.331 -1.954 -1.347 -4.867 -5.442
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -35.586 -9.851 -9.122 -9.829 -9.139 -16.487 -16.360 -1.187 -2.328
-19.401 -7.219 -8.402 -7.215 -8.389 -15.065 -12.537 2.178 0.378
2 -9.851 -36.799 -13.137 -2.677 -3.578 -8.260 -7.304 -2.864 -5.820
-7.219 -9.492 -11.361 -0.537 -0.583 -5.213 -4.081 -2.400 -4.539
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -8.282 5.800 14.995 5.789 14.982 15.519 8.155 2.597 12.244
-26.436 -11.153 -14.406 -11.154 -14.408 -19.504 -16.858 -0.485 -5.807
2 5.800 -28.306 3.706 5.183 7.755 8.770 6.005 1.189 7.508
-11.153 -12.970 -15.779 -2.012 -3.936 -7.241 -5.918 -3.669 -7.822
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 8 : 64.39 [%]
--------------------------------------------------------------------------------
q-point number 9 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -28.333 -4.731 -6.679 -4.731 -6.679 -9.623 -9.624 -0.574 0.607
-0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000
2 -4.731 -32.962 -9.038 -0.039 0.223 -2.879 -2.899 -3.768 -5.293
-0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -28.611 -4.795 -6.818 -4.795 -6.818 -9.709 -9.711 -0.558 0.570
-0.398 -0.085 -0.162 -0.085 -0.162 -0.152 -0.152 0.020 -0.030
2 -4.795 -33.108 -9.198 -0.010 0.234 -2.868 -2.888 -3.804 -5.386
-0.085 -0.261 -0.205 0.033 0.018 -0.011 -0.011 -0.050 -0.113
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -29.587 -5.014 -7.307 -5.013 -7.307 -9.998 -9.999 -0.500 0.451
-0.489 -0.102 -0.208 -0.102 -0.208 -0.173 -0.173 0.027 -0.037
2 -5.014 -33.618 -9.762 0.095 0.279 -2.816 -2.836 -3.933 -5.713
-0.102 -0.307 -0.259 0.045 0.024 0.001 0.001 -0.063 -0.145
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -31.894 -5.457 -8.426 -5.456 -8.425 -10.670 -10.671 -0.325 0.308
-1.336 -0.021 -0.358 -0.021 -0.358 -0.707 -0.707 0.296 0.498
2 -5.457 -34.827 -11.125 0.406 0.470 -2.602 -2.622 -4.237 -6.501
-0.021 -0.777 -0.796 0.342 0.408 0.161 0.161 -0.162 -0.387
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -35.512 -7.195 -11.457 -7.194 -11.457 -9.813 -9.814 -0.948 -2.517
-1.622 -0.506 -1.047 -0.506 -1.047 0.015 0.015 -0.082 -0.633
2 -7.195 -36.288 -12.989 -0.028 -0.768 -2.251 -2.270 -4.774 -8.024
-0.506 -0.799 -0.886 0.031 -0.189 0.228 0.228 -0.230 -0.626
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -36.944 -6.210 -10.053 -6.209 -10.052 -12.767 -12.768 0.728 1.315
-25.270 -11.472 -22.728 -11.472 -22.728 11.115 11.115 -5.143 -20.866
2 -6.210 -37.882 -14.290 1.700 1.858 -2.622 -2.640 -4.840 -7.718
-11.472 -9.252 -13.001 -2.962 -9.602 6.424 6.426 -3.633 -11.783
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -35.043 -1.935 -3.522 -1.935 -3.521 -24.576 -24.576 4.885 12.284
-9.808 -0.807 -2.557 -0.807 -2.556 -4.896 -4.896 3.472 4.280
2 -1.935 -38.909 -14.496 4.659 8.093 -5.909 -5.930 -4.399 -5.679
-0.807 -6.058 -6.915 3.879 4.367 0.282 0.288 -0.867 -2.014
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -21.775 -4.986 -4.204 -4.986 -4.204 -10.032 -10.033 -0.566 -2.697
-20.062 -0.651 -5.241 -0.653 -5.238 -14.383 -14.382 5.604 8.217
2 -4.986 -30.497 -4.187 -1.096 -1.911 -7.419 -7.436 -2.962 -2.275
-0.651 -12.378 -13.819 5.629 7.453 -0.268 -0.261 -2.675 -6.336
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.542 -5.580 -6.146 -5.578 -6.147 -11.756 -11.756 -4.569 -5.182
-19.367 -4.645 -9.663 -4.644 -9.663 -15.490 -15.490 2.726 -0.652
2 -5.580 -29.269 -3.616 -3.815 -4.377 -5.783 -5.795 -3.250 -3.353
-4.645 -9.975 -12.349 2.686 1.957 -4.841 -4.838 -2.870 -6.274
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -25.655 -5.461 -5.044 -5.459 -5.045 -11.958 -11.960 -3.046 -1.827
-12.823 -3.739 -8.467 -3.738 -8.467 -11.144 -11.141 -1.481 -4.707
2 -5.461 -31.179 -5.743 -2.434 -2.173 -5.698 -5.711 -3.333 -3.385
-3.739 -5.243 -6.383 -0.210 -1.282 -3.410 -3.385 -2.091 -4.150
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.625 -4.333 1.931 -4.332 1.929 -7.764 -7.768 -0.767 4.282
-24.341 -4.771 -13.610 -4.770 -13.610 -21.489 -21.487 0.771 -5.422
2 -4.333 -30.656 -3.815 -1.957 -0.269 -6.470 -6.486 -2.287 -0.648
-4.771 -11.387 -12.395 3.006 0.963 -4.849 -4.818 -3.706 -7.697
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -17.340 -4.142 2.304 -4.144 2.306 -0.902 -0.902 -0.555 4.143
-11.090 -3.160 -4.652 -3.159 -4.653 -11.558 -11.558 0.274 -0.148
2 -4.142 -28.625 -1.368 -2.983 -1.468 -2.103 -2.118 -1.183 1.112
-3.160 -5.481 -5.933 0.541 0.877 -4.263 -4.243 -1.406 -2.797
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.470 -4.951 -0.196 -4.952 -0.195 -1.805 -1.810 0.189 3.192
-12.541 -4.272 -3.729 -4.272 -3.728 -9.590 -9.590 0.968 2.028
2 -4.951 -32.542 -6.234 -1.045 -0.339 -1.087 -1.161 -1.678 -0.490
-4.272 -6.922 -6.135 0.140 1.842 -3.347 -3.317 -1.848 -2.267
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -27.599 -7.066 -6.298 -7.066 -6.299 -8.804 -8.806 -3.113 -6.748
-17.016 -4.833 -5.624 -4.840 -5.619 -13.388 -13.390 4.765 3.602
2 -7.066 -33.185 -7.346 -3.974 -5.914 -4.541 -4.596 -3.209 -5.000
-4.833 -8.914 -10.380 1.884 2.303 -4.040 -4.042 -1.383 -3.199
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -20.798 -0.849 6.085 -0.845 6.082 0.139 0.138 -1.662 4.840
-33.389 -14.161 -18.934 -14.166 -18.931 -22.413 -22.413 -1.393 -8.968
2 -0.849 -33.787 -3.734 1.687 2.329 1.262 1.213 -2.320 1.952
-14.161 -15.407 -19.827 -3.858 -6.605 -8.593 -8.593 -5.171 -10.905
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 9 : 64.86 [%]
--------------------------------------------------------------------------------
q-point number 10 q = ( 0.500000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -33.605 -7.522 -10.470 -7.535 -10.467 -7.521 -10.473 -3.040 -3.503
0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000
2 -7.522 -34.590 -12.824 -2.356 -2.923 -2.343 -2.945 -5.370 -7.813
-0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -33.865 -7.590 -10.598 -7.603 -10.594 -7.589 -10.600 -3.030 -3.525
-0.413 -0.114 -0.189 -0.114 -0.189 -0.114 -0.189 -0.009 -0.057
2 -7.590 -34.746 -12.988 -2.337 -2.915 -2.324 -2.937 -5.418 -7.908
-0.114 -0.280 -0.230 0.004 -0.015 0.004 -0.015 -0.074 -0.138
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -34.790 -7.817 -11.040 -7.830 -11.036 -7.816 -11.042 -2.978 -3.567
-0.507 -0.130 -0.228 -0.130 -0.228 -0.130 -0.228 0.006 -0.045
2 -7.817 -35.305 -13.581 -2.249 -2.862 -2.237 -2.884 -5.589 -8.245
-0.130 -0.339 -0.295 0.022 0.002 0.023 0.002 -0.091 -0.171
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -37.156 -8.302 -12.077 -8.315 -12.073 -8.301 -12.079 -2.714 -3.432
-2.194 -0.313 -0.806 -0.313 -0.806 -0.312 -0.806 0.438 0.477
2 -8.302 -36.784 -15.178 -1.874 -2.546 -1.861 -2.568 -6.016 -9.087
-0.313 -1.392 -1.506 0.503 0.503 0.503 0.503 -0.369 -0.704
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -36.912 -8.687 -12.426 -8.700 -12.422 -8.686 -12.428 -3.353 -4.601
-0.941 -0.218 -0.422 -0.218 -0.422 -0.218 -0.422 0.055 -0.020
2 -8.687 -36.412 -14.704 -2.588 -3.387 -2.576 -3.409 -6.045 -9.139
-0.218 -0.614 -0.594 0.096 0.065 0.096 0.065 -0.173 -0.332
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -41.792 -9.868 -14.795 -9.880 -14.790 -9.868 -14.797 -3.075 -4.836
-1.751 -0.431 -0.788 -0.431 -0.788 -0.431 -0.788 0.097 -0.079
2 -9.868 -39.324 -17.893 -2.131 -3.060 -2.120 -3.083 -6.975 -11.000
-0.431 -1.148 -1.076 0.156 0.109 0.156 0.109 -0.391 -0.625
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -54.872 -12.670 -20.884 -12.680 -20.878 -12.672 -20.886 -1.905 -4.736
-5.040 -1.012 -2.205 -1.010 -2.204 -1.013 -2.205 0.525 0.255
2 -12.670 -47.337 -26.768 -0.381 -1.587 -0.376 -1.610 -9.515 -16.054
-1.012 -3.227 -3.430 0.760 0.731 0.757 0.731 -1.026 -1.920
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.659 -7.938 -6.305 -7.955 -6.301 -7.934 -6.309 -9.073 -13.087
-26.906 -5.093 -11.743 -5.093 -11.741 -5.096 -11.742 3.818 1.859
2 -7.938 -21.802 2.362 -10.009 -11.788 -9.988 -11.810 -2.140 -1.081
-5.093 -16.362 -18.364 4.164 4.012 4.159 4.006 -4.914 -10.210
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -35.429 -11.542 -15.520 -11.555 -15.516 -11.540 -15.525 -7.890 -12.993
-15.323 -5.875 -11.155 -5.875 -11.153 -5.876 -11.156 -2.117 -7.678
2 -11.542 -32.834 -10.964 -7.042 -9.644 -7.029 -9.669 -5.551 -8.547
-5.875 -7.486 -8.930 -1.646 -3.510 -1.646 -3.515 -3.320 -7.217
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -34.440 -10.554 -12.994 -10.567 -12.990 -10.553 -12.998 -7.001 -9.742
-19.415 -7.219 -14.468 -7.217 -14.467 -7.219 -14.470 -2.812 -10.261
2 -10.554 -33.597 -10.858 -5.721 -7.624 -5.708 -7.650 -5.288 -7.392
-7.219 -7.876 -10.325 -1.728 -4.462 -1.730 -4.467 -3.472 -8.140
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -15.605 -2.184 4.942 -2.192 4.946 -2.180 4.941 -1.642 6.157
-56.647 -22.566 -42.142 -22.553 -42.136 -22.568 -42.146 -10.669 -32.964
2 -2.184 -27.715 -0.823 -2.670 0.232 -2.662 0.220 -1.919 1.985
-22.566 -21.832 -27.602 -6.903 -15.306 -6.920 -15.317 -10.199 -23.068
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -12.241 -1.650 6.004 -1.668 6.012 -1.652 6.005 -0.876 6.985
-12.472 -4.506 -6.995 -4.491 -6.990 -4.503 -6.997 -1.701 -3.239
2 -1.650 -27.089 -0.982 -3.023 -0.451 -3.008 -0.472 -1.802 1.873
-4.506 -6.300 -6.263 -0.742 -1.171 -0.760 -1.169 -2.708 -4.051
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -29.413 -8.572 -5.463 -8.606 -5.466 -8.576 -5.462 -2.926 -0.176
-10.402 -4.873 -5.176 -4.860 -5.167 -4.879 -5.178 -2.083 -2.176
2 -8.572 -35.178 -11.696 -4.466 -4.152 -4.436 -4.172 -4.280 -5.061
-4.873 -6.668 -4.416 -1.797 -1.293 -1.821 -1.302 -3.492 -3.024
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -55.997 -21.999 -24.821 -22.030 -24.816 -21.999 -24.819 -8.107 -12.297
-26.741 -12.518 -15.819 -12.530 -15.808 -12.530 -15.812 -1.922 -6.288
2 -21.999 -46.016 -27.868 -10.004 -12.271 -9.975 -12.290 -8.910 -16.316
-12.518 -13.108 -16.340 -4.287 -5.722 -4.286 -5.733 -5.234 -9.368
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 10.249 16.844 29.483 16.828 29.478 16.851 29.477 9.501 26.222
-25.265 -12.529 -16.966 -12.536 -16.963 -12.536 -16.964 -3.676 -10.327
2 16.844 -19.773 14.628 11.075 17.041 11.121 17.032 5.908 16.584
-12.529 -12.856 -15.435 -4.521 -6.936 -4.538 -6.940 -5.266 -9.889
No. of calculated frequencies > 15, stop printing
Average fulfillment of the sum rule on Im[epsilon] for q-point 10 : 64.06 [%]
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 4, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getscr/=0, take file _SCR from output of DATASET 3.
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 25x 25x 25
total number of points = 15625
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978790998858
Compensation charge over fine fft grid = 5.993710068169802
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
cRPA calculations using wannier weights from data.plowann
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
==== Calculation of the screened interaction ====
Read K and Q mesh
Read l and bands from wanbz 21 25 5
==Calculation of the bare interaction V m==
==Definition of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
Diagonal bare interaction
1 15.807
2 16.338
3 16.734
4 15.838
5 16.290
U'=U(m1,m2,m1,m2) for the bare interaction
- 1 2 3 4 5
1 15.807 14.989 14.893 14.730 15.541
2 14.989 16.338 15.806 14.995 15.188
3 14.893 15.806 16.734 15.560 15.109
4 14.730 14.995 15.560 15.838 14.893
5 15.541 15.188 15.109 14.893 16.290
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 15.3765 0.0000
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 16.2014 -0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
- 1 2 3 4 5
1 15.807 0.461 0.529 0.450 0.210
2 0.461 16.338 0.294 0.456 0.452
3 0.529 0.294 16.734 0.375 0.530
4 0.450 0.456 0.375 15.838 0.448
5 0.210 0.452 0.530 0.448 16.290
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6268 -0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
- 1 2 3 4 5
1 15.807 0.461 0.529 0.450 0.210
2 0.461 16.338 0.294 0.456 0.452
3 0.529 0.294 16.734 0.375 0.530
4 0.450 0.456 0.375 15.838 0.448
5 0.210 0.452 0.530 0.448 16.290
== Calculation of the screened interaction on the correlated orbital U m ==
= Start loop over frequency
--- For frequency w = 1 -------------
Diagonal cRPA interaction
1 3.490
2 3.660
3 3.876
4 3.493
5 3.764
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.490 2.595 2.491 2.505 3.137
2 2.595 3.660 3.099 2.593 2.710
3 2.491 3.099 3.876 3.022 2.626
4 2.505 2.593 3.022 3.493 2.603
5 3.137 2.710 2.626 2.603 3.764
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.9218 0.0000
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.6565 0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.490 0.428 0.493 0.419 0.207
2 0.428 3.660 0.284 0.423 0.425
3 0.493 0.284 3.876 0.358 0.435
4 0.419 0.423 0.358 3.493 0.422
5 0.207 0.425 0.435 0.422 3.764
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5730 0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.490 0.428 0.493 0.419 0.207
2 0.428 3.660 0.284 0.423 0.425
3 0.493 0.284 3.876 0.358 0.435
4 0.419 0.423 0.358 3.493 0.422
5 0.207 0.425 0.435 0.422 3.764
--- For frequency w = 2 -------------
Diagonal cRPA interaction
1 3.462
2 3.631
3 3.847
4 3.466
5 3.736
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.462 2.567 2.463 2.477 3.109
2 2.567 3.631 3.070 2.565 2.682
3 2.463 3.070 3.847 2.994 2.598
4 2.477 2.565 2.994 3.466 2.576
5 3.109 2.682 2.598 2.576 3.736
Hubbard cRPA interaction for w = 2, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.8936 -0.0362
(Hubbard cRPA interaction for w = 2, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.6281 -0.0366)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.462 0.428 0.493 0.418 0.207
2 0.428 3.631 0.284 0.423 0.425
3 0.493 0.284 3.847 0.358 0.435
4 0.418 0.423 0.358 3.466 0.422
5 0.207 0.425 0.435 0.422 3.736
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5729 -0.0003
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.462 0.428 0.493 0.418 0.207
2 0.428 3.631 0.284 0.423 0.425
3 0.493 0.284 3.847 0.358 0.435
4 0.418 0.423 0.358 3.466 0.422
5 0.207 0.425 0.435 0.422 3.736
--- For frequency w = 3 -------------
Diagonal cRPA interaction
1 3.372
2 3.536
3 3.752
4 3.376
5 3.645
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.372 2.475 2.372 2.389 3.019
2 2.475 3.536 2.976 2.474 2.590
3 2.372 2.976 3.752 2.903 2.508
4 2.389 2.474 2.903 3.376 2.487
5 3.019 2.590 2.508 2.487 3.645
Hubbard cRPA interaction for w = 3, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.8026 -0.0413
(Hubbard cRPA interaction for w = 3, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.5362 -0.0417)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.372 0.427 0.493 0.418 0.207
2 0.427 3.536 0.284 0.422 0.425
3 0.493 0.284 3.752 0.358 0.434
4 0.418 0.422 0.358 3.376 0.421
5 0.207 0.425 0.434 0.421 3.645
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5724 -0.0003
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.372 0.427 0.493 0.418 0.207
2 0.427 3.536 0.284 0.422 0.425
3 0.493 0.284 3.752 0.358 0.434
4 0.418 0.422 0.358 3.376 0.421
5 0.207 0.425 0.434 0.421 3.645
--- For frequency w = 4 -------------
Diagonal cRPA interaction
1 3.192
2 3.346
3 3.564
4 3.198
5 3.463
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.192 2.293 2.192 2.212 2.838
2 2.293 3.346 2.788 2.292 2.406
3 2.192 2.788 3.564 2.720 2.327
4 2.212 2.292 2.720 3.198 2.310
5 2.838 2.406 2.327 2.310 3.463
Hubbard cRPA interaction for w = 4, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.6208 -0.0585
(Hubbard cRPA interaction for w = 4, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.3527 -0.0593)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.192 0.426 0.492 0.417 0.207
2 0.426 3.346 0.284 0.422 0.424
3 0.492 0.284 3.564 0.357 0.432
4 0.417 0.422 0.357 3.198 0.421
5 0.207 0.424 0.432 0.421 3.463
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5713 -0.0004
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.192 0.426 0.492 0.417 0.207
2 0.426 3.346 0.284 0.422 0.424
3 0.492 0.284 3.564 0.357 0.432
4 0.417 0.422 0.357 3.198 0.421
5 0.207 0.424 0.432 0.421 3.463
--- For frequency w = 5 -------------
Diagonal cRPA interaction
1 2.877
2 3.012
3 3.237
4 2.889
5 3.143
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.877 1.972 1.876 1.904 2.521
2 1.972 3.012 2.459 1.975 2.083
3 1.876 2.459 3.237 2.404 2.009
4 1.904 1.975 2.404 2.889 2.000
5 2.521 2.083 2.009 2.000 3.143
Hubbard cRPA interaction for w = 5, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.3025 -0.2099
(Hubbard cRPA interaction for w = 5, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.0314 -0.2114)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.877 0.425 0.491 0.416 0.207
2 0.425 3.012 0.283 0.420 0.423
3 0.491 0.283 3.237 0.357 0.429
4 0.416 0.420 0.357 2.889 0.420
5 0.207 0.423 0.429 0.420 3.143
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5694 -0.0010
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.877 0.425 0.491 0.416 0.207
2 0.425 3.012 0.283 0.420 0.423
3 0.491 0.283 3.237 0.357 0.429
4 0.416 0.420 0.357 2.889 0.420
5 0.207 0.423 0.429 0.420 3.143
--- For frequency w = 6 -------------
Diagonal cRPA interaction
1 2.656
2 2.753
3 2.983
4 2.675
5 2.911
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.656 1.737 1.651 1.698 2.295
2 1.737 2.753 2.207 1.749 1.843
3 1.651 2.207 2.983 2.173 1.780
4 1.698 1.749 2.173 2.675 1.790
5 2.295 1.843 1.780 1.790 2.911
Hubbard cRPA interaction for w = 6, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.0730 -0.5771
(Hubbard cRPA interaction for w = 6, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.7956 -0.5846)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.656 0.424 0.490 0.415 0.207
2 0.424 2.753 0.283 0.419 0.422
3 0.490 0.283 2.983 0.356 0.420
4 0.415 0.419 0.356 2.675 0.419
5 0.207 0.422 0.420 0.419 2.911
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5661 -0.0043
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.656 0.424 0.490 0.415 0.207
2 0.424 2.753 0.283 0.419 0.422
3 0.490 0.283 2.983 0.356 0.420
4 0.415 0.419 0.356 2.675 0.419
5 0.207 0.422 0.420 0.419 2.911
--- For frequency w = 7 -------------
Diagonal cRPA interaction
1 2.915
2 3.093
3 3.281
4 2.878
5 3.202
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.915 2.031 1.914 1.911 2.570
2 2.031 3.093 2.518 2.000 2.154
3 1.914 2.518 3.281 2.418 2.056
4 1.911 2.000 2.418 2.878 2.015
5 2.570 2.154 2.056 2.015 3.202
Hubbard cRPA interaction for w = 7, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.3418 -0.8938
(Hubbard cRPA interaction for w = 7, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.0739 -0.9085)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.915 0.422 0.488 0.413 0.207
2 0.422 3.093 0.282 0.417 0.421
3 0.488 0.282 3.281 0.355 0.438
4 0.413 0.417 0.355 2.878 0.418
5 0.207 0.421 0.438 0.418 3.202
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5692 -0.0075
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.915 0.422 0.488 0.413 0.207
2 0.422 3.093 0.282 0.417 0.421
3 0.488 0.282 3.281 0.355 0.438
4 0.413 0.417 0.355 2.878 0.418
5 0.207 0.421 0.438 0.418 3.202
--- For frequency w = 8 -------------
Diagonal cRPA interaction
1 2.127
2 2.240
3 2.439
4 2.106
5 2.403
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.127 1.215 1.105 1.130 1.776
2 1.215 2.240 1.669 1.187 1.332
3 1.105 1.669 2.439 1.614 1.243
4 1.130 1.187 1.614 2.106 1.230
5 1.776 1.332 1.243 1.230 2.403
Hubbard cRPA interaction for w = 8, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.5328 -1.8038
(Hubbard cRPA interaction for w = 8, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.2631 -1.8270)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.127 0.426 0.491 0.415 0.207
2 0.426 2.240 0.283 0.421 0.422
3 0.491 0.283 2.439 0.357 0.436
4 0.415 0.421 0.357 2.106 0.420
5 0.207 0.422 0.436 0.420 2.403
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5703 -0.0131
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.127 0.426 0.491 0.415 0.207
2 0.426 2.240 0.283 0.421 0.422
3 0.491 0.283 2.439 0.357 0.436
4 0.415 0.421 0.357 2.106 0.420
5 0.207 0.422 0.436 0.420 2.403
--- For frequency w = 9 -------------
Diagonal cRPA interaction
1 2.342
2 2.459
3 2.668
4 2.324
5 2.621
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.342 1.427 1.319 1.345 1.993
2 1.427 2.459 1.893 1.407 1.546
3 1.319 1.893 2.668 1.836 1.457
4 1.345 1.407 1.836 2.324 1.445
5 1.993 1.546 1.457 1.445 2.621
Hubbard cRPA interaction for w = 9, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.7499 -1.6318
(Hubbard cRPA interaction for w = 9, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.4829 -1.6507)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.342 0.423 0.488 0.413 0.207
2 0.423 2.459 0.282 0.419 0.420
3 0.488 0.282 2.668 0.355 0.436
4 0.413 0.419 0.355 2.324 0.418
5 0.207 0.420 0.436 0.418 2.621
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5695 -0.0121
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.342 0.423 0.488 0.413 0.207
2 0.423 2.459 0.282 0.419 0.420
3 0.488 0.282 2.668 0.355 0.436
4 0.413 0.419 0.355 2.324 0.418
5 0.207 0.420 0.436 0.418 2.621
--- For frequency w = 10 -------------
Diagonal cRPA interaction
1 2.644
2 2.812
3 3.002
4 2.631
5 2.911
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.644 1.751 1.634 1.648 2.289
2 1.751 2.812 2.238 1.736 1.864
3 1.634 2.238 3.002 2.156 1.768
4 1.648 1.736 2.156 2.631 1.745
5 2.289 1.864 1.768 1.745 2.911
Hubbard cRPA interaction for w = 10, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.0662 -2.1711
(Hubbard cRPA interaction for w = 10, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.8001 -2.1892)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.644 0.422 0.487 0.412 0.207
2 0.422 2.812 0.282 0.417 0.420
3 0.487 0.282 3.002 0.355 0.436
4 0.412 0.417 0.355 2.631 0.417
5 0.207 0.420 0.436 0.417 2.911
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5691 -0.0112
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.644 0.422 0.487 0.412 0.207
2 0.422 2.812 0.282 0.417 0.420
3 0.487 0.282 3.002 0.355 0.436
4 0.412 0.417 0.355 2.631 0.417
5 0.207 0.420 0.436 0.417 2.911
--- For frequency w = 11 -------------
Diagonal cRPA interaction
1 2.754
2 2.954
3 3.162
4 2.763
5 3.047
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.754 1.878 1.770 1.767 2.412
2 1.878 2.954 2.389 1.871 2.005
3 1.770 2.389 3.162 2.302 1.918
4 1.767 1.871 2.302 2.763 1.877
5 2.412 2.005 1.918 1.877 3.047
Hubbard cRPA interaction for w = 11, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.2024 -1.7888
(Hubbard cRPA interaction for w = 11, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.9361 -1.8123)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.754 0.420 0.485 0.411 0.207
2 0.420 2.954 0.282 0.416 0.418
3 0.485 0.282 3.162 0.354 0.436
4 0.411 0.416 0.354 2.763 0.415
5 0.207 0.418 0.436 0.415 3.047
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5678 -0.0235
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.754 0.420 0.485 0.411 0.207
2 0.420 2.954 0.282 0.416 0.418
3 0.485 0.282 3.162 0.354 0.436
4 0.411 0.416 0.354 2.763 0.415
5 0.207 0.418 0.436 0.415 3.047
--- For frequency w = 12 -------------
Diagonal cRPA interaction
1 2.552
2 2.762
3 2.955
4 2.529
5 2.841
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.552 1.663 1.539 1.535 2.208
2 1.663 2.762 2.185 1.648 1.788
3 1.539 2.185 2.955 2.076 1.684
4 1.535 1.648 2.076 2.529 1.643
5 2.208 1.788 1.684 1.643 2.841
Hubbard cRPA interaction for w = 12, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.9830 -1.8441
(Hubbard cRPA interaction for w = 12, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.7279 -1.8637)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.552 0.430 0.494 0.422 0.207
2 0.430 2.762 0.284 0.424 0.426
3 0.494 0.284 2.955 0.358 0.444
4 0.422 0.424 0.358 2.529 0.422
5 0.207 0.426 0.444 0.422 2.841
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5773 -0.0161
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.552 0.430 0.494 0.422 0.207
2 0.430 2.762 0.284 0.424 0.426
3 0.494 0.284 2.955 0.358 0.444
4 0.422 0.424 0.358 2.529 0.422
5 0.207 0.426 0.444 0.422 2.841
--- For frequency w = 13 -------------
Diagonal cRPA interaction
1 1.726
2 1.855
3 2.017
4 1.684
5 1.986
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 1.726 0.822 0.697 0.720 1.367
2 0.822 1.855 1.268 0.788 0.935
3 0.697 1.268 2.017 1.194 0.831
4 0.720 0.788 1.194 1.684 0.816
5 1.367 0.935 0.831 0.816 1.986
Hubbard cRPA interaction for w = 13, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.1257 -1.4243
(Hubbard cRPA interaction for w = 13, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.8537 -1.4502)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 1.726 0.434 0.499 0.422 0.207
2 0.434 1.855 0.284 0.428 0.427
3 0.499 0.284 2.017 0.361 0.432
4 0.422 0.428 0.361 1.684 0.427
5 0.207 0.427 0.432 0.427 1.986
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5741 -0.0327
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 1.726 0.434 0.499 0.422 0.207
2 0.434 1.855 0.284 0.428 0.427
3 0.499 0.284 2.017 0.361 0.432
4 0.422 0.428 0.361 1.684 0.427
5 0.207 0.427 0.432 0.427 1.986
--- For frequency w = 14 -------------
Diagonal cRPA interaction
1 2.149
2 2.419
3 2.568
4 2.161
5 2.389
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.149 1.299 1.162 1.165 1.780
2 1.299 2.419 1.826 1.306 1.399
3 1.162 1.826 2.568 1.703 1.283
4 1.165 1.306 1.703 2.161 1.250
5 1.780 1.399 1.283 1.250 2.389
Hubbard cRPA interaction for w = 14, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.6012 -2.1128
(Hubbard cRPA interaction for w = 14, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.3369 -2.1295)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 2.149 0.453 0.522 0.444 0.207
2 0.453 2.419 0.290 0.450 0.445
3 0.522 0.290 2.568 0.370 0.433
4 0.444 0.450 0.370 2.161 0.442
5 0.207 0.445 0.433 0.442 2.389
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5895 -0.0189
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 2.149 0.453 0.522 0.444 0.207
2 0.453 2.419 0.290 0.450 0.445
3 0.522 0.290 2.568 0.370 0.433
4 0.444 0.450 0.370 2.161 0.442
5 0.207 0.445 0.433 0.442 2.389
--- For frequency w = 15 -------------
Diagonal cRPA interaction
1 1.632
2 1.874
3 2.043
4 1.665
5 1.867
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 1.632 0.755 0.628 0.652 1.262
2 0.755 1.874 1.290 0.779 0.853
3 0.628 1.290 2.043 1.190 0.748
4 0.652 0.779 1.190 1.665 0.736
5 1.262 0.853 0.748 0.736 1.867
Hubbard cRPA interaction for w = 15, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.0747 -3.0660
(Hubbard cRPA interaction for w = 15, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.8162 -3.0899)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 1.632 0.447 0.515 0.439 0.207
2 0.447 1.874 0.289 0.443 0.442
3 0.515 0.289 2.043 0.367 0.434
4 0.439 0.443 0.367 1.665 0.437
5 0.207 0.442 0.434 0.437 1.867
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5875 -0.0147
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 1.632 0.447 0.515 0.439 0.207
2 0.447 1.874 0.289 0.443 0.442
3 0.515 0.289 2.043 0.367 0.434
4 0.439 0.443 0.367 1.665 0.437
5 0.207 0.442 0.434 0.437 1.867
--- For frequency w = 16 -------------
Diagonal cRPA interaction
1 0.516
2 0.753
3 0.906
4 0.524
5 0.762
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.516 -0.369 -0.503 -0.481 0.151
2 -0.369 0.753 0.159 -0.363 -0.265
3 -0.503 0.159 0.906 0.047 -0.379
4 -0.481 -0.363 0.047 0.524 -0.393
5 0.151 -0.266 -0.379 -0.393 0.762
Hubbard cRPA interaction for w = 16, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -0.0533 -2.4060
(Hubbard cRPA interaction for w = 16, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 0.6923 -2.4305)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.516 0.446 0.512 0.436 0.207
2 0.446 0.753 0.289 0.441 0.439
3 0.512 0.289 0.906 0.366 0.441
4 0.436 0.441 0.366 0.524 0.435
5 0.207 0.439 0.441 0.435 0.762
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5877 -0.0126
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 0.516 0.446 0.512 0.436 0.207
2 0.446 0.753 0.289 0.441 0.439
3 0.512 0.289 0.906 0.366 0.441
4 0.436 0.441 0.366 0.524 0.435
5 0.207 0.439 0.441 0.435 0.762
--- For frequency w = 17 -------------
Diagonal cRPA interaction
1 0.898
2 0.995
3 1.165
4 0.875
5 1.155
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.898 -0.049 -0.177 -0.112 0.539
2 -0.049 0.995 0.410 -0.058 0.061
3 -0.177 0.410 1.165 0.356 -0.047
4 -0.112 -0.058 0.356 0.875 -0.018
5 0.539 0.061 -0.047 -0.018 1.155
Hubbard cRPA interaction for w = 17, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 0.2759 -5.1809
(Hubbard cRPA interaction for w = 17, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.0176 -5.2000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.898 0.440 0.508 0.431 0.207
2 0.440 0.995 0.287 0.436 0.435
3 0.508 0.287 1.165 0.364 0.435
4 0.431 0.436 0.364 0.875 0.432
5 0.207 0.435 0.435 0.432 1.155
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5831 -0.0095
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 0.898 0.440 0.508 0.431 0.207
2 0.440 0.995 0.287 0.436 0.435
3 0.508 0.287 1.165 0.364 0.435
4 0.431 0.436 0.364 0.875 0.432
5 0.207 0.435 0.435 0.432 1.155
--- For frequency w = 18 -------------
Diagonal cRPA interaction
1 -0.990
2 -0.726
3 -0.616
4 -0.975
5 -0.770
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 -0.990 -1.851 -1.998 -1.975 -1.367
2 -1.851 -0.726 -1.338 -1.845 -1.757
3 -1.998 -1.338 -0.616 -1.459 -1.883
4 -1.975 -1.845 -1.459 -0.975 -1.896
5 -1.367 -1.757 -1.883 -1.896 -0.770
Hubbard cRPA interaction for w = 18, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -1.5525 -3.9392
(Hubbard cRPA interaction for w = 18, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -0.8153 -3.9618)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 -0.990 0.444 0.509 0.433 0.208
2 0.444 -0.726 0.288 0.438 0.436
3 0.509 0.288 -0.616 0.365 0.433
4 0.433 0.438 0.365 -0.975 0.434
5 0.208 0.436 0.433 0.434 -0.770
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5831 -0.0110
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 -0.990 0.444 0.509 0.433 0.208
2 0.444 -0.726 0.288 0.438 0.436
3 0.509 0.288 -0.616 0.365 0.433
4 0.433 0.438 0.365 -0.975 0.434
5 0.208 0.436 0.433 0.434 -0.770
--- For frequency w = 19 -------------
Diagonal cRPA interaction
1 0.580
2 0.542
3 0.735
4 0.594
5 0.812
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.580 -0.435 -0.548 -0.410 0.209
2 -0.435 0.542 -0.030 -0.425 -0.336
3 -0.548 -0.030 0.735 0.001 -0.427
4 -0.410 -0.425 0.001 0.594 -0.327
5 0.209 -0.336 -0.427 -0.327 0.812
Hubbard cRPA interaction for w = 19, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -0.0876 -5.8648
(Hubbard cRPA interaction for w = 19, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 0.6526 -5.8870)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.580 0.441 0.507 0.430 0.208
2 0.441 0.542 0.287 0.436 0.434
3 0.507 0.287 0.735 0.364 0.431
4 0.430 0.436 0.364 0.594 0.432
5 0.208 0.434 0.431 0.432 0.812
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5819 -0.0101
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 0.580 0.441 0.507 0.430 0.208
2 0.441 0.542 0.287 0.436 0.434
3 0.507 0.287 0.735 0.364 0.431
4 0.430 0.436 0.364 0.594 0.432
5 0.208 0.434 0.431 0.432 0.812
--- For frequency w = 20 -------------
Diagonal cRPA interaction
1 0.437
2 0.515
3 0.613
4 0.433
5 0.622
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.437 -0.503 -0.647 -0.544 0.043
2 -0.503 0.515 -0.097 -0.506 -0.424
3 -0.647 -0.097 0.613 -0.133 -0.544
4 -0.544 -0.506 -0.133 0.433 -0.477
5 0.043 -0.424 -0.544 -0.477 0.622
Hubbard cRPA interaction for w = 20, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -0.2019 -4.6428
(Hubbard cRPA interaction for w = 20, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 0.5239 -4.6626)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 0.437 0.438 0.504 0.429 0.207
2 0.438 0.515 0.287 0.433 0.433
3 0.504 0.287 0.613 0.363 0.421
4 0.429 0.433 0.363 0.433 0.430
5 0.207 0.433 0.421 0.430 0.622
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5760 -0.0092
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 0.437 0.438 0.504 0.429 0.207
2 0.438 0.515 0.287 0.433 0.433
3 0.504 0.287 0.613 0.363 0.421
4 0.429 0.433 0.363 0.433 0.430
5 0.207 0.433 0.421 0.430 0.622
--- For frequency w = 21 -------------
Diagonal cRPA interaction
1 -1.357
2 -1.177
3 -1.109
4 -1.364
5 -1.169
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 -1.357 -2.251 -2.415 -2.347 -1.750
2 -2.251 -1.177 -1.807 -2.256 -2.174
3 -2.415 -1.807 -1.109 -1.893 -2.314
4 -2.347 -2.256 -1.893 -1.364 -2.281
5 -1.750 -2.174 -2.314 -2.281 -1.169
Hubbard cRPA interaction for w = 21, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -1.9661 -4.7953
(Hubbard cRPA interaction for w = 21, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -1.2354 -4.8356)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 -1.357 0.438 0.504 0.429 0.208
2 0.438 -1.177 0.287 0.433 0.433
3 0.504 0.287 -1.109 0.363 0.427
4 0.429 0.433 0.363 -1.364 0.430
5 0.208 0.433 0.427 0.430 -1.169
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5778 -0.0166
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 -1.357 0.438 0.504 0.429 0.208
2 0.438 -1.177 0.287 0.433 0.433
3 0.504 0.287 -1.109 0.363 0.427
4 0.429 0.433 0.363 -1.364 0.430
5 0.208 0.433 0.427 0.430 -1.169
--- For frequency w = 22 -------------
Diagonal cRPA interaction
1 -6.630
2 -6.418
3 -6.442
4 -6.644
5 -6.513
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 -6.630 -7.495 -7.688 -7.603 -7.057
2 -7.495 -6.418 -7.085 -7.501 -7.450
3 -7.688 -7.085 -6.442 -7.194 -7.617
4 -7.603 -7.501 -7.194 -6.644 -7.566
5 -7.057 -7.450 -7.617 -7.566 -6.513
Hubbard cRPA interaction for w = 22, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -7.2464 -6.9215
(Hubbard cRPA interaction for w = 22, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -6.5295 -6.9731)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 -6.630 0.436 0.501 0.426 0.208
2 0.436 -6.418 0.286 0.431 0.430
3 0.501 0.286 -6.442 0.362 0.411
4 0.426 0.431 0.362 -6.644 0.428
5 0.208 0.430 0.411 0.428 -6.513
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5710 -0.0202
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 -6.630 0.436 0.501 0.426 0.208
2 0.436 -6.418 0.286 0.431 0.430
3 0.501 0.286 -6.442 0.362 0.411
4 0.426 0.431 0.362 -6.644 0.428
5 0.208 0.430 0.411 0.428 -6.513
--- For frequency w = 23 -------------
Diagonal cRPA interaction
1 -6.974
2 -6.531
3 -6.678
4 -7.200
5 -6.704
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 -6.974 -7.753 -8.044 -8.095 -7.326
2 -7.753 -6.531 -7.279 -7.869 -7.641
3 -8.044 -7.279 -6.678 -7.604 -7.916
4 -8.095 -7.869 -7.604 -7.200 -8.000
5 -7.326 -7.641 -7.916 -8.000 -6.704
Hubbard cRPA interaction for w = 23, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -7.5656 -15.7684
(Hubbard cRPA interaction for w = 23, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -6.8173 -15.8314)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 -6.974 0.433 0.499 0.425 0.207
2 0.433 -6.531 0.286 0.428 0.430
3 0.499 0.286 -6.678 0.360 0.450
4 0.425 0.428 0.360 -7.200 0.426
5 0.207 0.430 0.450 0.426 -6.704
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5815 -0.0295
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 -6.974 0.433 0.499 0.425 0.207
2 0.433 -6.531 0.286 0.428 0.430
3 0.499 0.286 -6.678 0.360 0.450
4 0.425 0.428 0.360 -7.200 0.426
5 0.207 0.430 0.450 0.426 -6.704
--- For frequency w = 24 -------------
Diagonal cRPA interaction
1 1.281
2 1.916
3 2.210
4 1.261
5 1.954
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 1.281 0.587 0.500 0.249 1.129
2 0.587 1.916 1.380 0.573 0.896
3 0.500 1.380 2.210 1.062 0.826
4 0.249 0.572 1.062 1.261 0.539
5 1.129 0.896 0.825 0.539 1.954
Hubbard cRPA interaction for w = 24, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 0.9640 -35.8170
(Hubbard cRPA interaction for w = 24, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.7242 -35.8580)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 1.281 0.436 0.502 0.428 0.207
2 0.436 1.916 0.286 0.431 0.432
3 0.502 0.286 2.210 0.362 0.462
4 0.428 0.431 0.362 1.261 0.428
5 0.207 0.432 0.462 0.428 1.954
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5874 -0.0176
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 1.281 0.436 0.502 0.428 0.207
2 0.436 1.916 0.286 0.431 0.432
3 0.502 0.286 2.210 0.362 0.462
4 0.428 0.431 0.362 1.261 0.428
5 0.207 0.432 0.462 0.428 1.954
--- For frequency w = 25 -------------
Diagonal cRPA interaction
1 20.387
2 20.720
3 20.972
4 20.432
5 20.558
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 20.387 19.544 19.440 19.389 19.984
2 19.544 20.720 20.166 19.566 19.604
3 19.440 20.166 20.972 20.033 19.517
4 19.389 19.566 20.033 20.432 19.434
5 19.984 19.604 19.517 19.434 20.558
Hubbard cRPA interaction for w = 25, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 19.8570 -13.7879
(Hubbard cRPA interaction for w = 25, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 20.6137 -13.8208)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 20.387 0.435 0.500 0.426 0.207
2 0.435 20.720 0.286 0.430 0.430
3 0.500 0.286 20.972 0.361 0.455
4 0.426 0.430 0.361 20.432 0.427
5 0.207 0.430 0.455 0.427 20.558
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5849 -0.0134
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 20.387 0.435 0.500 0.426 0.207
2 0.435 20.720 0.286 0.430 0.430
3 0.500 0.286 20.972 0.361 0.455
4 0.426 0.430 0.361 20.432 0.427
5 0.207 0.430 0.455 0.427 20.558
--- For frequency w = 26 -------------
Diagonal cRPA interaction
1 4.361
2 4.739
3 4.732
4 4.441
5 4.444
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.361 3.559 3.346 3.408 3.916
2 3.560 4.739 4.069 3.598 3.585
3 3.346 4.069 4.732 3.923 3.392
4 3.408 3.598 3.923 4.441 3.417
5 3.916 3.585 3.392 3.417 4.444
Hubbard cRPA interaction for w = 26, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.8057 -12.4935
(Hubbard cRPA interaction for w = 26, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.5434 -12.5410)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.361 0.434 0.500 0.426 0.207
2 0.434 4.739 0.286 0.430 0.430
3 0.500 0.286 4.732 0.361 0.434
4 0.426 0.430 0.361 4.441 0.427
5 0.207 0.430 0.434 0.427 4.444
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5780 -0.0208
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 4.361 0.434 0.500 0.426 0.207
2 0.434 4.739 0.286 0.430 0.430
3 0.500 0.286 4.732 0.361 0.434
4 0.426 0.430 0.361 4.441 0.427
5 0.207 0.430 0.434 0.427 4.444
--- For frequency w = 27 -------------
Diagonal cRPA interaction
1 19.253
2 19.509
3 19.989
4 19.252
5 19.732
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 19.253 18.358 18.355 18.220 19.003
2 18.358 19.509 19.061 18.352 18.569
3 18.355 19.061 19.989 18.939 18.582
4 18.220 18.352 18.939 19.252 18.410
5 19.003 18.569 18.582 18.410 19.732
Hubbard cRPA interaction for w = 27, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 18.7773 -6.7021
(Hubbard cRPA interaction for w = 27, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 19.5471 -6.7337)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 19.253 0.433 0.498 0.423 0.207
2 0.433 19.509 0.285 0.428 0.428
3 0.498 0.285 19.989 0.360 0.476
4 0.423 0.428 0.360 19.252 0.425
5 0.207 0.428 0.476 0.425 19.732
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5887 -0.0133
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 19.253 0.433 0.498 0.423 0.207
2 0.433 19.509 0.285 0.428 0.428
3 0.498 0.285 19.989 0.360 0.476
4 0.423 0.428 0.360 19.252 0.425
5 0.207 0.428 0.476 0.425 19.732
--- For frequency w = 28 -------------
Diagonal cRPA interaction
1 10.832
2 11.052
3 11.273
4 10.801
5 11.119
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.832 9.930 9.809 9.797 10.488
2 9.930 11.052 10.484 9.913 10.049
3 9.809 10.484 11.273 10.365 9.943
4 9.797 9.913 10.365 10.801 9.897
5 10.488 10.049 9.943 9.897 11.119
Hubbard cRPA interaction for w = 28, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 10.2571 -5.9448
(Hubbard cRPA interaction for w = 28, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 11.0155 -5.9775)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.832 0.432 0.498 0.422 0.207
2 0.432 11.052 0.285 0.427 0.428
3 0.498 0.285 11.273 0.360 0.461
4 0.422 0.427 0.360 10.801 0.425
5 0.207 0.428 0.461 0.425 11.119
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5839 -0.0184
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 10.832 0.432 0.498 0.422 0.207
2 0.432 11.052 0.285 0.427 0.428
3 0.498 0.285 11.273 0.360 0.461
4 0.422 0.427 0.360 10.801 0.425
5 0.207 0.428 0.461 0.425 11.119
--- For frequency w = 29 -------------
Diagonal cRPA interaction
1 10.437
2 10.663
3 10.950
4 10.433
5 10.784
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.437 9.555 9.487 9.434 10.125
2 9.555 10.663 10.138 9.551 9.709
3 9.487 10.138 10.950 10.029 9.659
4 9.434 9.550 10.029 10.433 9.572
5 10.125 9.709 9.659 9.572 10.784
Hubbard cRPA interaction for w = 29, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.9114 -6.4012
(Hubbard cRPA interaction for w = 29, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.6534 -6.4303)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.437 0.431 0.496 0.422 0.207
2 0.431 10.663 0.285 0.426 0.428
3 0.496 0.285 10.950 0.360 0.443
4 0.422 0.426 0.360 10.433 0.424
5 0.207 0.428 0.443 0.424 10.784
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5777 -0.0147
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 10.437 0.431 0.496 0.422 0.207
2 0.431 10.663 0.285 0.426 0.428
3 0.496 0.285 10.950 0.360 0.443
4 0.422 0.426 0.360 10.433 0.424
5 0.207 0.428 0.443 0.424 10.784
--- For frequency w = 30 -------------
Diagonal cRPA interaction
1 8.768
2 9.074
3 9.254
4 8.789
5 9.025
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.768 7.919 7.790 7.767 8.411
2 7.919 9.074 8.491 7.925 8.028
3 7.790 8.491 9.254 8.355 7.917
4 7.767 7.924 8.355 8.789 7.859
5 8.411 8.028 7.917 7.859 9.025
Hubbard cRPA interaction for w = 30, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.2333 -6.8496
(Hubbard cRPA interaction for w = 30, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.9821 -6.8833)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.768 0.428 0.493 0.420 0.207
2 0.428 9.074 0.284 0.423 0.425
3 0.493 0.284 9.254 0.358 0.449
4 0.420 0.423 0.358 8.789 0.422
5 0.207 0.425 0.449 0.422 9.025
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5782 -0.0185
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.768 0.428 0.493 0.420 0.207
2 0.428 9.074 0.284 0.423 0.425
3 0.493 0.284 9.254 0.358 0.449
4 0.420 0.423 0.358 8.789 0.422
5 0.207 0.425 0.449 0.422 9.025
--- For frequency w = 31 -------------
Diagonal cRPA interaction
1 8.677
2 8.946
3 9.174
4 8.688
5 8.978
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.677 7.828 7.744 7.694 8.343
2 7.829 8.946 8.398 7.828 7.964
3 7.744 8.398 9.174 8.274 7.900
4 7.694 7.828 8.274 8.688 7.814
5 8.343 7.964 7.900 7.814 8.978
Hubbard cRPA interaction for w = 31, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.1616 -5.7245
(Hubbard cRPA interaction for w = 31, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.8925 -5.7703)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.677 0.429 0.495 0.420 0.207
2 0.429 8.946 0.284 0.424 0.426
3 0.495 0.284 9.174 0.358 0.433
4 0.420 0.424 0.358 8.688 0.423
5 0.207 0.426 0.433 0.423 8.978
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5726 -0.0241
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.677 0.429 0.495 0.420 0.207
2 0.429 8.946 0.284 0.424 0.426
3 0.495 0.284 9.174 0.358 0.433
4 0.420 0.424 0.358 8.688 0.423
5 0.207 0.426 0.433 0.423 8.978
--- For frequency w = 32 -------------
Diagonal cRPA interaction
1 8.702
2 9.109
3 9.290
4 8.726
5 8.990
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.702 7.901 7.764 7.698 8.360
2 7.901 9.109 8.524 7.906 8.025
3 7.764 8.524 9.290 8.339 7.903
4 7.698 7.906 8.339 8.726 7.799
5 8.360 8.025 7.903 7.799 8.990
Hubbard cRPA interaction for w = 32, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.2102 -5.1433
(Hubbard cRPA interaction for w = 32, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.9633 -5.1854)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.702 0.429 0.494 0.420 0.206
2 0.429 9.109 0.284 0.424 0.425
3 0.494 0.284 9.290 0.358 0.458
4 0.420 0.424 0.358 8.726 0.422
5 0.206 0.425 0.458 0.422 8.990
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5802 -0.0223
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.702 0.429 0.494 0.420 0.206
2 0.429 9.109 0.284 0.424 0.425
3 0.494 0.284 9.290 0.358 0.458
4 0.420 0.424 0.358 8.726 0.422
5 0.206 0.425 0.458 0.422 8.990
--- For frequency w = 33 -------------
Diagonal cRPA interaction
1 6.207
2 6.565
3 6.780
4 6.278
5 6.483
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 6.207 5.378 5.273 5.233 5.860
2 5.378 6.565 6.001 5.414 5.499
3 5.273 6.001 6.780 5.863 5.413
4 5.234 5.414 5.863 6.278 5.339
5 5.860 5.499 5.413 5.339 6.483
Hubbard cRPA interaction for w = 33, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 5.7145 -6.9569
(Hubbard cRPA interaction for w = 33, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 6.4627 -7.0074)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 6.207 0.436 0.501 0.428 0.207
2 0.436 6.565 0.286 0.430 0.433
3 0.501 0.286 6.780 0.361 0.445
4 0.428 0.430 0.361 6.278 0.428
5 0.207 0.433 0.445 0.428 6.483
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5826 -0.0292
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 6.207 0.436 0.501 0.428 0.207
2 0.436 6.565 0.286 0.430 0.433
3 0.501 0.286 6.780 0.361 0.445
4 0.428 0.430 0.361 6.278 0.428
5 0.207 0.433 0.445 0.428 6.483
--- For frequency w = 34 -------------
Diagonal cRPA interaction
1 4.623
2 4.928
3 5.069
4 4.620
5 4.879
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.623 3.778 3.642 3.619 4.268
2 3.778 4.928 4.333 3.775 3.891
3 3.642 4.333 5.069 4.184 3.772
4 3.619 3.775 4.184 4.620 3.715
5 4.268 3.891 3.771 3.715 4.879
Hubbard cRPA interaction for w = 34, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 4.0830 -8.5152
(Hubbard cRPA interaction for w = 34, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.8240 -8.5609)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.623 0.434 0.500 0.424 0.207
2 0.434 4.928 0.285 0.430 0.429
3 0.500 0.285 5.069 0.361 0.439
4 0.424 0.430 0.361 4.620 0.426
5 0.207 0.429 0.439 0.426 4.879
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5787 -0.0268
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 4.623 0.434 0.500 0.424 0.207
2 0.434 4.928 0.285 0.430 0.429
3 0.500 0.285 5.069 0.361 0.439
4 0.424 0.430 0.361 4.620 0.426
5 0.207 0.429 0.439 0.426 4.879
--- For frequency w = 35 -------------
Diagonal cRPA interaction
1 6.533
2 6.734
3 7.082
4 6.541
5 6.946
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 6.533 5.626 5.568 5.515 6.252
2 5.626 6.734 6.227 5.624 5.809
3 5.568 6.227 7.082 6.144 5.769
4 5.515 5.624 6.143 6.541 5.681
5 6.252 5.809 5.769 5.681 6.946
Hubbard cRPA interaction for w = 35, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 6.0107 -11.1634
(Hubbard cRPA interaction for w = 35, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 6.7673 -11.2190)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 6.533 0.439 0.502 0.429 0.208
2 0.439 6.734 0.286 0.434 0.432
3 0.502 0.286 7.082 0.363 0.458
4 0.429 0.434 0.363 6.541 0.428
5 0.208 0.432 0.458 0.428 6.946
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5871 -0.0289
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 6.533 0.439 0.502 0.429 0.208
2 0.439 6.734 0.286 0.434 0.432
3 0.502 0.286 7.082 0.363 0.458
4 0.429 0.434 0.363 6.541 0.428
5 0.208 0.432 0.458 0.428 6.946
--- For frequency w = 36 -------------
Diagonal cRPA interaction
1 7.270
2 7.580
3 7.904
4 7.214
5 7.685
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 7.270 6.421 6.357 6.226 6.990
2 6.421 7.580 7.066 6.387 6.607
3 6.357 7.066 7.904 6.890 6.560
4 6.226 6.386 6.890 7.214 6.391
5 6.990 6.607 6.560 6.391 7.685
Hubbard cRPA interaction for w = 36, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 6.7776 -11.3644
(Hubbard cRPA interaction for w = 36, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 7.5304 -11.4048)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 7.270 0.437 0.501 0.429 0.208
2 0.437 7.580 0.287 0.433 0.432
3 0.501 0.287 7.904 0.362 0.456
4 0.429 0.433 0.362 7.214 0.427
5 0.208 0.432 0.456 0.427 7.685
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5854 -0.0265
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 7.270 0.437 0.501 0.429 0.208
2 0.437 7.580 0.287 0.433 0.432
3 0.501 0.287 7.904 0.362 0.456
4 0.429 0.433 0.362 7.214 0.427
5 0.208 0.432 0.456 0.427 7.685
--- For frequency w = 37 -------------
Diagonal cRPA interaction
1 8.124
2 8.428
3 8.794
4 8.153
5 8.519
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.124 7.271 7.224 7.125 7.833
2 7.271 8.428 7.934 7.285 7.443
3 7.224 7.934 8.794 7.804 7.413
4 7.125 7.285 7.804 8.153 7.278
5 7.833 7.443 7.413 7.278 8.519
Hubbard cRPA interaction for w = 37, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 7.6495 -8.7909
(Hubbard cRPA interaction for w = 37, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.4036 -8.8402)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.124 0.446 0.507 0.435 0.208
2 0.446 8.428 0.287 0.441 0.436
3 0.507 0.287 8.794 0.364 0.453
4 0.435 0.441 0.364 8.153 0.432
5 0.208 0.436 0.453 0.432 8.519
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5894 -0.0256
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.124 0.446 0.507 0.435 0.208
2 0.446 8.428 0.287 0.441 0.436
3 0.507 0.287 8.794 0.364 0.453
4 0.435 0.441 0.364 8.153 0.432
5 0.208 0.436 0.453 0.432 8.519
--- For frequency w = 38 -------------
Diagonal cRPA interaction
1 8.652
2 8.985
3 9.270
4 8.659
5 9.019
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.652 7.829 7.762 7.661 8.350
2 7.829 8.985 8.462 7.831 7.994
3 7.762 8.462 9.270 8.304 7.947
4 7.661 7.831 8.304 8.659 7.810
5 8.350 7.994 7.947 7.810 9.019
Hubbard cRPA interaction for w = 38, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.1795 -8.4970
(Hubbard cRPA interaction for w = 38, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.9171 -8.5383)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.652 0.439 0.501 0.430 0.207
2 0.439 8.985 0.286 0.434 0.432
3 0.501 0.286 9.270 0.362 0.437
4 0.430 0.434 0.362 8.659 0.427
5 0.207 0.432 0.437 0.427 9.019
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5798 -0.0266
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.652 0.439 0.501 0.430 0.207
2 0.439 8.985 0.286 0.434 0.432
3 0.501 0.286 9.270 0.362 0.437
4 0.430 0.434 0.362 8.659 0.427
5 0.207 0.432 0.437 0.427 9.019
--- For frequency w = 39 -------------
Diagonal cRPA interaction
1 8.495
2 8.850
3 9.131
4 8.536
5 8.811
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.495 7.668 7.584 7.505 8.166
2 7.668 8.850 8.317 7.689 7.803
3 7.584 8.317 9.131 8.164 7.737
4 7.505 7.689 8.164 8.536 7.621
5 8.166 7.803 7.737 7.621 8.811
Hubbard cRPA interaction for w = 39, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.0134 -12.5040
(Hubbard cRPA interaction for w = 39, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.7647 -12.5606)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.495 0.442 0.504 0.432 0.207
2 0.442 8.850 0.286 0.437 0.433
3 0.504 0.286 9.131 0.363 0.449
4 0.432 0.437 0.363 8.536 0.430
5 0.207 0.433 0.449 0.430 8.811
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5863 -0.0285
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.495 0.442 0.504 0.432 0.207
2 0.442 8.850 0.286 0.437 0.433
3 0.504 0.286 9.131 0.363 0.449
4 0.432 0.437 0.363 8.536 0.430
5 0.207 0.433 0.449 0.430 8.811
--- For frequency w = 40 -------------
Diagonal cRPA interaction
1 10.766
2 11.141
3 11.268
4 10.745
5 10.980
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.766 9.964 9.814 9.758 10.386
2 9.964 11.141 10.538 9.952 10.049
3 9.814 10.538 11.268 10.346 9.921
4 9.758 9.952 10.346 10.745 9.829
5 10.386 10.049 9.921 9.829 10.980
Hubbard cRPA interaction for w = 40, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 10.2406 -9.0164
(Hubbard cRPA interaction for w = 40, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.9799 -9.0587)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.766 0.438 0.502 0.430 0.207
2 0.438 11.141 0.286 0.434 0.432
3 0.502 0.286 11.268 0.361 0.437
4 0.430 0.434 0.361 10.745 0.427
5 0.207 0.432 0.437 0.427 10.980
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5801 -0.0210
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 10.766 0.438 0.502 0.430 0.207
2 0.438 11.141 0.286 0.434 0.432
3 0.502 0.286 11.268 0.361 0.437
4 0.430 0.434 0.361 10.745 0.427
5 0.207 0.432 0.437 0.427 10.980
--- For frequency w = 41 -------------
Diagonal cRPA interaction
1 4.477
2 4.790
3 5.010
4 4.497
5 4.787
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.477 3.649 3.558 3.495 4.148
2 3.649 4.790 4.238 3.659 3.787
3 3.558 4.238 5.010 4.100 3.721
4 3.495 3.659 4.100 4.497 3.622
5 4.148 3.787 3.721 3.622 4.787
Hubbard cRPA interaction for w = 41, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.9807 -10.9958
(Hubbard cRPA interaction for w = 41, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.7123 -11.0485)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.477 0.442 0.505 0.433 0.207
2 0.442 4.790 0.287 0.438 0.433
3 0.505 0.287 5.010 0.363 0.425
4 0.433 0.438 0.363 4.497 0.430
5 0.207 0.433 0.425 0.430 4.787
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5791 -0.0276
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 4.477 0.442 0.505 0.433 0.207
2 0.442 4.790 0.287 0.438 0.433
3 0.505 0.287 5.010 0.363 0.425
4 0.433 0.438 0.363 4.497 0.430
5 0.207 0.433 0.425 0.430 4.787
--- For frequency w = 42 -------------
Diagonal cRPA interaction
1 12.402
2 12.678
3 12.907
4 12.364
5 12.667
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 12.402 11.564 11.480 11.394 12.049
2 11.564 12.678 12.133 11.543 11.680
3 11.480 12.133 12.907 11.986 11.622
4 11.394 11.543 11.986 12.364 11.501
5 12.049 11.680 11.622 11.501 12.667
Hubbard cRPA interaction for w = 42, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 11.8769 -12.2960
(Hubbard cRPA interaction for w = 42, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 12.6035 -12.3568)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 12.402 0.438 0.501 0.430 0.207
2 0.438 12.678 0.286 0.434 0.432
3 0.501 0.286 12.907 0.362 0.422
4 0.430 0.434 0.362 12.364 0.427
5 0.207 0.432 0.422 0.427 12.667
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5755 -0.0278
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 12.402 0.438 0.501 0.430 0.207
2 0.438 12.678 0.286 0.434 0.432
3 0.501 0.286 12.907 0.362 0.422
4 0.430 0.434 0.362 12.364 0.427
5 0.207 0.432 0.422 0.427 12.667
--- For frequency w = 43 -------------
Diagonal cRPA interaction
1 12.298
2 12.457
3 12.583
4 12.193
5 12.448
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 12.298 11.412 11.286 11.266 11.890
2 11.412 12.457 11.866 11.357 11.472
3 11.286 11.866 12.583 11.747 11.375
4 11.266 11.357 11.747 12.193 11.322
5 11.890 11.472 11.375 11.322 12.448
Hubbard cRPA interaction for w = 43, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 11.6785 -9.6034
(Hubbard cRPA interaction for w = 43, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 12.3958 -9.6733)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 12.298 0.436 0.500 0.430 0.207
2 0.436 12.457 0.286 0.432 0.431
3 0.500 0.286 12.583 0.361 0.410
4 0.430 0.432 0.361 12.193 0.426
5 0.207 0.431 0.410 0.426 12.448
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5713 -0.0333
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 12.298 0.436 0.500 0.430 0.207
2 0.436 12.457 0.286 0.432 0.431
3 0.500 0.286 12.583 0.361 0.410
4 0.430 0.432 0.361 12.193 0.426
5 0.207 0.431 0.410 0.426 12.448
--- For frequency w = 44 -------------
Diagonal cRPA interaction
1 10.561
2 10.759
3 11.002
4 10.557
5 10.760
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.561 9.658 9.567 9.548 10.177
2 9.658 10.759 10.216 9.662 9.740
3 9.567 10.216 11.002 10.122 9.672
4 9.548 9.662 10.122 10.557 9.619
5 10.177 9.740 9.672 9.619 10.760
Hubbard cRPA interaction for w = 44, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.9841 -7.3362
(Hubbard cRPA interaction for w = 44, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.7281 -7.4288)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.561 0.438 0.503 0.428 0.207
2 0.438 10.759 0.286 0.433 0.431
3 0.503 0.286 11.002 0.362 0.432
4 0.428 0.433 0.362 10.557 0.429
5 0.207 0.431 0.432 0.429 10.760
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5811 -0.0419
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 10.561 0.438 0.503 0.428 0.207
2 0.438 10.759 0.286 0.433 0.431
3 0.503 0.286 11.002 0.362 0.432
4 0.428 0.433 0.362 10.557 0.429
5 0.207 0.431 0.432 0.429 10.760
--- For frequency w = 45 -------------
Diagonal cRPA interaction
1 9.489
2 9.542
3 9.794
4 9.401
5 9.716
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 9.489 8.550 8.487 8.459 9.121
2 8.550 9.542 9.014 8.501 8.657
3 8.487 9.014 9.794 8.958 8.625
4 8.459 8.501 8.958 9.401 8.560
5 9.121 8.657 8.625 8.560 9.716
Hubbard cRPA interaction for w = 45, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.8721 -7.7746
(Hubbard cRPA interaction for w = 45, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 9.5881 -7.8666)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 9.489 0.443 0.507 0.430 0.207
2 0.443 9.542 0.287 0.436 0.433
3 0.507 0.287 9.794 0.364 0.407
4 0.430 0.436 0.364 9.401 0.433
5 0.207 0.433 0.407 0.433 9.716
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5738 -0.0416
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 9.489 0.443 0.507 0.430 0.207
2 0.443 9.542 0.287 0.436 0.433
3 0.507 0.287 9.794 0.364 0.407
4 0.430 0.436 0.364 9.401 0.433
5 0.207 0.433 0.407 0.433 9.716
--- For frequency w = 46 -------------
Diagonal cRPA interaction
1 8.161
2 8.516
3 8.843
4 8.108
5 8.557
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.161 7.317 7.237 7.105 7.872
2 7.317 8.516 8.000 7.294 7.488
3 7.237 8.000 8.843 7.797 7.424
4 7.105 7.294 7.797 8.108 7.255
5 7.872 7.488 7.424 7.255 8.557
Hubbard cRPA interaction for w = 46, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 7.6705 -8.4952
(Hubbard cRPA interaction for w = 46, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.4370 -8.5779)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 8.161 0.438 0.502 0.427 0.207
2 0.438 8.516 0.285 0.433 0.430
3 0.502 0.285 8.843 0.362 0.466
4 0.427 0.433 0.362 8.108 0.428
5 0.207 0.430 0.466 0.428 8.557
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5894 -0.0398
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 8.161 0.438 0.502 0.427 0.207
2 0.438 8.516 0.285 0.433 0.430
3 0.502 0.285 8.843 0.362 0.466
4 0.427 0.433 0.362 8.108 0.428
5 0.207 0.430 0.466 0.428 8.557
--- For frequency w = 47 -------------
Diagonal cRPA interaction
1 10.205
2 10.504
3 10.939
4 10.373
5 10.450
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.205 9.351 9.340 9.278 9.845
2 9.351 10.504 10.054 9.448 9.456
3 9.340 10.054 10.939 9.991 9.472
4 9.278 9.448 9.991 10.373 9.377
5 9.845 9.456 9.472 9.377 10.450
Hubbard cRPA interaction for w = 47, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.7479 -10.1802
(Hubbard cRPA interaction for w = 47, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.4942 -10.3288)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 10.205 0.439 0.503 0.429 0.208
2 0.439 10.504 0.287 0.433 0.432
3 0.503 0.287 10.939 0.363 0.428
4 0.429 0.433 0.363 10.373 0.430
5 0.208 0.432 0.428 0.430 10.450
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5819 -0.0634
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 10.205 0.439 0.503 0.429 0.208
2 0.439 10.504 0.287 0.433 0.432
3 0.503 0.287 10.939 0.363 0.428
4 0.429 0.433 0.363 10.373 0.430
5 0.208 0.432 0.428 0.430 10.450
--- For frequency w = 48 -------------
Diagonal cRPA interaction
1 4.424
2 4.582
3 5.114
4 4.342
5 4.891
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.424 3.464 3.413 3.308 4.162
2 3.464 4.582 4.134 3.420 3.652
3 3.413 4.134 5.114 4.029 3.599
4 3.308 3.420 4.029 4.342 3.457
5 4.162 3.652 3.599 3.457 4.891
Hubbard cRPA interaction for w = 48, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.8652 -11.7942
(Hubbard cRPA interaction for w = 48, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.6706 -11.8991)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 4.424 0.440 0.502 0.430 0.208
2 0.440 4.582 0.286 0.434 0.432
3 0.502 0.286 5.114 0.363 0.519
4 0.430 0.434 0.363 4.342 0.429
5 0.208 0.432 0.519 0.429 4.891
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6055 -0.0478
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 4.424 0.440 0.502 0.430 0.208
2 0.440 4.582 0.286 0.434 0.432
3 0.502 0.286 5.114 0.363 0.519
4 0.430 0.434 0.363 4.342 0.429
5 0.208 0.432 0.519 0.429 4.891
--- For frequency w = 49 -------------
Diagonal cRPA interaction
1 9.965
2 10.204
3 10.559
4 9.804
5 10.421
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 9.965 9.039 8.922 8.822 9.699
2 9.039 10.204 9.676 8.957 9.223
3 8.922 9.676 10.559 9.480 9.110
4 8.822 8.957 9.480 9.804 8.974
5 9.699 9.223 9.110 8.974 10.421
Hubbard cRPA interaction for w = 49, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.3903 -12.5686
(Hubbard cRPA interaction for w = 49, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.1905 -12.6509)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 9.965 0.435 0.501 0.426 0.207
2 0.435 10.204 0.285 0.431 0.429
3 0.501 0.285 10.559 0.361 0.512
4 0.426 0.431 0.361 9.804 0.427
5 0.207 0.429 0.512 0.427 10.421
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6015 -0.0377
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 9.965 0.435 0.501 0.426 0.207
2 0.435 10.204 0.285 0.431 0.429
3 0.501 0.285 10.559 0.361 0.512
4 0.426 0.431 0.361 9.804 0.427
5 0.207 0.429 0.512 0.427 10.421
--- For frequency w = 50 -------------
Diagonal cRPA interaction
1 9.967
2 10.239
3 10.609
4 9.943
5 10.349
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 9.967 9.078 9.007 8.916 9.668
2 9.078 10.239 9.736 9.064 9.238
3 9.007 9.736 10.609 9.592 9.181
4 8.916 9.064 9.592 9.943 9.052
5 9.668 9.238 9.181 9.052 10.349
Hubbard cRPA interaction for w = 50, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.4468 -14.8255
(Hubbard cRPA interaction for w = 50, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.2214 -14.8783)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 9.967 0.439 0.501 0.430 0.207
2 0.439 10.239 0.285 0.435 0.430
3 0.501 0.285 10.609 0.361 0.478
4 0.430 0.435 0.361 9.943 0.427
5 0.207 0.430 0.478 0.427 10.349
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5930 -0.0295
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 9.967 0.439 0.501 0.430 0.207
2 0.439 10.239 0.285 0.435 0.430
3 0.501 0.285 10.609 0.361 0.478
4 0.430 0.435 0.361 9.943 0.427
5 0.207 0.430 0.478 0.427 10.349
==Reminder of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
-------------------------------------------------------------
Average U and J as a function of frequency
-------------------------------------------------------------
omega U(omega) J(omega)
0.000 2.9218 0.0000 0.5730 0.0000
0.612 2.8936 -0.0362 0.5729 -0.0003
1.224 2.8026 -0.0413 0.5724 -0.0003
1.837 2.6208 -0.0585 0.5713 -0.0004
2.449 2.3025 -0.2099 0.5694 -0.0010
3.061 2.0730 -0.5771 0.5661 -0.0043
3.673 2.3418 -0.8938 0.5692 -0.0075
4.286 1.5328 -1.8038 0.5703 -0.0131
4.898 1.7499 -1.6318 0.5695 -0.0121
5.510 2.0662 -2.1711 0.5691 -0.0112
6.122 2.2024 -1.7888 0.5678 -0.0235
6.735 1.9830 -1.8441 0.5773 -0.0161
7.347 1.1257 -1.4243 0.5741 -0.0327
7.959 1.6012 -2.1128 0.5895 -0.0189
8.571 1.0747 -3.0660 0.5875 -0.0147
9.184 -0.0533 -2.4060 0.5877 -0.0126
9.796 0.2759 -5.1809 0.5831 -0.0095
10.408 -1.5525 -3.9392 0.5831 -0.0110
11.020 -0.0876 -5.8648 0.5819 -0.0101
11.633 -0.2019 -4.6428 0.5760 -0.0092
12.245 -1.9661 -4.7953 0.5778 -0.0166
12.857 -7.2464 -6.9215 0.5710 -0.0202
13.469 -7.5656 -15.7684 0.5815 -0.0295
14.082 0.9640 -35.8170 0.5874 -0.0176
14.694 19.8570 -13.7879 0.5849 -0.0134
15.306 3.8057 -12.4935 0.5780 -0.0208
15.918 18.7773 -6.7021 0.5887 -0.0133
16.531 10.2571 -5.9448 0.5839 -0.0184
17.143 9.9114 -6.4012 0.5777 -0.0147
17.755 8.2333 -6.8496 0.5782 -0.0185
18.367 8.1616 -5.7245 0.5726 -0.0241
18.980 8.2102 -5.1433 0.5802 -0.0223
19.592 5.7145 -6.9569 0.5826 -0.0292
20.204 4.0830 -8.5152 0.5787 -0.0268
20.816 6.0107 -11.1634 0.5871 -0.0289
21.429 6.7776 -11.3644 0.5854 -0.0265
22.041 7.6495 -8.7909 0.5894 -0.0256
22.653 8.1795 -8.4970 0.5798 -0.0266
23.265 8.0134 -12.5040 0.5863 -0.0285
23.878 10.2406 -9.0164 0.5801 -0.0210
24.490 3.9807 -10.9958 0.5791 -0.0276
25.102 11.8769 -12.2960 0.5755 -0.0278
25.714 11.6785 -9.6034 0.5713 -0.0333
26.327 9.9841 -7.3362 0.5811 -0.0419
26.939 8.8721 -7.7746 0.5738 -0.0416
27.551 7.6705 -8.4952 0.5894 -0.0398
28.163 9.7479 -10.1802 0.5819 -0.0634
28.776 3.8652 -11.7942 0.6055 -0.0478
29.388 9.3903 -12.5686 0.6015 -0.0377
30.000 9.4468 -14.8255 0.5930 -0.0295
-------------------------------------------------------------
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.2605000000E+00 7.2605000000E+00 7.2605000000E+00 Bohr
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
dmatpuopt 1
dmftbandf1 0
dmftbandf2 25
dmftbandf3 0
dmftbandf4 0
dmftbandi1 0
dmftbandi2 21
dmftbandi3 0
dmftbandi4 0
dmft_solv1 5
dmft_solv2 0
dmft_solv3 5
dmft_solv4 5
ecut1 1.20000000E+01 Hartree
ecut2 1.20000000E+01 Hartree
ecut3 1.19824785E+01 Hartree
ecut4 1.19824785E+01 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 0.00000000E+00 Hartree
ecuteps3 2.99561963E+00 Hartree
ecuteps4 0.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 0.00000000E+00 Hartree
ecutsigx4 1.98459801E+01 Hartree
ecutwfn1 0.00000000E+00 Hartree
ecutwfn2 0.00000000E+00 Hartree
ecutwfn3 1.19824785E+01 Hartree
ecutwfn4 1.19824785E+01 Hartree
etotal1 -1.5192840910E+02
etotal3 0.0000000000E+00
etotal4 0.0000000000E+00
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 312
freqremax1 0.00000000E+00 Hartree
freqremax2 0.00000000E+00 Hartree
freqremax3 1.10247976E+00 Hartree
freqremax4 0.00000000E+00 Hartree
freqspmax1 0.00000000E+00 Hartree
freqspmax2 0.00000000E+00 Hartree
freqspmax3 0.00000000E+00 Hartree
freqspmax4 1.10247976E+00 Hartree
getden1 0
getden2 -1
getden3 0
getden4 0
getscr1 0
getscr2 0
getscr3 0
getscr4 3
getwfk1 0
getwfk2 0
getwfk3 -1
getwfk4 2
gwcalctyp1 0
gwcalctyp2 0
gwcalctyp3 2
gwcalctyp4 2
- gwpara1 2
- gwpara2 2
- gwpara3 1
- gwpara4 2
iscf1 17
iscf2 -2
iscf3 17
iscf4 17
ixc -1012
jdtset 1 2 3 4
kpt 1.25000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 3.75000000E-01
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen 2.90420000E+01
kssform 3
lpawu 2 -1 -1
P mkmem 1
mqgrid1 0
mqgrid2 0
mqgrid3 0
mqgrid4 300
mqgriddg1 0
mqgriddg2 0
mqgriddg3 0
mqgriddg4 300
natom 5
nband 100
nbandkss1 0
nbandkss2 -1
nbandkss3 0
nbandkss4 0
nbdbuf1 0
nbdbuf2 4
nbdbuf3 0
nbdbuf4 0
ndtset 4
nfreqim1 -1
nfreqim2 -1
nfreqim3 0
nfreqim4 -1
nfreqre1 -1
nfreqre2 -1
nfreqre3 50
nfreqre4 -1
nfreqsp1 0
nfreqsp2 0
nfreqsp3 0
nfreqsp4 50
ngfft 24 24 24
ngfftdg 30 30 30
nkpt 4
nline 5
nnsclo 2
npweps1 0
npweps2 0
npweps3 93
npweps4 0
npwsigx1 0
npwsigx2 0
npwsigx3 0
npwsigx4 1647
npwwfn1 0
npwwfn2 0
npwwfn3 751
npwwfn4 751
nstep 40
nsym 48
ntypat 3
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.707032 1.361099 1.361099 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.189950 0.000101 0.000083 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000076 0.000043 0.000003 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000001 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occopt 3
optdriver1 0
optdriver2 0
optdriver3 3
optdriver4 4
optforces1 2
optforces2 0
optforces3 2
optforces4 2
- paral_atom1 1
- paral_atom2 1
- paral_atom3 0
- paral_atom4 0
pawecutdg 2.00000000E+01 Hartree
pawoptosc 1
pawprtvol 3
plowan_bandi1 0
plowan_bandi2 21
plowan_bandi3 0
plowan_bandi4 0
plowan_bandf1 0
plowan_bandf2 25
plowan_bandf3 0
plowan_bandf4 0
plowan_compute1 0
plowan_compute2 1
plowan_compute3 10
plowan_compute4 10
plowan_natom 1
plowan_nt 1
plowan_realspace 1
plowan_it1 0 0 0
plowan_it2 0 0 0
plowan_it3 0 0 0
plowan_it4 0 0 0
plowan_iatom1 1
plowan_iatom2 1
plowan_iatom3 1
plowan_iatom4 1
plowan_nbl1 1
plowan_nbl2 1
plowan_nbl3 1
plowan_nbl4 1
plowan_lcalc1 2
plowan_lcalc2 2
plowan_lcalc3 2
plowan_lcalc4 2
plowan_projcalc1 -2
plowan_projcalc2 -2
plowan_projcalc3 -2
plowan_projcalc4 -2
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
strten1 2.0903025574E-03 2.0903025574E-03 2.0903025574E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symchi 0
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
symsigma 0
tolvrs1 1.00000000E-13
tolvrs2 0.00000000E+00
tolvrs3 1.00000000E-15
tolvrs4 1.00000000E-15
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-18
tolwfr3 0.00000000E+00
tolwfr4 0.00000000E+00
tsmear 3.67493254E-03 Hartree
typat 1 2 3 3 3
ucrpa 1
ucrpa_bands1 -1 -1
ucrpa_bands2 -1 -1
ucrpa_bands3 21 25
ucrpa_bands4 -1 -1
usepawu1 1
usepawu2 10
usepawu3 1
usepawu4 1
useylm 1
wtk 0.12500 0.37500 0.37500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9210455615E+00 1.9210455615E+00 1.9210455615E+00
1.9210455615E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 1.9210455615E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.9210455615E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.6302500000E+00 3.6302500000E+00 3.6302500000E+00
3.6302500000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 3.6302500000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.6302500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 23.00000 38.00000 8.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Screened Coulomb interaction calculations: cRPA implementation and applications
- to dynamical screening and self-consistency in uranium dioxide and cerium
- B. Amadon, T. Applencourt and F. Bruneval Phys. Rev. B 89, 125110 (2014).
- Comment: Describes the cRPA implementation of the screened Coulomb interaction in PAW
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2014
-
- [2] Gamma and beta cerium: DFT+U calculations of ground-state parameters.
- B. Amadon, F. Jollet and M. Torrent, Phys. Rev. B 77, 155104 (2008).
- Comment: DFT+U calculations, usepawu/=0. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2008a
-
- [3] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [4] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [5] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- [7] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 323.7 wall= 402.4
================================================================================
Calculation completed.
.Delivered 4 WARNINGs and 0 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1402.7 wall= 1608.9