mirror of https://github.com/abinit/abinit.git
6511 lines
306 KiB
Plaintext
6511 lines
306 KiB
Plaintext
|
|
.Version 9.1.4 of ABINIT
|
|
.(MPI version, prepared for a x86_64_linux_gnu9.1 computer)
|
|
|
|
.Copyright (C) 1998-2025 ABINIT group .
|
|
ABINIT comes with ABSOLUTELY NO WARRANTY.
|
|
It is free software, and you are welcome to redistribute it
|
|
under certain conditions (GNU General Public License,
|
|
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
|
|
|
|
ABINIT is a project of the Universite Catholique de Louvain,
|
|
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
|
|
Please read https://docs.abinit.org/theory/acknowledgments for suggested
|
|
acknowledgments of the ABINIT effort.
|
|
For more information, see https://www.abinit.org .
|
|
|
|
.Starting date : Mon 25 May 2020.
|
|
- ( at 11h34 )
|
|
|
|
- input file -> tucrpa_5.in
|
|
- output file -> tucrpa_5.out
|
|
- root for input files -> tucrpa_I
|
|
- root for output files -> tucrpa_O
|
|
|
|
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
|
|
DATASET 1 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 1.
|
|
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
|
|
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
|
|
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
|
|
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
|
|
occopt = 3 xclevel = 1
|
|
- mband = 100 mffmem = 1 mkmem = 1
|
|
mpw = 762 nfft = 13824 nkpt = 4
|
|
Pmy_natom= 2
|
|
PAW method is used; the additional fine FFT grid is defined by:
|
|
mgfftf= 30 nfftf = 27000
|
|
================================================================================
|
|
P This job should need less than 16.543 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
|
|
================================================================================
|
|
|
|
|
|
DATASET 2 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 2.
|
|
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 18
|
|
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
|
|
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
|
|
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
|
|
occopt = 3 xclevel = 1
|
|
- mband = 100 mffmem = 1 mkmem = 1
|
|
mpw = 762 nfft = 13824 nkpt = 4
|
|
Pmy_natom= 2
|
|
PAW method is used; the additional fine FFT grid is defined by:
|
|
mgfftf= 30 nfftf = 27000
|
|
================================================================================
|
|
P This job should need less than 14.193 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
|
|
================================================================================
|
|
|
|
|
|
DATASET 3 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 3.
|
|
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
|
|
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
|
|
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
|
|
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
|
|
occopt = 3 xclevel = 1
|
|
- mband = 100 mffmem = 1 mkmem = 1
|
|
mpw = 762 nfft = 13824 nkpt = 4
|
|
PAW method is used; the additional fine FFT grid is defined by:
|
|
mgfftf= 30 nfftf = 27000
|
|
================================================================================
|
|
P This job should need less than 16.671 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
|
|
================================================================================
|
|
|
|
|
|
DATASET 4 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
|
|
================================================================================
|
|
Values of the parameters that define the memory need for DATASET 4.
|
|
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
|
|
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 300
|
|
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
|
|
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
|
|
occopt = 3 xclevel = 1
|
|
- mband = 100 mffmem = 1 mkmem = 1
|
|
mpw = 762 nfft = 13824 nkpt = 4
|
|
PAW method is used; the additional fine FFT grid is defined by:
|
|
mgfftf= 30 nfftf = 27000
|
|
================================================================================
|
|
P This job should need less than 15.517 Mbytes of memory.
|
|
Rough estimation (10% accuracy) of disk space for files :
|
|
_ WF disk file : 4.653 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
|
|
================================================================================
|
|
|
|
--------------------------------------------------------------------------------
|
|
------------- Echo of variables that govern the present computation ------------
|
|
--------------------------------------------------------------------------------
|
|
-
|
|
- outvars: echo of selected default values
|
|
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
|
|
-
|
|
- outvars: echo of global parameters not present in the input file
|
|
- max_nthreads = 1
|
|
-
|
|
-outvars: echo values of preprocessed input variables --------
|
|
acell 7.2605000000E+00 7.2605000000E+00 7.2605000000E+00 Bohr
|
|
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
|
|
dmatpuopt 1
|
|
dmftbandf1 0
|
|
dmftbandf2 25
|
|
dmftbandf3 0
|
|
dmftbandf4 0
|
|
dmftbandi1 0
|
|
dmftbandi2 21
|
|
dmftbandi3 0
|
|
dmftbandi4 0
|
|
dmft_solv1 5
|
|
dmft_solv2 0
|
|
dmft_solv3 5
|
|
dmft_solv4 5
|
|
ecut1 1.20000000E+01 Hartree
|
|
ecut2 1.20000000E+01 Hartree
|
|
ecut3 1.19824785E+01 Hartree
|
|
ecut4 1.19824785E+01 Hartree
|
|
ecuteps1 0.00000000E+00 Hartree
|
|
ecuteps2 0.00000000E+00 Hartree
|
|
ecuteps3 2.99561963E+00 Hartree
|
|
ecuteps4 0.00000000E+00 Hartree
|
|
ecutsigx1 0.00000000E+00 Hartree
|
|
ecutsigx2 0.00000000E+00 Hartree
|
|
ecutsigx3 0.00000000E+00 Hartree
|
|
ecutsigx4 1.98459801E+01 Hartree
|
|
ecutwfn1 0.00000000E+00 Hartree
|
|
ecutwfn2 0.00000000E+00 Hartree
|
|
ecutwfn3 1.19824785E+01 Hartree
|
|
ecutwfn4 1.19824785E+01 Hartree
|
|
- fftalg 312
|
|
freqremax1 0.00000000E+00 Hartree
|
|
freqremax2 0.00000000E+00 Hartree
|
|
freqremax3 1.10247976E+00 Hartree
|
|
freqremax4 0.00000000E+00 Hartree
|
|
freqspmax1 0.00000000E+00 Hartree
|
|
freqspmax2 0.00000000E+00 Hartree
|
|
freqspmax3 0.00000000E+00 Hartree
|
|
freqspmax4 1.10247976E+00 Hartree
|
|
getden1 0
|
|
getden2 -1
|
|
getden3 0
|
|
getden4 0
|
|
getscr1 0
|
|
getscr2 0
|
|
getscr3 0
|
|
getscr4 3
|
|
getwfk1 0
|
|
getwfk2 0
|
|
getwfk3 -1
|
|
getwfk4 2
|
|
gwcalctyp1 0
|
|
gwcalctyp2 0
|
|
gwcalctyp3 2
|
|
gwcalctyp4 2
|
|
- gwpara1 2
|
|
- gwpara2 2
|
|
- gwpara3 1
|
|
- gwpara4 2
|
|
iscf1 17
|
|
iscf2 -2
|
|
iscf3 17
|
|
iscf4 17
|
|
ixc -1012
|
|
jdtset 1 2 3 4
|
|
kpt 1.25000000E-01 1.25000000E-01 1.25000000E-01
|
|
3.75000000E-01 1.25000000E-01 1.25000000E-01
|
|
3.75000000E-01 3.75000000E-01 1.25000000E-01
|
|
3.75000000E-01 3.75000000E-01 3.75000000E-01
|
|
kptrlatt 4 0 0 0 4 0 0 0 4
|
|
kptrlen 2.90420000E+01
|
|
kssform 3
|
|
lpawu 2 -1 -1
|
|
P mkmem 1
|
|
mqgrid1 0
|
|
mqgrid2 0
|
|
mqgrid3 0
|
|
mqgrid4 300
|
|
mqgriddg1 0
|
|
mqgriddg2 0
|
|
mqgriddg3 0
|
|
mqgriddg4 300
|
|
natom 5
|
|
nband 100
|
|
nbandkss1 0
|
|
nbandkss2 -1
|
|
nbandkss3 0
|
|
nbandkss4 0
|
|
nbdbuf1 0
|
|
nbdbuf2 4
|
|
nbdbuf3 0
|
|
nbdbuf4 0
|
|
ndtset 4
|
|
nfreqim1 -1
|
|
nfreqim2 -1
|
|
nfreqim3 0
|
|
nfreqim4 -1
|
|
nfreqre1 -1
|
|
nfreqre2 -1
|
|
nfreqre3 50
|
|
nfreqre4 -1
|
|
nfreqsp1 0
|
|
nfreqsp2 0
|
|
nfreqsp3 0
|
|
nfreqsp4 50
|
|
ngfft 24 24 24
|
|
ngfftdg 30 30 30
|
|
nkpt 4
|
|
nline 5
|
|
nnsclo 2
|
|
npweps1 0
|
|
npweps2 0
|
|
npweps3 93
|
|
npweps4 0
|
|
npwsigx1 0
|
|
npwsigx2 0
|
|
npwsigx3 0
|
|
npwsigx4 1647
|
|
npwwfn1 0
|
|
npwwfn2 0
|
|
npwwfn3 751
|
|
npwwfn4 751
|
|
nstep 40
|
|
nsym 48
|
|
ntypat 3
|
|
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
occopt 3
|
|
optdriver1 0
|
|
optdriver2 0
|
|
optdriver3 3
|
|
optdriver4 4
|
|
optforces1 2
|
|
optforces2 0
|
|
optforces3 2
|
|
optforces4 2
|
|
- paral_atom1 1
|
|
- paral_atom2 1
|
|
- paral_atom3 0
|
|
- paral_atom4 0
|
|
pawecutdg 2.00000000E+01 Hartree
|
|
pawoptosc 1
|
|
pawprtvol 3
|
|
plowan_bandi1 0
|
|
plowan_bandi2 21
|
|
plowan_bandi3 0
|
|
plowan_bandi4 0
|
|
plowan_bandf1 0
|
|
plowan_bandf2 25
|
|
plowan_bandf3 0
|
|
plowan_bandf4 0
|
|
plowan_compute1 0
|
|
plowan_compute2 1
|
|
plowan_compute3 10
|
|
plowan_compute4 10
|
|
plowan_natom 1
|
|
plowan_nt 1
|
|
plowan_realspace 1
|
|
plowan_it1 0 0 0
|
|
plowan_it2 0 0 0
|
|
plowan_it3 0 0 0
|
|
plowan_it4 0 0 0
|
|
plowan_iatom1 1
|
|
plowan_iatom2 1
|
|
plowan_iatom3 1
|
|
plowan_iatom4 1
|
|
plowan_nbl1 1
|
|
plowan_nbl2 1
|
|
plowan_nbl3 1
|
|
plowan_nbl4 1
|
|
plowan_lcalc1 2
|
|
plowan_lcalc2 2
|
|
plowan_lcalc3 2
|
|
plowan_lcalc4 2
|
|
plowan_projcalc1 -2
|
|
plowan_projcalc2 -2
|
|
plowan_projcalc3 -2
|
|
plowan_projcalc4 -2
|
|
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
spgroup 221
|
|
symchi 0
|
|
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
|
|
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
|
|
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
|
|
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
|
|
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
|
|
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
|
|
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
|
|
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
|
|
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
|
|
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
|
|
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
|
|
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
|
|
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
|
|
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
|
|
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
|
|
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
|
|
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
|
|
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
|
|
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
|
|
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
|
|
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
|
|
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
|
|
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
|
|
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
|
|
symsigma 0
|
|
tolvrs1 1.00000000E-13
|
|
tolvrs2 0.00000000E+00
|
|
tolvrs3 1.00000000E-15
|
|
tolvrs4 1.00000000E-15
|
|
tolwfr1 0.00000000E+00
|
|
tolwfr2 1.00000000E-18
|
|
tolwfr3 0.00000000E+00
|
|
tolwfr4 0.00000000E+00
|
|
tsmear 3.67493254E-03 Hartree
|
|
typat 1 2 3 3 3
|
|
ucrpa 1
|
|
ucrpa_bands1 -1 -1
|
|
ucrpa_bands2 -1 -1
|
|
ucrpa_bands3 21 25
|
|
ucrpa_bands4 -1 -1
|
|
usepawu1 1
|
|
usepawu2 10
|
|
usepawu3 1
|
|
usepawu4 1
|
|
useylm 1
|
|
wtk 0.12500 0.37500 0.37500 0.12500
|
|
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
1.9210455615E+00 1.9210455615E+00 1.9210455615E+00
|
|
1.9210455615E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 1.9210455615E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 1.9210455615E+00
|
|
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
3.6302500000E+00 3.6302500000E+00 3.6302500000E+00
|
|
3.6302500000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 3.6302500000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 3.6302500000E+00
|
|
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
|
|
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
|
|
znucl 23.00000 38.00000 8.00000
|
|
|
|
================================================================================
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 1.
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 2.
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 3.
|
|
|
|
chkinp: Checking input parameters for consistency, jdtset= 4.
|
|
|
|
================================================================================
|
|
== DATASET 1 ==================================================================
|
|
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 1, }
|
|
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
|
|
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
|
|
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
|
|
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
|
|
...
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
|
|
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
|
|
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
|
|
Unit cell volume ucvol= 3.8273624E+02 bohr^3
|
|
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
|
|
|
|
Coarse grid specifications (used for wave-functions):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
|
|
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
|
|
|
|
Fine grid specifications (used for densities):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
|
|
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
|
|
|
|
--- Pseudopotential description ------------------------------------------------
|
|
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
|
|
Spheres core radius: rc_sph= 2.20000000
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
|
|
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
|
|
Radius for shape functions = 2.02290427
|
|
mmax= 910
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 744 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
|
|
Spheres core radius: rc_sph= 2.20669967
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = 1.81361893
|
|
mmax= 1500
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
|
|
Spheres core radius: rc_sph= 1.41465230
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = 1.20231231
|
|
mmax= 2001
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
2.42644211E+03 ecore*ucvol(ha*bohr**3)
|
|
--------------------------------------------------------------------------------
|
|
|
|
_setup2: Arith. and geom. avg. npw (full set) are 756.500 756.488
|
|
|
|
|
|
******************************************
|
|
DFT+U Method used: FLL
|
|
******************************************
|
|
|
|
=======================================================================
|
|
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
|
|
(it is assumed that the wavefunction for the first reference
|
|
energy in PAW atomic data is an atomic eigenvalue)
|
|
|
|
Max value of the radius in atomic data file = 201.3994
|
|
Max value of the mesh in atomic data file = 910
|
|
PAW radius is = 2.2000
|
|
PAW value of the mesh for integration is = 587
|
|
Integral of atomic wavefunction until rpaw = 0.8418
|
|
|
|
For an atomic wfn truncated at rmax = 201.3994
|
|
The norm of the wfn is = 1.0000
|
|
The bare interaction (no renormalization) = 17.7996 eV
|
|
The bare interaction (for a renorm. wfn ) = 17.7996 eV
|
|
|
|
For an atomic wfn truncated at rmax = 2.2000
|
|
The norm of the wfn is = 0.8418
|
|
The bare interaction (no renormalization) = 16.0038 eV
|
|
The bare interaction (for a renorm. wfn ) = 22.5848 eV
|
|
=======================================================================
|
|
|
|
|
|
================================================================================
|
|
|
|
--- !BeginCycle
|
|
iteration_state: {dtset: 1, }
|
|
solver: {iscf: 17, nstep: 40, nline: 5, wfoptalg: 10, }
|
|
tolerances: {tolvrs: 1.00E-13, }
|
|
...
|
|
|
|
iter Etot(hartree) deltaE(h) residm nres2
|
|
ETOT 1 -151.88047514227 -1.519E+02 2.061E+00 1.918E+01
|
|
ETOT 2 -152.36095595316 -4.805E-01 8.289E-03 1.488E+02
|
|
ETOT 3 -151.97028700038 3.907E-01 7.168E-04 4.174E+00
|
|
ETOT 4 -151.94072711428 2.956E-02 6.349E-04 1.288E+00
|
|
ETOT 5 -151.92946288338 1.126E-02 1.019E-03 1.653E-01
|
|
ETOT 6 -151.92845249063 1.010E-03 3.219E-04 3.301E-03
|
|
ETOT 7 -151.92842649066 2.600E-05 9.340E-05 1.824E-03
|
|
ETOT 8 -151.92841168003 1.481E-05 2.125E-05 3.273E-04
|
|
ETOT 9 -151.92840920202 2.478E-06 1.324E-05 1.311E-05
|
|
ETOT 10 -151.92840909961 1.024E-07 1.286E-05 2.424E-07
|
|
ETOT 11 -151.92840909774 1.869E-09 1.239E-05 1.517E-11
|
|
ETOT 12 -151.92840909774 -1.222E-12 1.174E-05 6.740E-11
|
|
ETOT 13 -151.92840909774 1.421E-13 1.093E-05 6.308E-14
|
|
|
|
At SCF step 13 nres2 = 6.31E-14 < tolvrs= 1.00E-13 =>converged.
|
|
|
|
Cartesian components of stress tensor (hartree/bohr^3)
|
|
sigma(1 1)= 2.09030256E-03 sigma(3 2)= 0.00000000E+00
|
|
sigma(2 2)= 2.09030256E-03 sigma(3 1)= 0.00000000E+00
|
|
sigma(3 3)= 2.09030256E-03 sigma(2 1)= 0.00000000E+00
|
|
|
|
|
|
--- !ResultsGS
|
|
iteration_state: {dtset: 1, }
|
|
comment : Summary of ground state results
|
|
lattice_vectors:
|
|
- [ 7.2605000, 0.0000000, 0.0000000, ]
|
|
- [ 0.0000000, 7.2605000, 0.0000000, ]
|
|
- [ 0.0000000, 0.0000000, 7.2605000, ]
|
|
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
|
|
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
|
|
lattice_volume: 3.8273624E+02
|
|
convergence: {deltae: 1.421E-13, res2: 6.308E-14, residm: 1.093E-05, diffor: null, }
|
|
etotal : -1.51928409E+02
|
|
entropy : 0.00000000E+00
|
|
fermie : 2.85423680E-01
|
|
cartesian_stress_tensor: # hartree/bohr^3
|
|
- [ 2.09030256E-03, 0.00000000E+00, 0.00000000E+00, ]
|
|
- [ 0.00000000E+00, 2.09030256E-03, 0.00000000E+00, ]
|
|
- [ 0.00000000E+00, 0.00000000E+00, 2.09030256E-03, ]
|
|
pressure_GPa: -6.1499E+01
|
|
xred :
|
|
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
|
|
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
|
|
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
|
|
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
|
|
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
|
|
cartesian_forces: # hartree/bohr
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
|
|
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
|
|
...
|
|
|
|
Integrated electronic density in atomic spheres:
|
|
------------------------------------------------
|
|
Atom Sphere_radius Integrated_density
|
|
1 2.20000 11.28156105
|
|
2 2.20670 7.30899762
|
|
3 1.41465 4.59018625
|
|
4 1.41465 4.59018625
|
|
5 1.41465 4.59018625
|
|
|
|
PAW TEST:
|
|
==== Compensation charge inside spheres ============
|
|
The following values must be close to each other ...
|
|
Compensation charge over spherical meshes = 5.992978814767638
|
|
Compensation charge over fine fft grid = 5.993710068169802
|
|
|
|
==== Results concerning PAW augmentation regions ====
|
|
|
|
Total pseudopotential strength Dij (hartree):
|
|
Atom # 1
|
|
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
|
|
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
|
|
|
|
|
|
Augmentation waves occupancies Rhoij:
|
|
Atom # 1
|
|
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
|
|
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
|
|
|
|
"PAW+U" part of augmentation waves occupancies Rhoij:
|
|
Atom # 1 - L=2 ONLY
|
|
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
|
|
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
|
|
|
|
---------- DFT+U DATA ---------------------------------------------------
|
|
|
|
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
|
|
|
|
|
|
== Occupation matrix for correlated orbitals:
|
|
|
|
Up component only...
|
|
0.22002 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.22002 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.20950 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.22002 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.20950
|
|
|
|
|
|
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 47.604E-09; max= 10.925E-06
|
|
reduced coordinates (array xred) for 5 atoms
|
|
0.000000000000 0.000000000000 0.000000000000
|
|
0.500000000000 0.500000000000 0.500000000000
|
|
0.500000000000 0.000000000000 0.000000000000
|
|
0.000000000000 0.500000000000 0.000000000000
|
|
0.000000000000 0.000000000000 0.500000000000
|
|
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
|
|
1 0.000000000000 0.000000000000 0.000000000000
|
|
2 0.000000000000 0.000000000000 0.000000000000
|
|
3 0.000000000000 0.000000000000 0.000000000000
|
|
4 0.000000000000 0.000000000000 0.000000000000
|
|
5 0.000000000000 0.000000000000 0.000000000000
|
|
|
|
cartesian coordinates (angstrom) at end:
|
|
1 0.00000000000000 0.00000000000000 0.00000000000000
|
|
2 1.92104556148385 1.92104556148385 1.92104556148385
|
|
3 1.92104556148385 0.00000000000000 0.00000000000000
|
|
4 0.00000000000000 1.92104556148385 0.00000000000000
|
|
5 0.00000000000000 0.00000000000000 1.92104556148385
|
|
|
|
cartesian forces (hartree/bohr) at end:
|
|
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
|
|
|
|
cartesian forces (eV/Angstrom) at end:
|
|
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
|
|
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
|
|
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
|
|
= 3.842091122968 3.842091122968 3.842091122968 angstroms
|
|
prteigrs : about to open file tucrpa_O_DS1_EIG
|
|
Fermi (or HOMO) energy (hartree) = 0.28542 Average Vxc (hartree)= -0.43944
|
|
Eigenvalues (hartree) for nkpt= 4 k points:
|
|
kpt# 1, nband=100, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
|
|
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
|
|
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
|
|
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
|
|
0.37033 0.44811 0.44811 0.48883 0.54658 0.54658 0.54847 0.77480
|
|
0.83718 0.83718 0.87088 0.89669 0.95447 0.95447 0.99397 0.99397
|
|
1.04714 1.05324 1.05324 1.07697 1.13021 1.23036 1.23036 1.32423
|
|
1.33968 1.33968 1.35482 1.35482 1.38807 1.46331 1.50815 1.50815
|
|
1.55253 1.55253 1.58593 1.61525 1.61525 1.67442 1.69118 1.69118
|
|
1.72579 1.73909 1.79596 1.79596 1.82507 1.84667 1.88646 1.88646
|
|
1.89106 1.91752 1.91752 1.93610 1.96441 1.96762 1.96762 2.04206
|
|
2.04206 2.09952 2.09952 2.14630 2.14630 2.17678 2.19885 2.20030
|
|
2.20030 2.22229 2.29436 2.29436 2.34414 2.40198 2.40198 2.41204
|
|
2.44752 2.44752 2.54172 2.54172
|
|
occupation numbers for kpt# 1
|
|
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
|
|
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
|
|
2.00000 2.00000 2.00000 2.00000 1.70703 1.36110 1.36110 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.00000
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
--- !EnergyTerms
|
|
iteration_state : {dtset: 1, }
|
|
comment : Components of total free energy in Hartree
|
|
kinetic : 4.22101101715411E+01
|
|
hartree : 3.42934572955419E+01
|
|
xc : -1.94923345890660E+01
|
|
Ewald energy : -1.14220316979058E+02
|
|
psp_core : 6.33972391350157E+00
|
|
local_psp : -1.09494290828760E+02
|
|
spherical_terms : 8.43864085029317E+00
|
|
internal : -1.51925010166005E+02
|
|
'-kT*entropy' : -3.39894393162311E-03
|
|
total_energy : -1.51928409109937E+02
|
|
total_energy_eV : -4.13418225952962E+03
|
|
...
|
|
|
|
|
|
--- !EnergyTermsDC
|
|
iteration_state : {dtset: 1, }
|
|
comment : '"Double-counting" decomposition of free energy'
|
|
band_energy : -1.47235864740936E+01
|
|
Ewald energy : -1.14220316979058E+02
|
|
psp_core : 6.33972391350157E+00
|
|
xc_dc : -3.05329761494700E+01
|
|
spherical_terms : 1.21214553531383E+00
|
|
internal : -1.51925010153806E+02
|
|
'-kT*entropy' : -3.39894393162311E-03
|
|
total_energy_dc : -1.51928409097737E+02
|
|
total_energy_dc_eV : -4.13418225919765E+03
|
|
...
|
|
|
|
|
|
Cartesian components of stress tensor (hartree/bohr^3)
|
|
sigma(1 1)= 2.09030256E-03 sigma(3 2)= 0.00000000E+00
|
|
sigma(2 2)= 2.09030256E-03 sigma(3 1)= 0.00000000E+00
|
|
sigma(3 3)= 2.09030256E-03 sigma(2 1)= 0.00000000E+00
|
|
|
|
-Cartesian components of stress tensor (GPa) [Pressure= -6.1499E+01 GPa]
|
|
- sigma(1 1)= 6.14988141E+01 sigma(3 2)= 0.00000000E+00
|
|
- sigma(2 2)= 6.14988141E+01 sigma(3 1)= 0.00000000E+00
|
|
- sigma(3 3)= 6.14988141E+01 sigma(2 1)= 0.00000000E+00
|
|
|
|
================================================================================
|
|
== DATASET 2 ==================================================================
|
|
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 2, }
|
|
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
|
|
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
|
|
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
|
|
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
|
|
...
|
|
|
|
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
|
|
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
|
|
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
|
|
Unit cell volume ucvol= 3.8273624E+02 bohr^3
|
|
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
|
|
|
|
Coarse grid specifications (used for wave-functions):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
|
|
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
|
|
|
|
Fine grid specifications (used for densities):
|
|
|
|
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
|
|
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
=======================================================================
|
|
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
|
|
(it is assumed that the wavefunction for the first reference
|
|
energy in PAW atomic data is an atomic eigenvalue)
|
|
|
|
Max value of the radius in atomic data file = 201.3994
|
|
Max value of the mesh in atomic data file = 910
|
|
PAW radius is = 2.2000
|
|
PAW value of the mesh for integration is = 587
|
|
Integral of atomic wavefunction until rpaw = 0.8418
|
|
|
|
For an atomic wfn truncated at rmax = 201.3994
|
|
The norm of the wfn is = 1.0000
|
|
The bare interaction (no renormalization) = 17.7996 eV
|
|
The bare interaction (for a renorm. wfn ) = 17.7996 eV
|
|
|
|
For an atomic wfn truncated at rmax = 2.2000
|
|
The norm of the wfn is = 0.8418
|
|
The bare interaction (no renormalization) = 16.0038 eV
|
|
The bare interaction (for a renorm. wfn ) = 22.5848 eV
|
|
=======================================================================
|
|
|
|
|
|
================================================================================
|
|
prteigrs : about to open file tucrpa_O_DS2_EIG
|
|
Non-SCF case, kpt 1 ( 0.12500 0.12500 0.12500), residuals and eigenvalues=
|
|
1.63E-19 9.34E-19 3.93E-19 9.10E-19 8.75E-20 3.18E-20 1.89E-19 6.98E-19
|
|
9.94E-19 1.02E-19 1.41E-19 2.27E-19 4.35E-19 6.58E-19 1.24E-19 3.29E-19
|
|
7.52E-19 4.78E-19 5.20E-19 2.57E-19 2.61E-19 6.77E-19 1.45E-19 2.14E-19
|
|
1.11E-19 3.60E-19 9.26E-19 1.92E-19 6.49E-19 7.39E-19 4.04E-19 8.83E-19
|
|
1.03E-19 5.80E-19 1.26E-19 2.75E-19 2.30E-19 7.05E-20 3.13E-19 7.33E-20
|
|
1.42E-19 2.15E-19 8.05E-20 1.06E-19 8.30E-20 8.73E-19 5.37E-20 4.62E-19
|
|
3.71E-19 1.92E-19 2.37E-19 2.25E-19 2.58E-19 3.56E-19 1.17E-19 3.06E-19
|
|
2.71E-19 2.15E-19 2.84E-19 6.24E-19 2.01E-19 3.60E-19 7.60E-19 8.02E-19
|
|
6.72E-19 1.47E-19 4.56E-19 1.91E-19 6.32E-19 2.06E-19 1.56E-19 5.69E-19
|
|
6.97E-19 7.84E-19 3.19E-19 7.54E-19 4.01E-19 5.28E-19 4.66E-19 3.70E-19
|
|
6.64E-19 3.64E-19 1.20E-19 2.28E-19 4.02E-19 3.40E-19 2.15E-19 8.28E-19
|
|
9.44E-19 4.36E-19 3.20E-19 3.84E-19 4.52E-19 5.79E-19 7.01E-19 7.03E-19
|
|
4.73E-17 4.59E-17 5.51E-08 1.25E-07
|
|
-2.1011E+00 -1.1520E+00 -1.1520E+00 -1.1520E+00 -9.6527E-01 -4.2839E-01
|
|
-3.8629E-01 -3.8629E-01 -3.0392E-01 -3.0392E-01 -2.9801E-01 8.3122E-02
|
|
9.7741E-02 9.7741E-02 1.4333E-01 1.4333E-01 1.6821E-01 1.8079E-01
|
|
1.9240E-01 1.9240E-01 2.7895E-01 2.8264E-01 2.8264E-01 3.7033E-01
|
|
3.7033E-01 4.4811E-01 4.4811E-01 4.8883E-01 5.4658E-01 5.4658E-01
|
|
5.4847E-01 7.7480E-01 8.3718E-01 8.3718E-01 8.7088E-01 8.9669E-01
|
|
9.5447E-01 9.5447E-01 9.9397E-01 9.9397E-01 1.0471E+00 1.0532E+00
|
|
1.0532E+00 1.0770E+00 1.1302E+00 1.2304E+00 1.2304E+00 1.3242E+00
|
|
1.3397E+00 1.3397E+00 1.3548E+00 1.3548E+00 1.3881E+00 1.4633E+00
|
|
1.5082E+00 1.5082E+00 1.5525E+00 1.5525E+00 1.5859E+00 1.6153E+00
|
|
1.6153E+00 1.6744E+00 1.6912E+00 1.6912E+00 1.7258E+00 1.7391E+00
|
|
1.7960E+00 1.7960E+00 1.8251E+00 1.8467E+00 1.8865E+00 1.8865E+00
|
|
1.8911E+00 1.9175E+00 1.9175E+00 1.9361E+00 1.9644E+00 1.9676E+00
|
|
1.9676E+00 2.0421E+00 2.0421E+00 2.0995E+00 2.0995E+00 2.1463E+00
|
|
2.1463E+00 2.1768E+00 2.1988E+00 2.2003E+00 2.2003E+00 2.2223E+00
|
|
2.2944E+00 2.2944E+00 2.3441E+00 2.4020E+00 2.4020E+00 2.4120E+00
|
|
2.4475E+00 2.4475E+00 2.5417E+00 2.5417E+00
|
|
prteigrs : nnsclo,ikpt= 40 1 max resid (incl. the buffer)= 1.25202E-07
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
prteigrs : nnsclo,ikpt= 40 2 max resid (incl. the buffer)= 7.92810E-06
|
|
prteigrs : nnsclo,ikpt= 40 3 max resid (incl. the buffer)= 4.13030E-09
|
|
prteigrs : nnsclo,ikpt= 40 4 max resid (incl. the buffer)= 1.69881E-05
|
|
|
|
|
|
--- !ResultsGS
|
|
iteration_state: {dtset: 2, }
|
|
comment : Summary of ground state results
|
|
lattice_vectors:
|
|
- [ 7.2605000, 0.0000000, 0.0000000, ]
|
|
- [ 0.0000000, 7.2605000, 0.0000000, ]
|
|
- [ 0.0000000, 0.0000000, 7.2605000, ]
|
|
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
|
|
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
|
|
lattice_volume: 3.8273624E+02
|
|
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.937E-19, diffor: 0.000E+00, }
|
|
etotal : -1.51928409E+02
|
|
entropy : 0.00000000E+00
|
|
fermie : 2.85423680E-01
|
|
cartesian_stress_tensor: null
|
|
pressure_GPa: null
|
|
xred :
|
|
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
|
|
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
|
|
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
|
|
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
|
|
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
|
|
cartesian_forces: null
|
|
force_length_stats: {min: null, max: null, mean: null, }
|
|
...
|
|
|
|
Integrated electronic density in atomic spheres:
|
|
------------------------------------------------
|
|
Atom Sphere_radius Integrated_density
|
|
1 2.20000 11.28156105
|
|
2 2.20670 7.30899762
|
|
3 1.41465 4.59018625
|
|
4 1.41465 4.59018625
|
|
5 1.41465 4.59018625
|
|
|
|
PAW TEST:
|
|
==== Compensation charge inside spheres ============
|
|
Compensation charge over spherical meshes = 5.992978790998858
|
|
|
|
==== Results concerning PAW augmentation regions ====
|
|
|
|
Total pseudopotential strength Dij (hartree):
|
|
Atom # 1
|
|
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
|
|
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
|
|
|
|
|
|
Augmentation waves occupancies Rhoij:
|
|
Atom # 1
|
|
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
|
|
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
|
|
|
|
"PAW+U" part of augmentation waves occupancies Rhoij:
|
|
Atom # 1 - L=2 ONLY
|
|
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
|
|
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
|
|
|
|
---------- DFT+U DATA ---------------------------------------------------
|
|
|
|
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
|
|
|
|
(This is PAW atomic orbital occupations)
|
|
(For Wannier orbital occupations, refer to DFT+DMFT occupations above)
|
|
|
|
== Occupation matrix for correlated orbitals:
|
|
|
|
Up component only...
|
|
0.22002 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.22002 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.20950 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.22002 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.20950
|
|
|
|
|
|
|
|
|
|
======================================================================================
|
|
|
|
== Start computation of Projected Local Orbitals Wannier functions == -1
|
|
|
|
== Lower and upper values of the selected bands 21 25
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
|
|
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
|
|
|
|
(The band structure is shifted by fermie = 7.7667 eV )
|
|
|
|
Wannier band structure for atom 1
|
|
1 -0.176 -0.076 -0.076 2.310 2.310
|
|
2 -0.038 0.989 1.009 2.297 3.960
|
|
3 1.017 1.075 1.344 3.024 5.194
|
|
4 1.484 1.520 1.520 5.121 5.121
|
|
|
|
Print the psichi coefficients in data.plowann
|
|
|
|
======================================================================
|
|
Calculating and writing out Kohn-Sham electronic Structure file
|
|
Using conjugate gradient wavefunctions and energies (kssform=3)
|
|
outkss: Not allowed options found !
|
|
Program does not stop but _KSS file will not be created...
|
|
outkss: see the log file for more information.
|
|
================================================================================
|
|
|
|
----iterations are completed or convergence reached----
|
|
|
|
Mean square residual over all n,k,spin= 41.630E-20; max= 99.372E-20
|
|
reduced coordinates (array xred) for 5 atoms
|
|
0.000000000000 0.000000000000 0.000000000000
|
|
0.500000000000 0.500000000000 0.500000000000
|
|
0.500000000000 0.000000000000 0.000000000000
|
|
0.000000000000 0.500000000000 0.000000000000
|
|
0.000000000000 0.000000000000 0.500000000000
|
|
|
|
cartesian coordinates (angstrom) at end:
|
|
1 0.00000000000000 0.00000000000000 0.00000000000000
|
|
2 1.92104556148385 1.92104556148385 1.92104556148385
|
|
3 1.92104556148385 0.00000000000000 0.00000000000000
|
|
4 0.00000000000000 1.92104556148385 0.00000000000000
|
|
5 0.00000000000000 0.00000000000000 1.92104556148385
|
|
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
|
|
= 3.842091122968 3.842091122968 3.842091122968 angstroms
|
|
prteigrs : about to open file tucrpa_O_DS2_EIG
|
|
Eigenvalues (hartree) for nkpt= 4 k points:
|
|
kpt# 1, nband=100, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
|
|
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
|
|
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
|
|
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
|
|
0.37033 0.44811 0.44811 0.48883 0.54658 0.54658 0.54847 0.77480
|
|
0.83718 0.83718 0.87088 0.89669 0.95447 0.95447 0.99397 0.99397
|
|
1.04714 1.05324 1.05324 1.07697 1.13021 1.23036 1.23036 1.32423
|
|
1.33968 1.33968 1.35482 1.35482 1.38807 1.46331 1.50815 1.50815
|
|
1.55253 1.55253 1.58593 1.61525 1.61525 1.67442 1.69118 1.69118
|
|
1.72579 1.73909 1.79596 1.79596 1.82507 1.84667 1.88646 1.88646
|
|
1.89106 1.91752 1.91752 1.93610 1.96441 1.96762 1.96762 2.04206
|
|
2.04206 2.09952 2.09952 2.14630 2.14630 2.17678 2.19885 2.20030
|
|
2.20030 2.22229 2.29436 2.29436 2.34414 2.40198 2.40198 2.41204
|
|
2.44752 2.44752 2.54172 2.54172
|
|
prteigrs : prtvol=0 or 1, do not print more k-points.
|
|
|
|
|
|
================================================================================
|
|
== DATASET 3 ==================================================================
|
|
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 3, }
|
|
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
|
|
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
|
|
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
|
|
meta: {optdriver: 3, gwcalctyp: 2, }
|
|
...
|
|
|
|
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
|
|
|
|
SCREENING: Calculation of the susceptibility and dielectric matrices
|
|
|
|
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
|
|
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
|
|
|
|
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
|
|
|
|
.Using single precision arithmetic ; gwpc = 4
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
|
|
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
|
|
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
|
|
Unit cell volume ucvol= 3.8273624E+02 bohr^3
|
|
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
|
|
|
|
--- Pseudopotential description ------------------------------------------------
|
|
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
|
|
Spheres core radius: rc_sph= 2.20000000
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
|
|
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
|
|
Radius for shape functions = 2.02290427
|
|
mmax= 910
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 744 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
|
|
Spheres core radius: rc_sph= 2.20669967
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = 1.81361893
|
|
mmax= 1500
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
|
|
Spheres core radius: rc_sph= 1.41465230
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = 1.20231231
|
|
mmax= 2001
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
==== K-mesh for the wavefunctions ====
|
|
Number of points in the irreducible wedge : 4
|
|
Reduced coordinates and weights :
|
|
|
|
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
|
|
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
|
|
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
|
|
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
|
|
|
|
Together with 48 symmetry operations and time-reversal symmetry
|
|
yields 64 points in the full Brillouin Zone.
|
|
|
|
|
|
==== Q-mesh for the screening function ====
|
|
Number of points in the irreducible wedge : 10
|
|
Reduced coordinates and weights :
|
|
|
|
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
|
|
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
|
|
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
|
|
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
|
|
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
|
|
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
|
|
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
|
|
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
|
|
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
|
|
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
|
|
|
|
Together with 48 symmetry operations and time-reversal symmetry
|
|
yields 64 points in the full Brillouin Zone.
|
|
|
|
|
|
setmesh: FFT mesh size selected = 18x 18x 18
|
|
total number of points = 5832
|
|
|
|
|
|
|
|
******************************************
|
|
DFT+U Method used: FLL
|
|
******************************************
|
|
|
|
=======================================================================
|
|
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
|
|
(it is assumed that the wavefunction for the first reference
|
|
energy in PAW atomic data is an atomic eigenvalue)
|
|
|
|
Max value of the radius in atomic data file = 201.3994
|
|
Max value of the mesh in atomic data file = 910
|
|
PAW radius is = 2.2000
|
|
PAW value of the mesh for integration is = 587
|
|
Integral of atomic wavefunction until rpaw = 0.8418
|
|
|
|
For an atomic wfn truncated at rmax = 201.3994
|
|
The norm of the wfn is = 1.0000
|
|
The bare interaction (no renormalization) = 17.7996 eV
|
|
The bare interaction (for a renorm. wfn ) = 17.7996 eV
|
|
|
|
For an atomic wfn truncated at rmax = 2.2000
|
|
The norm of the wfn is = 0.8418
|
|
The bare interaction (no renormalization) = 16.3156 eV
|
|
The bare interaction (for a renorm. wfn ) = 23.0248 eV
|
|
=======================================================================
|
|
|
|
====================================
|
|
==== Info on PAW TABulated data ====
|
|
====================================
|
|
|
|
|
|
******************************
|
|
**** Atom type 1 ****
|
|
******************************
|
|
Number of (n,l) elements ....................... 6
|
|
Number of (l,m,n) elements ..................... 18
|
|
Number of (i,j) elements (packed form) ......... 21
|
|
Max L+1 leading to non-zero Gaunt .............. 5
|
|
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
|
|
lmn2_size ...................................... 171
|
|
lmnmix_sz ...................................... 171
|
|
Size of radial mesh ............................ 592
|
|
Size of radial mesh for partial waves........... 910
|
|
Size of radial mesh for [pseudo] core density... 592
|
|
Size of radial mesh for [pseudo] kin core density 0
|
|
Size of radial mesh for pseudo valence density.. 910
|
|
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
|
|
No of Q-points for the radial shape functions .. 0
|
|
Radial shape function type ..................... 3
|
|
shape_lambda ................................... 0
|
|
Use pseudized core density ..................... 1
|
|
Option for the use of hat density in XC terms .. 0
|
|
Use DFT+U ...................................... 1
|
|
L on which U is applied ........................ 2
|
|
Use Local Exact exchange ....................... 0
|
|
Number of (i,j) elements for PAW+U or EXX ..... 3
|
|
Number of projectors on which U or EXX acts .... 2
|
|
Use potential zero ............................. 0
|
|
Use spin-orbit coupling ........................ 0
|
|
Has Fock ...................................... 2
|
|
Has kij ...................................... 0
|
|
Has tproj ...................................... 0
|
|
Has tvale ...................................... 1
|
|
Has coretau .................................... 0
|
|
Has vhtnzc ..................................... 2
|
|
Has vhnzc ...................................... 2
|
|
Has vminushalf ................................. 0
|
|
Has nabla ...................................... 2
|
|
Has nablaphi ................................... 0
|
|
Has shapefuncg ................................. 0
|
|
Has wvl ........................................ 0
|
|
beta ............................................ -2.38787323E+01
|
|
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
|
|
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
|
|
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
|
|
Core-core Fock energy .......................... -3.47490679E+01
|
|
XC energy for the core density .................. -3.29033210E+01
|
|
Radius of the PAW sphere ........................ 2.20000000E+00
|
|
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
|
|
Value of the U parameter [eV] ................... 0.00000000E+00
|
|
Value of the J parameter [eV] ................... 0.00000000E+00
|
|
|
|
******************************
|
|
**** Atom type 2 ****
|
|
******************************
|
|
Number of (n,l) elements ....................... 6
|
|
Number of (l,m,n) elements ..................... 18
|
|
Number of (i,j) elements (packed form) ......... 21
|
|
Max L+1 leading to non-zero Gaunt .............. 5
|
|
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
|
|
lmn2_size ...................................... 171
|
|
lmnmix_sz ...................................... 171
|
|
Size of radial mesh ............................ 1084
|
|
Size of radial mesh for partial waves........... 1500
|
|
Size of radial mesh for [pseudo] core density... 1084
|
|
Size of radial mesh for [pseudo] kin core density 0
|
|
Size of radial mesh for pseudo valence density.. 1500
|
|
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
|
|
No of Q-points for the radial shape functions .. 0
|
|
Radial shape function type ..................... 2
|
|
shape_lambda ................................... 0
|
|
Use pseudized core density ..................... 1
|
|
Option for the use of hat density in XC terms .. 0
|
|
Use DFT+U ...................................... 0
|
|
Use Local Exact exchange ....................... 0
|
|
Use potential zero ............................. 0
|
|
Use spin-orbit coupling ........................ 0
|
|
Has Fock ...................................... 2
|
|
Has kij ...................................... 0
|
|
Has tproj ...................................... 0
|
|
Has tvale ...................................... 1
|
|
Has coretau .................................... 0
|
|
Has vhtnzc ..................................... 2
|
|
Has vhnzc ...................................... 2
|
|
Has vminushalf ................................. 0
|
|
Has nabla ...................................... 2
|
|
Has nablaphi ................................... 0
|
|
Has shapefuncg ................................. 0
|
|
Has wvl ........................................ 0
|
|
beta ............................................ -3.50169981E+01
|
|
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
|
|
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
|
|
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
|
|
Core-core Fock energy .......................... -9.79515177E+01
|
|
XC energy for the core density .................. -9.52281397E+01
|
|
Radius of the PAW sphere ........................ 2.20669967E+00
|
|
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
|
|
Sigma parameter in gaussian shape function ...... 1.81361893E+00
|
|
|
|
******************************
|
|
**** Atom type 3 ****
|
|
******************************
|
|
Number of (n,l) elements ....................... 4
|
|
Number of (l,m,n) elements ..................... 8
|
|
Number of (i,j) elements (packed form) ......... 10
|
|
Max L+1 leading to non-zero Gaunt .............. 3
|
|
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
|
|
lmn2_size ...................................... 36
|
|
lmnmix_sz ...................................... 36
|
|
Size of radial mesh ............................ 1311
|
|
Size of radial mesh for partial waves........... 2001
|
|
Size of radial mesh for [pseudo] core density... 1311
|
|
Size of radial mesh for [pseudo] kin core density 0
|
|
Size of radial mesh for pseudo valence density.. 2001
|
|
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
|
|
No of Q-points for the radial shape functions .. 0
|
|
Radial shape function type ..................... 2
|
|
shape_lambda ................................... 0
|
|
Use pseudized core density ..................... 1
|
|
Option for the use of hat density in XC terms .. 0
|
|
Use DFT+U ...................................... 0
|
|
Use Local Exact exchange ....................... 0
|
|
Use potential zero ............................. 0
|
|
Use spin-orbit coupling ........................ 0
|
|
Has Fock ...................................... 2
|
|
Has kij ...................................... 0
|
|
Has tproj ...................................... 0
|
|
Has tvale ...................................... 1
|
|
Has coretau .................................... 0
|
|
Has vhtnzc ..................................... 2
|
|
Has vhnzc ...................................... 2
|
|
Has vminushalf ................................. 0
|
|
Has nabla ...................................... 2
|
|
Has nablaphi ................................... 0
|
|
Has shapefuncg ................................. 0
|
|
Has wvl ........................................ 0
|
|
beta ............................................ -4.77231787E+00
|
|
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
|
|
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
|
|
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
|
|
Core-core Fock energy .......................... -4.69825338E+00
|
|
XC energy for the core density .................. -4.22468657E+00
|
|
Radius of the PAW sphere ........................ 1.41465230E+00
|
|
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
|
|
Sigma parameter in gaussian shape function ...... 1.20231231E+00
|
|
|
|
- screening: taking advantage of time-reversal symmetry
|
|
- Maximum band index for partially occupied states nbvw = 23
|
|
- Remaining bands to be divided among processors nbcw = 77
|
|
- Number of bands treated by each node ~19
|
|
|
|
|
|
PAW TEST:
|
|
==== Compensation charge inside spheres ============
|
|
The following values must be close...
|
|
Compensation charge over spherical meshes = 5.992978790998858
|
|
Compensation charge over fine fft grid = 5.993710068169802
|
|
|
|
|
|
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
|
|
average of density, n = 0.107123
|
|
r_s = 1.3062
|
|
omega_plasma = 31.5717 [eV]
|
|
|
|
|
|
==== Results concerning PAW augmentation regions ====
|
|
|
|
Total pseudopotential strength Dij (hartree):
|
|
Atom # 1
|
|
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
|
|
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
|
|
|
|
|
|
Augmentation waves occupancies Rhoij:
|
|
Atom # 1
|
|
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
|
|
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
|
|
|
|
"PAW+U" part of augmentation waves occupancies Rhoij:
|
|
Atom # 1 - L=2 ONLY
|
|
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
|
|
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
|
|
|
|
---------- DFT+U DATA ---------------------------------------------------
|
|
|
|
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
|
|
|
|
|
|
== Occupation matrix for correlated orbitals:
|
|
|
|
Up component only...
|
|
0.22002 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.22002 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.20950 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.22002 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.20950
|
|
|
|
|
|
|
|
|
|
calculating chi0 at frequencies [eV] :
|
|
1 0.000000E+00 0.000000E+00
|
|
2 6.122449E-01 0.000000E+00
|
|
3 1.224490E+00 0.000000E+00
|
|
4 1.836735E+00 0.000000E+00
|
|
5 2.448980E+00 0.000000E+00
|
|
6 3.061224E+00 0.000000E+00
|
|
7 3.673469E+00 0.000000E+00
|
|
8 4.285714E+00 0.000000E+00
|
|
9 4.897959E+00 0.000000E+00
|
|
10 5.510204E+00 0.000000E+00
|
|
11 6.122449E+00 0.000000E+00
|
|
12 6.734694E+00 0.000000E+00
|
|
13 7.346939E+00 0.000000E+00
|
|
14 7.959184E+00 0.000000E+00
|
|
15 8.571429E+00 0.000000E+00
|
|
16 9.183673E+00 0.000000E+00
|
|
17 9.795918E+00 0.000000E+00
|
|
18 1.040816E+01 0.000000E+00
|
|
19 1.102041E+01 0.000000E+00
|
|
20 1.163265E+01 0.000000E+00
|
|
21 1.224490E+01 0.000000E+00
|
|
22 1.285714E+01 0.000000E+00
|
|
23 1.346939E+01 0.000000E+00
|
|
24 1.408163E+01 0.000000E+00
|
|
25 1.469388E+01 0.000000E+00
|
|
26 1.530612E+01 0.000000E+00
|
|
27 1.591837E+01 0.000000E+00
|
|
28 1.653061E+01 0.000000E+00
|
|
29 1.714286E+01 0.000000E+00
|
|
30 1.775510E+01 0.000000E+00
|
|
31 1.836735E+01 0.000000E+00
|
|
32 1.897959E+01 0.000000E+00
|
|
33 1.959184E+01 0.000000E+00
|
|
34 2.020408E+01 0.000000E+00
|
|
35 2.081633E+01 0.000000E+00
|
|
36 2.142857E+01 0.000000E+00
|
|
37 2.204082E+01 0.000000E+00
|
|
38 2.265306E+01 0.000000E+00
|
|
39 2.326531E+01 0.000000E+00
|
|
40 2.387755E+01 0.000000E+00
|
|
41 2.448980E+01 0.000000E+00
|
|
42 2.510204E+01 0.000000E+00
|
|
43 2.571429E+01 0.000000E+00
|
|
44 2.632653E+01 0.000000E+00
|
|
45 2.693878E+01 0.000000E+00
|
|
46 2.755102E+01 0.000000E+00
|
|
47 2.816327E+01 0.000000E+00
|
|
48 2.877551E+01 0.000000E+00
|
|
49 2.938776E+01 0.000000E+00
|
|
50 3.000000E+01 0.000000E+00
|
|
|
|
== Lower and upper values of the selected bands 0 0
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
|
|
== Lower and upper values of the selected bands 21 25
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
Reading of the Wannier weights from data.plowann
|
|
|
|
== Lower and upper values of the selected bands 21 25
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
|
|
|
|
2 -0.000 -29.822 -4.528 -0.332 -0.332 -0.334 -0.334 -8.128 -7.830
|
|
-0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -29.990 -4.665 -0.312 -0.312 -0.315 -0.315 -8.226 -7.924
|
|
0.000 -0.295 -0.172 0.011 0.011 0.011 0.011 -0.140 -0.137
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 0.000 -30.557 -5.131 -0.240 -0.240 -0.243 -0.243 -8.554 -8.238
|
|
0.000 -0.336 -0.210 0.020 0.020 0.020 0.020 -0.165 -0.161
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 0.000 -31.731 -6.117 -0.056 -0.056 -0.059 -0.059 -9.233 -8.884
|
|
0.000 -0.451 -0.314 0.050 0.050 0.050 0.050 -0.231 -0.222
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 0.000 -34.044 -8.140 0.400 0.400 0.397 0.397 -10.577 -10.165
|
|
0.000 -1.604 -1.337 0.451 0.451 0.451 0.451 -0.834 -0.747
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -37.836 -11.636 1.219 1.219 1.216 1.216 -12.761 -12.379
|
|
0.000 -3.619 -3.328 0.442 0.442 0.442 0.442 -2.464 -2.369
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 0.000 -32.893 -5.994 -2.365 -2.365 -2.369 -2.369 -10.942 -10.412
|
|
0.000 -13.493 -12.830 4.789 4.789 4.790 4.790 -7.278 -6.994
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -20.006 6.187 -7.110 -7.110 -7.117 -7.117 -2.472 -2.768
|
|
0.000 -10.598 -9.412 2.668 2.668 2.668 2.668 -6.216 -5.759
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -31.685 -3.601 -4.249 -4.249 -4.253 -4.253 -9.795 -9.514
|
|
0.000 -6.554 -4.809 -1.124 -1.124 -1.128 -1.128 -5.537 -5.157
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -36.548 -10.588 -4.890 -4.890 -4.893 -4.893 -13.604 -13.563
|
|
0.000 -7.386 -5.989 -0.535 -0.535 -0.537 -0.537 -5.155 -4.947
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -20.663 6.423 1.362 1.362 1.357 1.357 2.713 2.518
|
|
0.000 -32.559 -28.930 -8.419 -8.419 -8.423 -8.423 -27.466 -26.919
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -24.524 3.421 -2.493 -2.493 -2.500 -2.500 -1.959 -2.071
|
|
0.000 -5.677 -4.587 -1.198 -1.198 -1.203 -1.203 -4.035 -3.897
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
2 -0.000 -20.365 5.861 2.328 2.328 2.327 2.327 2.622 2.349
|
|
0.000 -24.968 -20.635 -7.486 -7.486 -7.488 -7.488 -18.808 -18.244
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
|
|
|
|
2 -0.000 -18.622 9.617 4.107 4.107 4.097 4.097 6.637 6.031
|
|
-0.000 -8.075 -5.958 -1.132 -1.132 -1.133 -1.133 -4.565 -4.499
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000
|
|
|
|
2 -0.000 -29.524 -0.395 2.381 2.381 2.369 2.369 -0.037 -0.549
|
|
-0.000 -9.454 -7.746 0.946 0.946 0.937 0.937 -2.276 -2.353
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
For q-point: 0.000010 0.000020 0.000030
|
|
dielectric constant = 5.2978
|
|
dielectric constant without local fields = 5.4957
|
|
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 59.23 [%]
|
|
Heads and wings of the symmetrical epsilon^-1(G,G')
|
|
|
|
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.189 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
|
|
0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
1 2 3 4 5 6 7 8 9
|
|
0.189 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
|
|
0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000
|
|
|
|
|
|
Upper and lower wings at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.186 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
|
|
-0.003 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
1 2 3 4 5 6 7 8 9
|
|
0.186 -0.001 0.001 -0.002 0.002 -0.004 0.004 -0.001 0.001
|
|
-0.003 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
|
|
Upper and lower wings at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.177 -0.001 0.001 -0.002 0.002 -0.003 0.003 -0.001 0.001
|
|
-0.004 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
1 2 3 4 5 6 7 8 9
|
|
0.177 -0.001 0.001 -0.002 0.002 -0.003 0.003 -0.001 0.001
|
|
-0.004 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
|
|
Upper and lower wings at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.157 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.000 -0.000
|
|
-0.006 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
1 2 3 4 5 6 7 8 9
|
|
0.157 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.000 -0.000
|
|
-0.006 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
|
|
|
|
|
|
Upper and lower wings at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.121 0.000 -0.000 0.001 -0.001 0.001 -0.001 0.002 -0.002
|
|
-0.042 0.001 -0.001 0.002 -0.002 0.003 -0.003 0.002 -0.002
|
|
1 2 3 4 5 6 7 8 9
|
|
0.121 0.000 -0.000 0.001 -0.001 0.001 -0.001 0.002 -0.002
|
|
-0.042 0.001 -0.001 0.002 -0.002 0.003 -0.003 0.002 -0.002
|
|
|
|
|
|
Upper and lower wings at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.194 -0.001 0.001 -0.003 0.003 -0.004 0.004 0.000 -0.000
|
|
-0.071 0.002 -0.002 0.003 -0.003 0.005 -0.005 0.003 -0.003
|
|
1 2 3 4 5 6 7 8 9
|
|
0.194 -0.001 0.001 -0.003 0.003 -0.004 0.004 0.000 -0.000
|
|
-0.071 0.002 -0.002 0.003 -0.003 0.005 -0.005 0.003 -0.003
|
|
|
|
|
|
Upper and lower wings at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.148 0.001 -0.001 0.003 -0.003 0.004 -0.004 0.004 -0.004
|
|
-0.101 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.005 -0.005
|
|
1 2 3 4 5 6 7 8 9
|
|
0.148 0.001 -0.001 0.003 -0.003 0.004 -0.004 0.004 -0.004
|
|
-0.101 0.003 -0.003 0.005 -0.005 0.008 -0.008 0.005 -0.005
|
|
|
|
|
|
Upper and lower wings at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.014 0.008 -0.008 0.015 -0.015 0.023 -0.023 0.015 -0.015
|
|
-0.265 0.013 -0.013 0.025 -0.025 0.038 -0.038 0.023 -0.023
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.014 0.008 -0.008 0.015 -0.015 0.023 -0.023 0.015 -0.015
|
|
-0.265 0.013 -0.013 0.025 -0.025 0.038 -0.038 0.023 -0.023
|
|
|
|
|
|
Upper and lower wings at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.205 -0.002 0.002 -0.004 0.004 -0.006 0.006 -0.002 0.002
|
|
-0.162 0.005 -0.005 0.009 -0.009 0.014 -0.014 0.011 -0.011
|
|
1 2 3 4 5 6 7 8 9
|
|
0.205 -0.002 0.002 -0.004 0.004 -0.006 0.006 -0.002 0.002
|
|
-0.162 0.005 -0.005 0.009 -0.009 0.014 -0.014 0.011 -0.011
|
|
|
|
|
|
Upper and lower wings at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.160 -0.003 0.003 -0.007 0.007 -0.010 0.010 -0.002 0.002
|
|
-0.198 0.008 -0.008 0.017 -0.017 0.025 -0.025 0.013 -0.013
|
|
1 2 3 4 5 6 7 8 9
|
|
0.160 -0.003 0.003 -0.007 0.007 -0.010 0.010 -0.002 0.002
|
|
-0.198 0.008 -0.008 0.017 -0.017 0.025 -0.025 0.013 -0.013
|
|
|
|
|
|
Upper and lower wings at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.219 -0.002 0.002 -0.004 0.004 -0.005 0.005 -0.005 0.005
|
|
-0.136 0.009 -0.009 0.018 -0.018 0.027 -0.027 0.009 -0.009
|
|
1 2 3 4 5 6 7 8 9
|
|
0.219 -0.002 0.002 -0.004 0.004 -0.005 0.005 -0.005 0.005
|
|
-0.136 0.009 -0.009 0.018 -0.018 0.027 -0.027 0.009 -0.009
|
|
|
|
|
|
Upper and lower wings at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.156 -0.006 0.006 -0.011 0.011 -0.017 0.017 -0.004 0.004
|
|
-0.044 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.002 -0.002
|
|
1 2 3 4 5 6 7 8 9
|
|
0.156 -0.006 0.006 -0.011 0.011 -0.017 0.017 -0.004 0.004
|
|
-0.044 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.002 -0.002
|
|
|
|
|
|
Upper and lower wings at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.013 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.004 -0.004
|
|
-0.089 0.003 -0.003 0.006 -0.006 0.009 -0.009 0.004 -0.004
|
|
1 2 3 4 5 6 7 8 9
|
|
0.013 0.002 -0.002 0.005 -0.005 0.007 -0.007 0.004 -0.004
|
|
-0.089 0.003 -0.003 0.006 -0.006 0.009 -0.009 0.004 -0.004
|
|
|
|
|
|
Upper and lower wings at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.120 -0.012 0.012 -0.024 0.024 -0.036 0.036 0.005 -0.005
|
|
-0.138 0.010 -0.010 0.020 -0.020 0.029 -0.029 0.006 -0.006
|
|
1 2 3 4 5 6 7 8 9
|
|
0.120 -0.012 0.012 -0.024 0.024 -0.036 0.036 0.005 -0.005
|
|
-0.138 0.010 -0.010 0.020 -0.020 0.029 -0.029 0.006 -0.006
|
|
|
|
|
|
Upper and lower wings at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.238 -0.019 0.019 -0.039 0.039 -0.058 0.058 -0.004 0.004
|
|
-0.456 0.020 -0.020 0.040 -0.040 0.060 -0.060 0.024 -0.024
|
|
1 2 3 4 5 6 7 8 9
|
|
0.238 -0.019 0.019 -0.039 0.039 -0.058 0.058 -0.004 0.004
|
|
-0.456 0.020 -0.020 0.040 -0.040 0.060 -0.060 0.024 -0.024
|
|
|
|
|
|
Upper and lower wings at the 16 th omega 9.1837 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.160 -0.017 0.017 -0.035 0.035 -0.052 0.052 0.003 -0.003
|
|
-0.261 0.011 -0.011 0.022 -0.022 0.033 -0.033 0.018 -0.018
|
|
1 2 3 4 5 6 7 8 9
|
|
0.160 -0.017 0.017 -0.035 0.035 -0.052 0.052 0.003 -0.003
|
|
-0.261 0.011 -0.011 0.022 -0.022 0.033 -0.033 0.018 -0.018
|
|
|
|
|
|
Upper and lower wings at the 17 th omega 9.7959 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.115 -0.021 0.021 -0.041 0.041 -0.062 0.062 0.001 -0.001
|
|
-0.332 0.008 -0.008 0.016 -0.016 0.023 -0.023 0.015 -0.015
|
|
1 2 3 4 5 6 7 8 9
|
|
0.115 -0.021 0.021 -0.041 0.041 -0.062 0.062 0.001 -0.001
|
|
-0.332 0.008 -0.008 0.016 -0.016 0.023 -0.023 0.015 -0.015
|
|
|
|
|
|
Upper and lower wings at the 18 th omega 10.4082 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.063 -0.022 0.022 -0.045 0.045 -0.067 0.067 -0.000 0.000
|
|
-0.372 0.005 -0.005 0.011 -0.011 0.016 -0.016 0.025 -0.025
|
|
1 2 3 4 5 6 7 8 9
|
|
0.063 -0.022 0.022 -0.045 0.045 -0.067 0.067 -0.000 0.000
|
|
-0.372 0.005 -0.005 0.011 -0.011 0.016 -0.016 0.025 -0.025
|
|
|
|
|
|
Upper and lower wings at the 19 th omega 11.0204 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.139 -0.021 0.021 -0.043 0.043 -0.064 0.064 0.002 -0.002
|
|
-0.501 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.042 -0.042
|
|
1 2 3 4 5 6 7 8 9
|
|
0.139 -0.021 0.021 -0.043 0.043 -0.064 0.064 0.002 -0.002
|
|
-0.501 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.042 -0.042
|
|
|
|
|
|
Upper and lower wings at the 20 th omega 11.6327 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.175 -0.027 0.027 -0.054 0.054 -0.081 0.081 -0.016 0.016
|
|
-0.272 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.014 -0.014
|
|
1 2 3 4 5 6 7 8 9
|
|
0.175 -0.027 0.027 -0.054 0.054 -0.081 0.081 -0.016 0.016
|
|
-0.272 -0.001 0.001 -0.001 0.001 -0.002 0.002 0.014 -0.014
|
|
|
|
|
|
Upper and lower wings at the 21 th omega 12.2449 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.061 -0.028 0.028 -0.057 0.057 -0.085 0.085 -0.007 0.007
|
|
-0.359 -0.007 0.007 -0.013 0.013 -0.020 0.020 0.018 -0.018
|
|
1 2 3 4 5 6 7 8 9
|
|
0.061 -0.028 0.028 -0.057 0.057 -0.085 0.085 -0.007 0.007
|
|
-0.359 -0.007 0.007 -0.013 0.013 -0.020 0.020 0.018 -0.018
|
|
|
|
|
|
Upper and lower wings at the 22 th omega 12.8571 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.261 -0.046 0.046 -0.093 0.093 -0.139 0.139 0.011 -0.011
|
|
-0.426 -0.015 0.015 -0.030 0.030 -0.044 0.044 0.021 -0.021
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.261 -0.046 0.046 -0.093 0.093 -0.139 0.139 0.011 -0.011
|
|
-0.426 -0.015 0.015 -0.030 0.030 -0.044 0.044 0.021 -0.021
|
|
|
|
|
|
Upper and lower wings at the 23 th omega 13.4694 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.460 -0.006 0.006 -0.012 0.012 -0.018 0.018 -0.024 0.024
|
|
-1.159 -0.037 0.037 -0.075 0.075 -0.112 0.112 0.045 -0.045
|
|
1 2 3 4 5 6 7 8 9
|
|
0.460 -0.006 0.006 -0.012 0.012 -0.018 0.018 -0.024 0.024
|
|
-1.159 -0.037 0.037 -0.075 0.075 -0.112 0.112 0.045 -0.045
|
|
|
|
|
|
Upper and lower wings at the 24 th omega 14.0816 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.750 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.021 0.021
|
|
-0.702 -0.033 0.033 -0.066 0.066 -0.099 0.099 0.033 -0.033
|
|
1 2 3 4 5 6 7 8 9
|
|
0.750 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.021 0.021
|
|
-0.702 -0.033 0.033 -0.066 0.066 -0.099 0.099 0.033 -0.033
|
|
|
|
|
|
Upper and lower wings at the 25 th omega 14.6939 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.435 -0.011 0.011 -0.022 0.022 -0.033 0.033 -0.013 0.013
|
|
-0.256 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.014 -0.014
|
|
1 2 3 4 5 6 7 8 9
|
|
0.435 -0.011 0.011 -0.022 0.022 -0.033 0.033 -0.013 0.013
|
|
-0.256 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.014 -0.014
|
|
|
|
|
|
Upper and lower wings at the 26 th omega 15.3061 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.339 -0.014 0.014 -0.028 0.028 -0.042 0.042 -0.014 0.014
|
|
-0.644 -0.043 0.043 -0.085 0.085 -0.128 0.128 0.030 -0.030
|
|
1 2 3 4 5 6 7 8 9
|
|
0.339 -0.014 0.014 -0.028 0.028 -0.042 0.042 -0.014 0.014
|
|
-0.644 -0.043 0.043 -0.085 0.085 -0.128 0.128 0.030 -0.030
|
|
|
|
|
|
Upper and lower wings at the 27 th omega 15.9184 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.638 0.016 -0.016 0.031 -0.031 0.047 -0.047 -0.028 0.028
|
|
-0.303 -0.011 0.011 -0.022 0.022 -0.032 0.032 0.017 -0.017
|
|
1 2 3 4 5 6 7 8 9
|
|
0.638 0.016 -0.016 0.031 -0.031 0.047 -0.047 -0.028 0.028
|
|
-0.303 -0.011 0.011 -0.022 0.022 -0.032 0.032 0.017 -0.017
|
|
|
|
|
|
Upper and lower wings at the 28 th omega 16.5306 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.510 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.021 0.021
|
|
-0.415 -0.002 0.002 -0.004 0.004 -0.006 0.006 0.031 -0.031
|
|
1 2 3 4 5 6 7 8 9
|
|
0.510 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.021 0.021
|
|
-0.415 -0.002 0.002 -0.004 0.004 -0.006 0.006 0.031 -0.031
|
|
|
|
|
|
Upper and lower wings at the 29 th omega 17.1429 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.454 -0.012 0.012 -0.023 0.023 -0.035 0.035 -0.020 0.020
|
|
-0.568 -0.035 0.035 -0.070 0.070 -0.105 0.105 0.031 -0.031
|
|
1 2 3 4 5 6 7 8 9
|
|
0.454 -0.012 0.012 -0.023 0.023 -0.035 0.035 -0.020 0.020
|
|
-0.568 -0.035 0.035 -0.070 0.070 -0.105 0.105 0.031 -0.031
|
|
|
|
|
|
Upper and lower wings at the 30 th omega 17.7551 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.554 0.009 -0.009 0.018 -0.018 0.027 -0.027 -0.021 0.021
|
|
-0.217 -0.007 0.007 -0.015 0.015 -0.022 0.022 0.015 -0.015
|
|
1 2 3 4 5 6 7 8 9
|
|
0.554 0.009 -0.009 0.018 -0.018 0.027 -0.027 -0.021 0.021
|
|
-0.217 -0.007 0.007 -0.015 0.015 -0.022 0.022 0.015 -0.015
|
|
|
|
|
|
Upper and lower wings at the 31 th omega 18.3673 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.340 0.002 -0.002 0.005 -0.005 0.007 -0.007 -0.001 0.001
|
|
-0.298 -0.014 0.014 -0.029 0.029 -0.043 0.043 0.030 -0.030
|
|
1 2 3 4 5 6 7 8 9
|
|
0.340 0.002 -0.002 0.005 -0.005 0.007 -0.007 -0.001 0.001
|
|
-0.298 -0.014 0.014 -0.029 0.029 -0.043 0.043 0.030 -0.030
|
|
|
|
|
|
Upper and lower wings at the 32 th omega 18.9796 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.555 0.010 -0.010 0.019 -0.019 0.029 -0.029 -0.034 0.034
|
|
-0.591 -0.000 0.000 -0.001 0.001 -0.001 0.001 0.072 -0.072
|
|
1 2 3 4 5 6 7 8 9
|
|
0.555 0.010 -0.010 0.019 -0.019 0.029 -0.029 -0.034 0.034
|
|
-0.591 -0.000 0.000 -0.001 0.001 -0.001 0.001 0.072 -0.072
|
|
|
|
|
|
Upper and lower wings at the 33 th omega 19.5918 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.484 -0.004 0.004 -0.008 0.008 -0.012 0.012 -0.036 0.036
|
|
-0.238 -0.005 0.005 -0.011 0.011 -0.016 0.016 0.027 -0.027
|
|
1 2 3 4 5 6 7 8 9
|
|
0.484 -0.004 0.004 -0.008 0.008 -0.012 0.012 -0.036 0.036
|
|
-0.238 -0.005 0.005 -0.011 0.011 -0.016 0.016 0.027 -0.027
|
|
|
|
|
|
Upper and lower wings at the 34 th omega 20.2041 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.313 -0.017 0.017 -0.034 0.034 -0.051 0.051 -0.032 0.032
|
|
-0.315 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.046 -0.046
|
|
1 2 3 4 5 6 7 8 9
|
|
0.313 -0.017 0.017 -0.034 0.034 -0.051 0.051 -0.032 0.032
|
|
-0.315 -0.012 0.012 -0.024 0.024 -0.035 0.035 0.046 -0.046
|
|
|
|
|
|
Upper and lower wings at the 35 th omega 20.8163 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.171 -0.009 0.009 -0.018 0.018 -0.026 0.026 -0.013 0.013
|
|
-0.651 -0.024 0.024 -0.047 0.047 -0.071 0.071 0.069 -0.069
|
|
1 2 3 4 5 6 7 8 9
|
|
0.171 -0.009 0.009 -0.018 0.018 -0.026 0.026 -0.013 0.013
|
|
-0.651 -0.024 0.024 -0.047 0.047 -0.071 0.071 0.069 -0.069
|
|
|
|
|
|
Upper and lower wings at the 36 th omega 21.4286 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.303 -0.006 0.006 -0.012 0.012 -0.019 0.019 -0.033 0.033
|
|
-0.410 -0.031 0.031 -0.063 0.063 -0.094 0.094 0.049 -0.049
|
|
1 2 3 4 5 6 7 8 9
|
|
0.303 -0.006 0.006 -0.012 0.012 -0.019 0.019 -0.033 0.033
|
|
-0.410 -0.031 0.031 -0.063 0.063 -0.094 0.094 0.049 -0.049
|
|
|
|
|
|
Upper and lower wings at the 37 th omega 22.0408 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.323 0.010 -0.010 0.020 -0.020 0.030 -0.030 -0.050 0.050
|
|
-0.556 -0.027 0.027 -0.053 0.053 -0.080 0.080 0.054 -0.054
|
|
1 2 3 4 5 6 7 8 9
|
|
0.323 0.010 -0.010 0.020 -0.020 0.030 -0.030 -0.050 0.050
|
|
-0.556 -0.027 0.027 -0.053 0.053 -0.080 0.080 0.054 -0.054
|
|
|
|
|
|
Upper and lower wings at the 38 th omega 22.6531 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.546 0.019 -0.019 0.038 -0.038 0.057 -0.057 -0.077 0.077
|
|
-0.558 -0.020 0.020 -0.039 0.039 -0.059 0.059 0.053 -0.053
|
|
1 2 3 4 5 6 7 8 9
|
|
0.546 0.019 -0.019 0.038 -0.038 0.057 -0.057 -0.077 0.077
|
|
-0.558 -0.020 0.020 -0.039 0.039 -0.059 0.059 0.053 -0.053
|
|
|
|
|
|
Upper and lower wings at the 39 th omega 23.2653 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.362 0.025 -0.025 0.050 -0.050 0.075 -0.075 -0.062 0.062
|
|
-0.804 -0.027 0.027 -0.054 0.054 -0.081 0.081 0.114 -0.114
|
|
1 2 3 4 5 6 7 8 9
|
|
0.362 0.025 -0.025 0.050 -0.050 0.075 -0.075 -0.062 0.062
|
|
-0.804 -0.027 0.027 -0.054 0.054 -0.081 0.081 0.114 -0.114
|
|
|
|
|
|
Upper and lower wings at the 40 th omega 23.8776 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.460 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.091 0.091
|
|
-0.403 -0.028 0.028 -0.055 0.055 -0.083 0.083 0.029 -0.029
|
|
1 2 3 4 5 6 7 8 9
|
|
0.460 0.001 -0.001 0.002 -0.002 0.003 -0.003 -0.091 0.091
|
|
-0.403 -0.028 0.028 -0.055 0.055 -0.083 0.083 0.029 -0.029
|
|
|
|
|
|
Upper and lower wings at the 41 th omega 24.4898 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.258 -0.004 0.004 -0.007 0.007 -0.011 0.011 -0.094 0.094
|
|
-0.300 -0.017 0.017 -0.033 0.033 -0.050 0.050 0.023 -0.023
|
|
1 2 3 4 5 6 7 8 9
|
|
0.258 -0.004 0.004 -0.007 0.007 -0.011 0.011 -0.094 0.094
|
|
-0.300 -0.017 0.017 -0.033 0.033 -0.050 0.050 0.023 -0.023
|
|
|
|
|
|
Upper and lower wings at the 42 th omega 25.1020 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.003 -0.028 0.028 -0.056 0.056 -0.084 0.084 -0.157 0.157
|
|
-0.655 -0.089 0.089 -0.178 0.178 -0.267 0.267 0.011 -0.011
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.003 -0.028 0.028 -0.056 0.056 -0.084 0.084 -0.157 0.157
|
|
-0.655 -0.089 0.089 -0.178 0.178 -0.267 0.267 0.011 -0.011
|
|
|
|
|
|
Upper and lower wings at the 43 th omega 25.7143 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.331 0.064 -0.064 0.127 -0.127 0.191 -0.191 -0.104 0.104
|
|
-0.712 -0.055 0.055 -0.110 0.110 -0.165 0.165 0.030 -0.030
|
|
1 2 3 4 5 6 7 8 9
|
|
0.331 0.064 -0.064 0.127 -0.127 0.191 -0.191 -0.104 0.104
|
|
-0.712 -0.055 0.055 -0.110 0.110 -0.165 0.165 0.030 -0.030
|
|
|
|
|
|
Upper and lower wings at the 44 th omega 26.3265 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.109 0.063 -0.063 0.125 -0.125 0.188 -0.188 -0.099 0.099
|
|
-0.804 -0.027 0.027 -0.054 0.054 -0.080 0.080 0.028 -0.028
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.109 0.063 -0.063 0.125 -0.125 0.188 -0.188 -0.099 0.099
|
|
-0.804 -0.027 0.027 -0.054 0.054 -0.080 0.080 0.028 -0.028
|
|
|
|
|
|
Upper and lower wings at the 45 th omega 26.9388 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.024 0.130 -0.130 0.260 -0.260 0.391 -0.391 -0.121 0.121
|
|
-0.883 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.010 0.010
|
|
1 2 3 4 5 6 7 8 9
|
|
0.024 0.130 -0.130 0.260 -0.260 0.391 -0.391 -0.121 0.121
|
|
-0.883 0.004 -0.004 0.007 -0.007 0.011 -0.011 -0.010 0.010
|
|
|
|
|
|
Upper and lower wings at the 46 th omega 27.5510 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.171 0.023 -0.023 0.045 -0.045 0.068 -0.068 -0.058 0.058
|
|
-0.708 -0.015 0.015 -0.030 0.030 -0.045 0.045 0.019 -0.019
|
|
1 2 3 4 5 6 7 8 9
|
|
0.171 0.023 -0.023 0.045 -0.045 0.068 -0.068 -0.058 0.058
|
|
-0.708 -0.015 0.015 -0.030 0.030 -0.045 0.045 0.019 -0.019
|
|
|
|
|
|
Upper and lower wings at the 47 th omega 28.1633 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.506 0.097 -0.097 0.193 -0.193 0.290 -0.290 -0.151 0.151
|
|
-0.882 -0.010 0.010 -0.020 0.020 -0.030 0.030 0.018 -0.018
|
|
1 2 3 4 5 6 7 8 9
|
|
0.506 0.097 -0.097 0.193 -0.193 0.290 -0.290 -0.151 0.151
|
|
-0.882 -0.010 0.010 -0.020 0.020 -0.030 0.030 0.018 -0.018
|
|
|
|
|
|
Upper and lower wings at the 48 th omega 28.7755 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.441 0.198 -0.198 0.396 -0.396 0.595 -0.595 -0.223 0.223
|
|
-1.033 0.029 -0.029 0.058 -0.058 0.087 -0.087 -0.093 0.093
|
|
1 2 3 4 5 6 7 8 9
|
|
-0.441 0.198 -0.198 0.396 -0.396 0.595 -0.595 -0.223 0.223
|
|
-1.033 0.029 -0.029 0.058 -0.058 0.087 -0.087 -0.093 0.093
|
|
|
|
|
|
Upper and lower wings at the 49 th omega 29.3878 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.554 0.045 -0.045 0.091 -0.091 0.136 -0.136 -0.065 0.065
|
|
-1.186 0.060 -0.060 0.120 -0.120 0.180 -0.180 -0.041 0.041
|
|
1 2 3 4 5 6 7 8 9
|
|
0.554 0.045 -0.045 0.091 -0.091 0.136 -0.136 -0.065 0.065
|
|
-1.186 0.060 -0.060 0.120 -0.120 0.180 -0.180 -0.041 0.041
|
|
|
|
|
|
Upper and lower wings at the 50 th omega 30.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
0.491 0.058 -0.058 0.116 -0.116 0.174 -0.174 -0.038 0.038
|
|
-1.238 0.042 -0.042 0.085 -0.085 0.127 -0.127 -0.049 0.049
|
|
1 2 3 4 5 6 7 8 9
|
|
0.491 0.058 -0.058 0.116 -0.116 0.174 -0.174 -0.038 0.038
|
|
-1.238 0.042 -0.042 0.085 -0.085 0.127 -0.127 -0.049 0.049
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 2 q = (-0.250000,-0.250000,-0.250000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -16.531 -4.713 -4.093 -4.714 -4.098 -4.713 -4.093 -1.090 -1.341
|
|
0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
|
|
|
|
2 -4.713 -30.986 -8.295 -1.037 -1.202 -1.039 -1.204 -9.777 -6.816
|
|
0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -16.730 -4.797 -4.147 -4.799 -4.151 -4.798 -4.146 -1.111 -1.329
|
|
-0.274 -0.109 -0.076 -0.109 -0.076 -0.109 -0.076 -0.034 0.004
|
|
|
|
2 -4.797 -31.248 -8.472 -1.028 -1.188 -1.030 -1.190 -9.908 -6.894
|
|
-0.109 -0.394 -0.225 -0.013 -0.000 -0.013 -0.000 -0.183 -0.116
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -17.409 -5.083 -4.324 -5.084 -4.329 -5.083 -4.324 -1.177 -1.284
|
|
-0.329 -0.131 -0.089 -0.131 -0.089 -0.131 -0.089 -0.036 0.009
|
|
|
|
2 -5.083 -32.168 -9.089 -0.971 -1.126 -0.973 -1.128 -10.366 -7.160
|
|
-0.131 -0.481 -0.281 0.005 0.012 0.005 0.012 -0.224 -0.138
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -18.837 -5.668 -4.683 -5.669 -4.687 -5.668 -4.683 -1.284 -1.166
|
|
-0.479 -0.182 -0.121 -0.182 -0.121 -0.182 -0.121 -0.037 0.030
|
|
|
|
2 -5.668 -34.400 -10.518 -0.643 -0.890 -0.646 -0.892 -11.440 -7.763
|
|
-0.182 -1.439 -0.773 0.418 0.222 0.418 0.221 -0.674 -0.351
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -21.986 -6.922 -5.396 -6.922 -5.400 -6.922 -5.396 -1.346 -0.780
|
|
-1.245 -0.510 -0.339 -0.510 -0.339 -0.510 -0.339 -0.069 0.052
|
|
|
|
2 -6.922 -36.737 -12.610 -0.925 -0.760 -0.927 -0.762 -12.572 -8.506
|
|
-0.510 -1.589 -1.165 0.210 0.210 0.210 0.209 -0.700 -0.463
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -24.472 -8.672 -6.469 -8.673 -6.474 -8.672 -6.469 -2.775 -1.475
|
|
-12.043 -3.805 -1.960 -3.804 -1.959 -3.805 -1.960 1.924 2.832
|
|
|
|
2 -8.672 -39.646 -14.413 -1.553 -1.118 -1.554 -1.120 -14.155 -9.275
|
|
-3.805 -14.971 -10.630 4.454 3.376 4.455 3.375 -6.145 -3.385
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -28.519 -10.700 -7.415 -10.701 -7.418 -10.701 -7.415 -3.920 -1.141
|
|
-11.289 -4.662 -2.092 -4.662 -2.094 -4.661 -2.093 -0.337 1.709
|
|
|
|
2 -10.700 -38.808 -14.022 -5.112 -3.172 -5.115 -3.176 -14.678 -9.339
|
|
-4.662 -10.268 -7.646 1.184 1.811 1.187 1.810 -4.216 -1.946
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -0.686 -0.335 -3.853 -0.339 -3.859 -0.339 -3.852 -5.239 -6.831
|
|
-18.308 -8.587 -4.590 -8.586 -4.592 -8.586 -4.591 -3.279 0.420
|
|
|
|
2 -0.335 -23.651 -2.875 -5.999 -5.745 -6.008 -5.742 -9.686 -8.324
|
|
-8.587 -18.866 -14.331 0.088 1.443 0.088 1.441 -9.761 -5.629
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -4.375 -0.253 -2.482 -0.255 -2.488 -0.254 -2.481 -0.855 -3.365
|
|
-18.348 -12.448 -8.852 -12.447 -8.853 -12.447 -8.853 -8.661 -3.194
|
|
|
|
2 -0.253 -25.713 -2.476 -6.072 -5.619 -6.072 -5.621 -9.344 -7.401
|
|
-12.448 -19.057 -14.536 -7.232 -4.577 -7.231 -4.573 -13.220 -7.794
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -3.380 1.802 -0.732 1.802 -0.731 1.800 -0.732 0.494 -3.144
|
|
-9.105 -6.406 -4.960 -6.405 -4.960 -6.405 -4.959 -4.764 -1.997
|
|
|
|
2 1.802 -28.831 -5.611 -3.273 -3.411 -3.280 -3.420 -11.560 -8.923
|
|
-6.406 -12.373 -8.856 -4.809 -3.475 -4.806 -3.476 -9.207 -5.638
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -9.175 1.545 -1.752 1.548 -1.743 1.543 -1.752 3.609 -0.335
|
|
-10.831 -8.648 -5.297 -8.639 -5.275 -8.652 -5.298 -6.394 -2.731
|
|
|
|
2 1.545 -23.985 -1.720 -1.676 -2.771 -1.685 -2.782 -4.369 -4.187
|
|
-8.648 -27.876 -20.702 -10.444 -6.118 -10.465 -6.134 -23.928 -14.528
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -5.271 3.897 0.231 3.890 0.216 3.896 0.231 3.044 -0.688
|
|
-7.571 -4.899 -4.007 -4.896 -4.002 -4.898 -4.008 -2.969 -1.675
|
|
|
|
2 3.897 -16.426 5.759 2.395 0.775 2.388 0.758 2.913 0.170
|
|
-4.899 -15.631 -11.664 -5.532 -4.171 -5.527 -4.176 -12.697 -7.655
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -11.792 0.386 -2.883 0.375 -2.902 0.383 -2.882 0.221 -2.263
|
|
-24.714 -14.737 -12.523 -14.734 -12.524 -14.736 -12.527 -7.285 -5.405
|
|
|
|
2 0.386 -20.311 1.710 2.687 0.603 2.665 0.600 2.552 -1.398
|
|
-14.737 -25.282 -19.145 -12.097 -8.424 -12.083 -8.433 -15.776 -10.540
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -8.825 2.470 -0.749 2.460 -0.762 2.467 -0.746 0.364 -0.932
|
|
-9.242 -3.074 -3.427 -3.072 -3.423 -3.074 -3.428 -0.959 0.101
|
|
|
|
2 2.470 -23.195 1.518 1.989 1.355 1.974 1.356 -2.531 -3.346
|
|
-3.074 -14.822 -9.743 -1.645 -0.783 -1.652 -0.797 -8.878 -6.083
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.542 9.028 3.440 9.032 3.449 9.027 3.442 6.319 2.980
|
|
-11.578 -5.007 -5.736 -5.014 -5.751 -5.007 -5.737 -3.844 -1.718
|
|
|
|
2 9.028 -21.003 3.936 7.303 5.359 7.295 5.353 4.896 0.557
|
|
-5.007 -18.701 -11.356 -3.954 -3.108 -3.951 -3.098 -12.739 -8.549
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 66.34 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 3 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.023 -2.567 -2.272 -4.383 -4.382 -2.568 -2.275 -1.152 -1.215
|
|
-0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
|
|
|
|
2 -2.567 -28.842 -6.239 -1.175 -1.180 0.355 -0.016 -9.220 -7.573
|
|
0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.191 -2.639 -2.310 -4.440 -4.439 -2.640 -2.313 -1.158 -1.201
|
|
-0.214 -0.076 -0.046 -0.085 -0.085 -0.076 -0.046 -0.020 0.002
|
|
|
|
2 -2.639 -29.088 -6.401 -1.160 -1.165 0.360 -0.002 -9.329 -7.657
|
|
-0.076 -0.367 -0.198 -0.004 -0.004 -0.001 0.012 -0.161 -0.130
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.775 -2.894 -2.445 -4.624 -4.623 -2.896 -2.448 -1.168 -1.142
|
|
-0.267 -0.102 -0.060 -0.095 -0.095 -0.102 -0.060 -0.016 0.012
|
|
|
|
2 -2.894 -29.945 -6.964 -1.096 -1.101 0.391 0.051 -9.702 -7.942
|
|
-0.102 -0.445 -0.250 0.007 0.007 0.009 0.020 -0.193 -0.152
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -14.100 -3.508 -2.768 -4.958 -4.957 -3.509 -2.771 -1.129 -0.957
|
|
-0.441 -0.194 -0.108 -0.114 -0.114 -0.194 -0.108 0.006 0.051
|
|
|
|
2 -3.508 -31.956 -8.267 -0.890 -0.895 0.603 0.232 -10.580 -8.571
|
|
-0.194 -1.058 -0.588 0.049 0.049 0.409 0.223 -0.618 -0.373
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -17.277 -5.089 -3.611 -5.361 -5.360 -5.090 -3.614 -0.743 -0.277
|
|
-2.270 -1.204 -0.670 0.020 0.020 -1.204 -0.670 0.488 0.669
|
|
|
|
2 -5.089 -35.173 -10.648 -0.030 -0.034 -0.360 -0.062 -11.058 -9.092
|
|
-1.204 -2.150 -1.604 0.361 0.361 -0.068 0.276 -0.474 -0.342
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -15.533 -3.365 -2.508 -8.524 -8.522 -3.366 -2.512 -3.534 -2.685
|
|
-13.523 -9.168 -5.305 2.096 2.096 -9.168 -5.304 3.924 4.536
|
|
|
|
2 -3.365 -35.643 -10.925 -1.581 -1.585 1.366 1.017 -13.477 -11.390
|
|
-9.168 -17.397 -11.169 8.119 8.118 -4.970 -3.414 -0.427 0.503
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -16.077 -1.197 -0.422 -11.496 -11.494 -1.198 -0.426 -4.527 -3.051
|
|
-8.130 -2.257 -0.462 -5.349 -5.349 -2.256 -0.462 -1.454 0.108
|
|
|
|
2 -1.197 -31.583 -8.525 -7.312 -7.316 3.378 3.087 -16.489 -13.903
|
|
-2.257 -10.895 -8.187 1.797 1.798 3.488 3.425 -5.181 -4.676
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -5.942 -0.696 -3.517 -6.339 -6.338 -0.700 -3.522 -6.958 -7.420
|
|
-10.560 -2.902 -0.111 -6.477 -6.477 -2.901 -0.113 -1.914 0.218
|
|
|
|
2 -0.696 -23.030 -2.511 -8.503 -8.506 -1.560 -1.089 -10.591 -9.035
|
|
-2.902 -14.908 -11.112 -0.382 -0.381 3.911 4.150 -9.513 -8.323
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -4.041 -0.400 -2.293 -0.953 -0.952 -0.401 -2.297 -1.125 -2.642
|
|
-12.308 -6.311 -3.678 -11.071 -11.071 -6.310 -3.677 -7.049 -4.285
|
|
|
|
2 -0.400 -24.367 -0.577 -5.317 -5.321 -6.130 -5.295 -8.174 -5.927
|
|
-6.311 -16.667 -12.717 -7.201 -7.201 -1.657 0.291 -13.936 -11.485
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.970 1.794 -0.801 0.205 0.206 1.791 -0.805 -0.260 -1.870
|
|
-7.712 -3.874 -3.007 -4.575 -4.574 -3.872 -3.004 -1.929 -0.889
|
|
|
|
2 1.794 -28.843 -5.993 -3.531 -3.536 -2.657 -2.737 -11.561 -9.160
|
|
-3.874 -9.862 -6.879 -3.672 -3.671 -1.691 -0.756 -7.126 -5.807
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -5.471 2.338 -0.720 -1.035 -1.034 2.338 -0.719 0.748 -1.299
|
|
-6.897 -3.421 -1.142 -7.874 -7.874 -3.422 -1.136 -4.940 -3.322
|
|
|
|
2 2.338 -18.287 2.431 -2.402 -2.405 -1.106 -1.603 -3.624 -2.402
|
|
-3.421 -25.737 -21.031 -6.467 -6.467 -4.641 -1.805 -21.040 -16.796
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.183 2.181 -1.336 0.555 0.556 2.178 -1.348 1.264 -0.575
|
|
-4.552 -1.811 -1.370 -3.955 -3.955 -1.808 -1.366 -1.869 -1.404
|
|
|
|
2 2.181 -18.892 5.012 -0.180 -0.181 0.447 -0.467 0.551 0.178
|
|
-1.811 -11.614 -8.866 -4.976 -4.980 -3.052 -2.099 -10.618 -8.256
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.598 2.530 -0.867 -1.227 -1.225 2.520 -0.883 -0.554 -1.810
|
|
-18.972 -7.622 -6.167 -18.162 -18.162 -7.618 -6.166 -9.586 -7.998
|
|
|
|
2 2.530 -20.192 3.317 2.908 2.901 4.264 2.251 1.280 0.060
|
|
-7.622 -19.857 -14.165 -12.276 -12.263 -4.668 -1.796 -15.833 -13.100
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.121 1.801 -1.415 3.737 3.739 1.792 -1.429 2.553 1.326
|
|
-7.704 -0.626 -1.347 -4.091 -4.091 -0.631 -1.360 -1.231 -0.364
|
|
|
|
2 1.801 -20.855 3.138 4.916 4.907 -0.515 -1.066 0.356 1.059
|
|
-0.626 -12.968 -8.316 -1.711 -1.712 0.289 1.117 -8.382 -6.458
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.280 4.532 0.779 4.134 4.137 4.533 0.788 3.458 1.486
|
|
-8.420 -3.656 -4.289 -3.798 -3.798 -3.660 -4.296 -2.844 -1.863
|
|
|
|
2 4.532 -26.132 0.510 4.643 4.634 1.530 0.643 -0.096 -0.406
|
|
-3.656 -20.631 -13.064 -1.762 -1.763 -4.621 -3.306 -11.444 -7.860
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 68.05 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 4 q = ( 0.000000,-0.250000, 0.000000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.574 -2.379 -2.379 -0.036 -0.117 -2.379 -2.379 0.292 -0.033
|
|
-0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000
|
|
|
|
2 -2.379 -32.035 -7.021 0.041 -0.286 -1.378 -1.380 -8.632 -7.116
|
|
0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.677 -2.421 -2.421 -0.067 -0.115 -2.420 -2.420 0.285 -0.016
|
|
-0.124 -0.053 -0.053 -0.022 0.002 -0.053 -0.053 -0.005 0.016
|
|
|
|
2 -2.421 -32.241 -7.193 0.054 -0.267 -1.358 -1.360 -8.750 -7.200
|
|
-0.053 -0.337 -0.216 0.007 0.016 0.001 0.001 -0.159 -0.121
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -7.040 -2.564 -2.564 -0.187 -0.114 -2.564 -2.564 0.263 0.043
|
|
-0.160 -0.065 -0.065 -0.038 0.001 -0.065 -0.065 -0.007 0.022
|
|
|
|
2 -2.564 -32.939 -7.786 0.102 -0.201 -1.278 -1.279 -9.156 -7.483
|
|
-0.065 -0.393 -0.266 0.013 0.023 0.014 0.014 -0.193 -0.143
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -7.898 -2.883 -2.883 -0.510 -0.121 -2.883 -2.883 0.212 0.186
|
|
-0.281 -0.105 -0.105 -0.095 -0.003 -0.105 -0.105 -0.014 0.043
|
|
|
|
2 -2.883 -34.431 -9.078 0.217 -0.045 -1.031 -1.033 -10.032 -8.085
|
|
-0.105 -0.554 -0.414 0.027 0.043 0.064 0.064 -0.292 -0.208
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -9.889 -3.467 -3.467 -1.573 -0.380 -3.467 -3.467 -0.027 0.421
|
|
-1.871 -0.821 -0.821 -0.580 0.252 -0.822 -0.822 0.062 0.453
|
|
|
|
2 -3.467 -37.637 -11.941 0.552 0.302 -0.141 -0.143 -12.044 -9.443
|
|
-0.821 -2.305 -2.049 -0.007 0.294 0.684 0.684 -1.249 -0.777
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.022 -3.714 -3.714 2.635 1.453 -3.714 -3.714 0.605 0.104
|
|
-10.195 -0.814 -0.814 -10.708 -5.083 -0.814 -0.814 -3.064 -0.508
|
|
|
|
2 -3.714 -39.042 -13.110 1.716 0.949 -2.466 -2.468 -12.193 -9.991
|
|
-0.814 -10.611 -9.875 1.101 0.728 5.515 5.516 -7.606 -5.089
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -6.165 -3.771 -3.771 4.795 3.358 -3.771 -3.771 2.122 1.669
|
|
-4.334 -2.845 -2.845 0.598 1.403 -2.845 -2.845 0.242 1.238
|
|
|
|
2 -3.771 -33.518 -7.164 -0.737 -0.559 -6.849 -6.852 -8.408 -6.612
|
|
-2.845 -11.979 -11.352 3.902 3.462 2.381 2.380 -6.121 -4.128
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -5.837 -5.333 -5.333 3.360 0.483 -5.333 -5.333 -0.946 -1.615
|
|
-4.034 -2.200 -2.200 0.755 2.023 -2.200 -2.200 0.279 1.448
|
|
|
|
2 -5.333 -26.608 -0.683 -3.254 -1.108 -12.790 -12.791 -2.889 -2.611
|
|
-2.200 -11.353 -10.077 1.676 1.181 2.223 2.222 -7.482 -4.989
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.305 -0.709 -0.709 -0.912 -2.763 -0.708 -0.708 -0.969 -2.361
|
|
-6.047 -5.474 -5.474 -0.399 1.229 -5.477 -5.477 -1.433 0.337
|
|
|
|
2 -0.709 -31.046 -3.728 -4.714 -3.391 -5.628 -5.630 -9.093 -8.279
|
|
-5.474 -10.636 -8.880 -2.486 -0.627 -5.877 -5.877 -6.935 -4.192
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -1.734 0.059 0.059 2.175 -0.727 0.061 0.061 0.673 -1.106
|
|
-4.983 -3.030 -3.030 -0.277 0.035 -3.031 -3.031 0.470 1.115
|
|
|
|
2 0.059 -35.681 -9.622 -3.262 -3.211 -4.857 -4.860 -12.604 -12.056
|
|
-3.030 -8.412 -6.990 -1.170 -0.511 -2.516 -2.518 -5.366 -3.730
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.247 0.394 0.394 1.818 -0.981 0.396 0.395 1.010 -0.889
|
|
-3.421 -4.336 -4.336 1.649 2.962 -4.336 -4.336 -0.060 0.769
|
|
|
|
2 0.394 -25.826 1.040 -1.203 -1.910 -0.441 -0.446 -1.738 -2.767
|
|
-4.336 -30.883 -27.268 -1.513 0.127 -9.947 -9.949 -21.886 -17.008
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -5.995 -1.678 -1.678 1.617 -1.581 -1.678 -1.678 0.614 -0.884
|
|
-2.275 -1.952 -1.952 0.239 0.548 -1.955 -1.955 -0.036 0.268
|
|
|
|
2 -1.678 -25.421 1.825 -1.021 -0.671 -3.261 -3.263 0.900 -1.325
|
|
-1.952 -12.001 -10.567 -3.550 -2.587 -3.932 -3.931 -9.150 -6.644
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.148 1.473 1.473 3.174 -0.520 1.478 1.478 0.517 -0.925
|
|
-12.451 -10.957 -10.957 1.361 2.066 -10.957 -10.957 -0.199 0.587
|
|
|
|
2 1.473 -21.583 5.285 3.856 2.846 2.082 2.086 3.366 -0.486
|
|
-10.957 -30.554 -26.818 -4.902 -1.178 -15.278 -15.289 -15.931 -12.154
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.922 3.186 3.186 -0.183 -3.803 3.189 3.189 -0.477 -1.185
|
|
-5.292 -2.324 -2.324 3.262 1.431 -2.321 -2.321 1.462 2.118
|
|
|
|
2 3.186 -18.084 9.802 1.820 0.922 7.867 7.871 3.934 0.266
|
|
-2.324 -9.607 -7.407 0.426 0.268 -2.195 -2.196 -4.424 -3.781
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -2.040 1.557 1.557 0.641 -2.333 1.557 1.557 -0.039 -1.398
|
|
-4.623 -1.739 -1.739 -2.409 -3.334 -1.736 -1.736 -2.839 -1.388
|
|
|
|
2 1.557 -26.187 2.605 0.496 -0.508 4.663 4.663 -0.042 -1.954
|
|
-1.739 -10.319 -8.180 -1.861 -0.494 0.950 0.951 -5.738 -5.276
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 71.29 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 5 q = ( 0.500000,-0.250000,-0.250000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -24.780 -3.508 -4.913 -8.010 -6.848 -8.010 -6.849 -0.917 -1.074
|
|
0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000
|
|
|
|
2 -3.508 -31.984 -6.586 -1.118 -1.125 -1.115 -1.149 -5.942 -5.838
|
|
0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -25.038 -3.541 -5.021 -8.123 -6.930 -8.123 -6.931 -0.890 -1.069
|
|
-0.367 -0.055 -0.127 -0.158 -0.121 -0.158 -0.121 0.016 -0.006
|
|
|
|
2 -3.541 -32.115 -6.725 -1.105 -1.105 -1.102 -1.128 -6.008 -5.894
|
|
-0.055 -0.244 -0.177 0.005 0.014 0.005 0.014 -0.092 -0.087
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -25.944 -3.643 -5.403 -8.508 -7.215 -8.508 -7.217 -0.779 -1.045
|
|
-0.453 -0.057 -0.163 -0.190 -0.146 -0.190 -0.146 0.035 0.000
|
|
|
|
2 -3.643 -32.563 -7.207 -1.046 -1.025 -1.043 -1.049 -6.237 -6.084
|
|
-0.057 -0.281 -0.220 0.017 0.026 0.016 0.026 -0.114 -0.104
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -28.111 -3.724 -6.292 -9.356 -7.895 -9.356 -7.897 -0.367 -0.933
|
|
-1.487 0.228 -0.433 -0.524 -0.534 -0.524 -0.534 0.489 0.140
|
|
|
|
2 -3.724 -33.589 -8.303 -0.804 -0.759 -0.801 -0.783 -6.804 -6.537
|
|
0.228 -0.635 -0.596 0.289 0.255 0.289 0.256 -0.400 -0.331
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -30.267 -5.042 -7.894 -10.200 -8.140 -10.199 -8.141 -0.740 -0.991
|
|
-1.340 -0.287 -0.735 -0.422 -0.316 -0.423 -0.316 0.156 0.031
|
|
|
|
2 -5.042 -34.690 -9.784 -1.100 -0.870 -1.096 -0.893 -7.047 -6.710
|
|
-0.287 -0.677 -0.711 0.071 0.089 0.071 0.090 -0.250 -0.214
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -33.860 -5.335 -8.608 -12.650 -9.747 -12.650 -9.747 -0.362 -0.771
|
|
-12.661 -3.844 -9.986 -1.328 -0.572 -1.329 -0.571 1.806 0.967
|
|
|
|
2 -5.335 -37.124 -12.345 -0.947 -0.486 -0.942 -0.507 -8.654 -7.943
|
|
-3.844 -3.991 -5.754 0.799 1.150 0.803 1.153 -0.599 -0.039
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -39.971 -4.416 -9.090 -17.646 -13.000 -17.645 -13.001 0.059 -0.461
|
|
-9.433 -0.828 -2.731 -4.235 -2.040 -4.238 -2.038 2.127 2.222
|
|
|
|
2 -4.416 -40.887 -16.428 -0.399 0.379 -0.399 0.355 -11.762 -10.528
|
|
-0.828 -5.492 -6.503 1.690 2.085 1.698 2.093 -2.922 -1.566
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -8.102 -1.069 5.249 -4.367 -6.978 -4.361 -6.985 -5.932 -6.617
|
|
-26.651 -2.538 -11.500 -13.449 -8.311 -13.451 -8.307 3.238 1.719
|
|
|
|
2 -1.069 -26.218 3.138 -4.802 -5.799 -4.820 -5.833 -3.343 -5.708
|
|
-2.538 -13.228 -15.933 1.679 2.694 1.677 2.696 -8.238 -6.209
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -14.304 -4.681 -0.554 -4.915 -5.889 -4.908 -5.902 -5.810 -5.464
|
|
-22.364 -4.444 -12.070 -15.934 -11.207 -15.932 -11.198 -2.054 -5.003
|
|
|
|
2 -4.681 -27.953 0.514 -4.393 -4.735 -4.401 -4.755 -2.556 -4.440
|
|
-4.444 -9.872 -12.727 -2.143 -1.419 -2.143 -1.410 -7.027 -6.630
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -14.640 -1.913 2.821 -4.897 -5.828 -4.902 -5.834 -3.436 -2.911
|
|
-15.214 -5.591 -9.098 -10.375 -8.200 -10.373 -8.203 -3.201 -4.861
|
|
|
|
2 -1.913 -28.908 0.053 -2.445 -2.869 -2.455 -2.899 -3.394 -4.815
|
|
-5.591 -7.068 -9.140 -3.303 -2.648 -3.307 -2.639 -4.478 -4.851
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -14.099 -3.530 1.721 -0.526 -2.793 -0.526 -2.802 -2.157 -1.139
|
|
-21.026 -2.265 -7.596 -19.512 -13.948 -19.514 -13.961 -3.141 -6.207
|
|
|
|
2 -3.530 -28.973 0.823 -1.459 -2.625 -1.465 -2.678 -1.883 -3.249
|
|
-2.265 -12.325 -12.499 -2.386 -0.957 -2.422 -0.960 -8.146 -8.035
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -8.452 -1.015 6.235 5.339 1.045 5.338 1.045 -0.114 2.589
|
|
-11.521 -3.232 -4.869 -8.414 -6.783 -8.414 -6.788 -2.268 -3.275
|
|
|
|
2 -1.015 -24.407 5.326 -0.190 -0.319 -0.199 -0.357 0.858 -1.012
|
|
-3.232 -6.830 -7.105 -1.917 -1.478 -1.929 -1.480 -3.960 -4.236
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -21.508 -5.817 -0.829 -2.201 -4.599 -2.198 -4.603 -1.654 -0.573
|
|
-16.849 -9.031 -10.352 -9.046 -7.471 -9.048 -7.472 -3.995 -4.546
|
|
|
|
2 -5.817 -30.480 -2.927 -1.826 -2.172 -1.842 -2.240 -2.089 -4.555
|
|
-9.031 -11.682 -11.104 -3.784 -3.111 -3.831 -3.136 -4.663 -5.189
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -23.255 -3.366 0.028 -6.391 -8.195 -6.375 -8.197 -2.212 -0.955
|
|
-14.934 -2.788 -2.161 -8.977 -7.986 -8.983 -7.994 0.137 -0.691
|
|
|
|
2 -3.366 -30.291 -3.076 -2.012 -1.569 -1.993 -1.584 -3.434 -6.203
|
|
-2.788 -6.537 -8.089 -0.551 -0.296 -0.586 -0.334 -2.813 -4.277
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -11.353 3.475 12.504 8.644 2.563 8.646 2.555 4.104 6.475
|
|
-21.388 -5.640 -6.802 -14.398 -13.294 -14.393 -13.294 -2.331 -4.353
|
|
|
|
2 3.475 -27.770 4.543 4.587 3.464 4.607 3.425 0.731 -0.945
|
|
-5.640 -9.219 -11.467 -2.662 -2.014 -2.692 -2.028 -3.992 -6.957
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 64.95 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 6 q = ( 0.500000, 0.000000,-0.250000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -21.782 -1.869 -2.717 -7.504 -7.507 -6.481 -5.562 -1.047 -0.991
|
|
-0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000
|
|
|
|
2 -1.869 -30.655 -4.345 -1.132 -1.142 0.083 -0.152 -5.519 -6.399
|
|
0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -22.028 -1.890 -2.814 -7.592 -7.594 -6.596 -5.643 -1.016 -0.988
|
|
-0.335 -0.028 -0.094 -0.134 -0.134 -0.144 -0.107 0.020 -0.013
|
|
|
|
2 -1.890 -30.770 -4.469 -1.113 -1.123 0.096 -0.130 -5.570 -6.463
|
|
-0.028 -0.221 -0.148 0.011 0.011 0.018 0.026 -0.079 -0.102
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -22.892 -1.961 -3.170 -7.890 -7.892 -6.989 -5.921 -0.898 -0.969
|
|
-0.417 -0.034 -0.135 -0.158 -0.158 -0.176 -0.131 0.036 -0.007
|
|
|
|
2 -1.961 -31.163 -4.900 -1.035 -1.045 0.139 -0.054 -5.745 -6.676
|
|
-0.034 -0.253 -0.187 0.023 0.023 0.021 0.033 -0.093 -0.117
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -24.969 -2.095 -4.097 -8.586 -8.589 -7.815 -6.533 -0.551 -0.901
|
|
-1.063 0.099 -0.339 -0.554 -0.554 -0.193 -0.215 0.223 -0.042
|
|
|
|
2 -2.095 -32.045 -5.900 -0.784 -0.794 0.247 0.132 -6.134 -7.132
|
|
0.099 -0.481 -0.441 0.199 0.199 0.123 0.127 -0.250 -0.264
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -28.587 -3.263 -6.505 -8.430 -8.432 -10.274 -7.961 0.008 -0.115
|
|
-2.375 -0.945 -1.769 -0.145 -0.145 -0.859 -0.350 0.290 0.231
|
|
|
|
2 -3.263 -33.505 -7.823 -0.549 -0.559 -0.086 0.145 -6.350 -7.443
|
|
-0.945 -1.134 -1.361 0.190 0.190 -0.164 0.153 -0.140 -0.159
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -27.556 -1.204 -2.388 -11.161 -11.164 -10.520 -8.403 -0.136 -0.857
|
|
-20.371 -5.399 -17.419 5.169 5.169 -13.270 -9.956 5.961 7.148
|
|
|
|
2 -1.204 -34.549 -8.214 -0.587 -0.595 1.305 1.023 -7.959 -9.333
|
|
-5.399 -4.626 -7.631 3.633 3.633 -4.081 -2.370 1.329 1.789
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -27.762 0.942 1.602 -19.011 -19.014 -7.092 -4.844 -2.613 -5.838
|
|
-8.548 1.497 0.003 -4.911 -4.910 -3.997 -2.399 1.906 1.006
|
|
|
|
2 0.942 -36.266 -9.484 -2.132 -2.140 4.357 3.619 -11.115 -13.420
|
|
1.497 -4.946 -5.757 1.291 1.294 3.471 3.218 -3.662 -3.970
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -14.496 -0.834 3.013 -7.440 -7.443 -5.372 -7.436 -5.074 -4.189
|
|
-17.748 1.447 -3.318 -13.128 -13.127 -6.543 -2.992 1.325 -3.322
|
|
|
|
2 -0.834 -30.928 -1.504 -4.756 -4.767 -0.578 -1.482 -6.571 -7.697
|
|
1.447 -9.290 -10.716 0.541 0.544 3.740 3.944 -6.916 -8.417
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -10.479 -3.992 -0.083 -2.545 -2.553 -1.598 -3.214 -4.547 -3.025
|
|
-20.976 0.326 -5.593 -16.498 -16.497 -14.050 -9.844 -1.388 -6.993
|
|
|
|
2 -3.992 -26.103 3.558 -2.969 -2.974 -3.284 -3.529 -1.252 -2.098
|
|
0.326 -9.647 -11.917 -1.351 -1.350 2.314 2.123 -7.374 -9.599
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -14.193 -1.959 2.554 -4.675 -4.678 -3.737 -5.009 -3.013 -1.256
|
|
-10.231 -3.225 -5.614 -7.459 -7.459 -5.427 -3.949 -2.111 -4.703
|
|
|
|
2 -1.959 -28.733 0.221 -2.572 -2.582 -1.395 -2.102 -3.911 -4.680
|
|
-3.225 -5.039 -5.843 -1.944 -1.942 -0.612 -0.161 -2.704 -4.292
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.955 -2.121 3.195 -3.481 -3.487 -0.866 -2.965 -2.763 -1.476
|
|
-16.358 1.529 -2.177 -14.951 -14.951 -13.135 -9.212 -1.637 -5.365
|
|
|
|
2 -2.121 -27.304 2.040 -2.892 -2.894 -0.425 -1.536 -2.801 -3.490
|
|
1.530 -12.468 -11.149 -0.657 -0.649 2.377 2.903 -8.001 -10.960
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -9.495 -2.337 4.776 3.117 3.116 3.575 -0.479 -0.566 3.452
|
|
-8.624 -0.754 -1.521 -8.242 -8.244 -5.916 -4.515 -1.741 -4.398
|
|
|
|
2 -2.337 -24.310 5.411 -0.487 -0.489 -1.646 -1.529 0.022 0.815
|
|
-0.754 -4.902 -5.051 -1.950 -1.946 0.195 0.303 -3.651 -4.957
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -19.149 -3.612 2.429 -2.970 -2.973 -0.425 -2.857 -2.268 0.493
|
|
-12.513 -4.187 -3.643 -10.248 -10.249 -3.594 -2.846 -4.814 -7.243
|
|
|
|
2 -3.612 -29.474 -0.961 -1.942 -1.962 -0.019 -0.060 -3.037 -3.834
|
|
-4.187 -7.868 -7.704 -5.349 -5.314 1.095 0.997 -6.405 -7.475
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -19.955 -4.513 -1.746 -4.304 -4.308 -4.921 -6.929 -1.628 0.352
|
|
-13.997 -0.672 0.674 -9.125 -9.123 -6.919 -6.010 -0.069 -1.285
|
|
|
|
2 -4.513 -28.974 -0.375 -0.590 -0.628 -3.724 -2.732 -1.442 -3.343
|
|
-0.672 -5.971 -7.465 -0.725 -0.716 1.820 2.208 -3.992 -5.341
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -16.836 0.106 7.667 -0.042 -0.046 1.717 -3.163 1.589 4.722
|
|
-22.954 -4.687 -5.698 -14.238 -14.239 -17.354 -15.601 -1.811 -4.967
|
|
|
|
2 0.106 -28.739 2.448 2.069 2.038 0.100 -0.211 -1.279 -2.256
|
|
-4.687 -8.439 -11.474 -1.664 -1.666 -4.713 -3.015 -2.969 -6.318
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 65.63 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 7 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -18.105 0.061 -0.127 -6.090 -6.090 -6.088 -6.090 0.039 0.421
|
|
-0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000
|
|
|
|
2 0.061 -28.989 -1.613 -0.056 -0.056 -0.051 -0.077 -4.769 -5.458
|
|
0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -18.309 0.075 -0.184 -6.177 -6.177 -6.174 -6.177 0.071 0.422
|
|
-0.279 0.016 -0.040 -0.119 -0.119 -0.119 -0.119 0.033 0.001
|
|
|
|
2 0.075 -29.072 -1.699 -0.035 -0.035 -0.030 -0.056 -4.815 -5.517
|
|
0.016 -0.184 -0.100 0.024 0.024 0.024 0.024 -0.067 -0.089
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -19.017 0.118 -0.402 -6.469 -6.469 -6.467 -6.470 0.182 0.426
|
|
-0.341 0.018 -0.068 -0.142 -0.142 -0.142 -0.142 0.043 0.001
|
|
|
|
2 0.118 -29.347 -1.994 0.037 0.037 0.042 0.016 -4.968 -5.716
|
|
0.018 -0.202 -0.125 0.030 0.030 0.030 0.030 -0.079 -0.103
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -20.581 0.183 -0.991 -7.075 -7.075 -7.073 -7.076 0.425 0.426
|
|
-0.529 0.014 -0.174 -0.204 -0.204 -0.204 -0.204 0.068 -0.005
|
|
|
|
2 0.183 -29.892 -2.624 0.185 0.185 0.189 0.164 -5.275 -6.118
|
|
0.014 -0.247 -0.194 0.043 0.043 0.043 0.043 -0.106 -0.141
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -24.552 0.174 -3.049 -8.359 -8.359 -8.357 -8.359 1.012 0.386
|
|
-1.360 -0.050 -0.770 -0.391 -0.391 -0.391 -0.391 0.187 -0.022
|
|
|
|
2 0.174 -30.974 -4.073 0.500 0.500 0.504 0.480 -5.884 -6.929
|
|
-0.050 -0.389 -0.453 0.090 0.090 0.090 0.090 -0.175 -0.244
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -19.360 2.737 5.413 -8.814 -8.814 -8.813 -8.815 1.468 1.987
|
|
-25.496 -3.828 -22.383 -4.327 -4.327 -4.327 -4.327 2.316 -1.959
|
|
|
|
2 2.737 -32.309 -4.075 1.369 1.369 1.371 1.349 -7.024 -7.941
|
|
-3.828 -2.704 -6.548 0.355 0.355 0.355 0.356 -0.951 -1.857
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -18.803 3.650 8.988 -10.423 -10.423 -10.421 -10.424 1.333 1.837
|
|
-6.787 3.403 2.561 -4.153 -4.153 -4.153 -4.152 3.150 2.663
|
|
|
|
2 3.650 -33.301 -4.735 1.279 1.279 1.282 1.257 -7.864 -8.932
|
|
3.403 -3.892 -4.449 2.618 2.618 2.617 2.621 -3.035 -3.309
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -15.896 2.478 5.086 -6.572 -6.572 -6.570 -6.573 -0.179 -0.018
|
|
-10.641 2.032 1.303 -7.483 -7.483 -7.483 -7.482 1.619 -0.192
|
|
|
|
2 2.478 -32.481 -2.203 0.024 0.024 0.027 -0.005 -6.331 -6.925
|
|
2.032 -6.003 -6.760 0.445 0.445 0.441 0.449 -4.515 -5.425
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -4.283 -5.063 -1.649 1.799 1.799 1.801 1.799 -4.862 -2.896
|
|
-21.750 4.682 0.124 -15.983 -15.983 -15.984 -15.983 2.781 -2.244
|
|
|
|
2 -5.063 -23.561 8.016 -2.606 -2.606 -2.597 -2.623 1.075 0.783
|
|
4.682 -10.180 -12.437 2.164 2.164 2.156 2.159 -7.360 -9.377
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.445 -1.936 2.482 -3.364 -3.364 -3.362 -3.364 -2.378 -0.535
|
|
-3.723 -0.061 -0.819 -2.994 -2.994 -2.996 -2.995 -0.304 -1.494
|
|
|
|
2 -1.936 -28.064 1.173 -1.798 -1.798 -1.796 -1.817 -3.096 -3.959
|
|
-0.061 -2.323 -1.686 -0.030 -0.030 -0.042 -0.034 -1.079 -1.701
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -13.020 -2.099 2.531 -3.736 -3.736 -3.732 -3.735 -2.021 -0.552
|
|
-13.101 5.709 3.330 -10.890 -10.890 -10.891 -10.888 2.445 -0.287
|
|
|
|
2 -2.099 -26.641 2.420 -1.677 -1.677 -1.655 -1.685 -2.062 -3.207
|
|
5.709 -13.634 -10.769 3.215 3.215 3.211 3.236 -7.661 -9.679
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -9.902 -4.314 1.988 2.049 2.049 2.051 2.049 -2.391 0.916
|
|
-7.219 0.934 0.433 -7.434 -7.434 -7.435 -7.433 -0.637 -3.178
|
|
|
|
2 -4.314 -24.172 5.530 -1.980 -1.980 -2.003 -2.028 -0.156 0.042
|
|
0.934 -3.788 -4.259 -0.912 -0.912 -0.910 -0.895 -2.639 -4.210
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -17.556 -0.906 6.353 -0.207 -0.207 -0.201 -0.208 0.120 3.651
|
|
-8.489 0.905 3.600 -3.860 -3.860 -3.861 -3.857 0.284 -0.995
|
|
|
|
2 -0.906 -28.324 1.210 0.844 0.844 0.846 0.787 -1.708 -2.134
|
|
0.905 -3.754 -3.859 -0.474 -0.474 -0.490 -0.467 -1.965 -2.918
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -16.999 -6.735 -4.875 -4.726 -4.726 -4.726 -4.733 -3.363 -1.864
|
|
-13.354 3.082 5.864 -7.571 -7.571 -7.582 -7.581 2.994 2.311
|
|
|
|
2 -6.735 -28.115 2.195 -1.970 -1.970 -1.960 -2.030 -1.668 -3.492
|
|
3.082 -4.909 -6.801 1.959 1.959 1.929 1.930 -2.877 -4.220
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -19.886 -4.905 1.527 -3.551 -3.551 -3.543 -3.550 -2.241 -1.398
|
|
-21.290 -4.141 -5.819 -14.633 -14.633 -14.621 -14.621 -1.563 -5.111
|
|
|
|
2 -4.905 -28.848 1.967 -1.687 -1.687 -1.635 -1.696 -2.715 -4.080
|
|
-4.141 -7.503 -10.459 -1.773 -1.773 -1.737 -1.740 -3.026 -6.609
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 7 : 66.56 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 8 q = ( 0.500000, 0.500000,-0.250000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -30.228 -5.910 -8.243 -5.903 -8.242 -10.246 -8.683 -1.564 -1.023
|
|
0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000
|
|
|
|
2 -5.910 -33.766 -10.458 -0.968 -1.036 -3.004 -2.651 -4.468 -6.370
|
|
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -30.504 -5.974 -8.378 -5.968 -8.378 -10.353 -8.764 -1.548 -1.051
|
|
-0.409 -0.098 -0.175 -0.098 -0.175 -0.174 -0.135 0.009 -0.041
|
|
|
|
2 -5.974 -33.919 -10.623 -0.940 -1.023 -2.997 -2.638 -4.509 -6.464
|
|
-0.098 -0.273 -0.218 0.022 0.005 -0.016 -0.004 -0.061 -0.125
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -31.480 -6.191 -8.854 -6.184 -8.853 -10.712 -9.043 -1.475 -1.132
|
|
-0.506 -0.113 -0.221 -0.113 -0.221 -0.199 -0.160 0.023 -0.040
|
|
|
|
2 -6.191 -34.459 -11.207 -0.823 -0.958 -2.954 -2.582 -4.652 -6.794
|
|
-0.113 -0.325 -0.278 0.042 0.020 -0.003 0.007 -0.073 -0.157
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -33.922 -6.626 -10.010 -6.619 -10.008 -11.457 -9.725 -1.193 -1.195
|
|
-1.872 -0.164 -0.733 -0.164 -0.733 -0.505 -0.610 0.418 0.259
|
|
|
|
2 -6.626 -35.812 -12.692 -0.382 -0.652 -2.711 -2.358 -4.978 -7.592
|
|
-0.164 -1.034 -1.093 0.479 0.446 0.313 0.204 -0.193 -0.534
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -34.953 -7.577 -11.086 -7.571 -11.084 -11.672 -9.284 -1.882 -2.584
|
|
-1.202 -0.303 -0.636 -0.303 -0.635 -0.215 -0.153 0.035 -0.206
|
|
|
|
2 -7.577 -36.253 -13.257 -1.162 -1.624 -2.971 -2.348 -5.334 -8.250
|
|
-0.303 -0.683 -0.700 0.104 0.008 0.138 0.140 -0.182 -0.423
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -40.034 -8.598 -13.471 -8.592 -13.469 -14.300 -11.105 -1.398 -2.722
|
|
-9.212 -3.918 -7.395 -3.919 -7.394 4.489 4.035 -1.386 -6.001
|
|
|
|
2 -8.598 -39.119 -16.456 -0.407 -1.045 -3.021 -2.237 -6.100 -10.036
|
|
-3.918 -3.947 -5.087 -0.794 -2.708 3.203 2.836 -1.491 -4.168
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -48.495 -8.854 -15.688 -8.852 -15.687 -23.197 -17.609 0.968 0.742
|
|
-7.773 -1.178 -2.736 -1.172 -2.730 -4.062 -2.071 1.718 1.850
|
|
|
|
2 -8.854 -44.533 -22.416 2.081 2.137 -4.171 -2.619 -7.314 -12.660
|
|
-1.178 -4.738 -5.361 2.053 2.270 0.422 0.766 -1.078 -2.241
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.610 -4.090 -0.312 -4.082 -0.318 -8.591 -10.774 -3.942 -4.244
|
|
-29.017 -4.883 -13.090 -4.896 -13.086 -13.964 -8.772 4.133 1.272
|
|
|
|
2 -4.090 -23.905 2.704 -5.514 -5.448 -9.451 -10.043 -1.946 0.642
|
|
-4.883 -16.717 -19.210 4.956 4.407 1.630 2.927 -4.556 -10.846
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -26.677 -7.814 -8.335 -7.805 -8.338 -13.992 -13.326 -6.014 -6.548
|
|
-20.772 -7.158 -13.997 -7.166 -13.996 -14.249 -8.929 -1.088 -7.959
|
|
|
|
2 -7.814 -30.826 -6.176 -5.639 -6.128 -7.740 -7.398 -4.578 -5.072
|
|
-7.158 -9.800 -12.515 -0.590 -2.832 -4.420 -2.529 -3.894 -8.788
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -25.337 -5.880 -5.135 -5.866 -5.132 -13.297 -12.622 -3.874 -2.378
|
|
-19.063 -7.839 -13.521 -7.839 -13.523 -12.273 -9.514 -3.695 -8.655
|
|
|
|
2 -5.880 -31.176 -5.611 -3.138 -3.033 -6.818 -6.403 -3.753 -3.291
|
|
-7.839 -8.878 -11.290 -2.873 -4.555 -3.646 -2.898 -4.352 -8.333
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -17.347 -3.796 2.570 -3.777 2.573 -2.574 -3.636 -1.948 3.407
|
|
-33.757 -9.736 -21.320 -9.737 -21.323 -32.456 -25.305 -2.173 -12.026
|
|
|
|
2 -3.796 -29.800 -2.047 -2.850 -1.153 -3.711 -3.958 -2.522 0.028
|
|
-9.736 -14.253 -16.997 -0.174 -3.290 -10.187 -7.411 -5.605 -12.005
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -13.244 -2.059 5.007 -2.058 5.011 3.903 -0.809 0.004 5.767
|
|
-13.986 -5.387 -7.550 -5.401 -7.546 -10.177 -8.028 -1.809 -3.432
|
|
|
|
2 -2.059 -27.228 0.432 -2.154 -0.303 -0.852 -1.700 -0.911 2.385
|
|
-5.387 -7.680 -8.181 -1.247 -1.540 -3.083 -2.414 -3.146 -5.214
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -25.113 -6.522 -2.660 -6.495 -2.664 -3.626 -5.489 -1.400 1.156
|
|
-13.332 -6.473 -7.098 -6.512 -7.093 -7.143 -5.876 -2.856 -3.838
|
|
|
|
2 -6.522 -33.093 -7.523 -2.794 -2.541 -2.632 -2.853 -2.653 -2.229
|
|
-6.473 -8.786 -7.314 -2.750 -2.331 -1.954 -1.347 -4.867 -5.442
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -35.586 -9.851 -9.122 -9.829 -9.139 -16.487 -16.360 -1.187 -2.328
|
|
-19.401 -7.219 -8.402 -7.215 -8.389 -15.065 -12.537 2.178 0.378
|
|
|
|
2 -9.851 -36.799 -13.137 -2.677 -3.578 -8.260 -7.304 -2.864 -5.820
|
|
-7.219 -9.492 -11.361 -0.537 -0.583 -5.213 -4.081 -2.400 -4.539
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -8.282 5.800 14.995 5.789 14.982 15.519 8.155 2.597 12.244
|
|
-26.436 -11.153 -14.406 -11.154 -14.408 -19.504 -16.858 -0.485 -5.807
|
|
|
|
2 5.800 -28.306 3.706 5.183 7.755 8.770 6.005 1.189 7.508
|
|
-11.153 -12.970 -15.779 -2.012 -3.936 -7.241 -5.918 -3.669 -7.822
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 8 : 64.39 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 9 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -28.333 -4.731 -6.679 -4.731 -6.679 -9.623 -9.624 -0.574 0.607
|
|
-0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000
|
|
|
|
2 -4.731 -32.962 -9.038 -0.039 0.223 -2.879 -2.899 -3.768 -5.293
|
|
-0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -28.611 -4.795 -6.818 -4.795 -6.818 -9.709 -9.711 -0.558 0.570
|
|
-0.398 -0.085 -0.162 -0.085 -0.162 -0.152 -0.152 0.020 -0.030
|
|
|
|
2 -4.795 -33.108 -9.198 -0.010 0.234 -2.868 -2.888 -3.804 -5.386
|
|
-0.085 -0.261 -0.205 0.033 0.018 -0.011 -0.011 -0.050 -0.113
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -29.587 -5.014 -7.307 -5.013 -7.307 -9.998 -9.999 -0.500 0.451
|
|
-0.489 -0.102 -0.208 -0.102 -0.208 -0.173 -0.173 0.027 -0.037
|
|
|
|
2 -5.014 -33.618 -9.762 0.095 0.279 -2.816 -2.836 -3.933 -5.713
|
|
-0.102 -0.307 -0.259 0.045 0.024 0.001 0.001 -0.063 -0.145
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -31.894 -5.457 -8.426 -5.456 -8.425 -10.670 -10.671 -0.325 0.308
|
|
-1.336 -0.021 -0.358 -0.021 -0.358 -0.707 -0.707 0.296 0.498
|
|
|
|
2 -5.457 -34.827 -11.125 0.406 0.470 -2.602 -2.622 -4.237 -6.501
|
|
-0.021 -0.777 -0.796 0.342 0.408 0.161 0.161 -0.162 -0.387
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -35.512 -7.195 -11.457 -7.194 -11.457 -9.813 -9.814 -0.948 -2.517
|
|
-1.622 -0.506 -1.047 -0.506 -1.047 0.015 0.015 -0.082 -0.633
|
|
|
|
2 -7.195 -36.288 -12.989 -0.028 -0.768 -2.251 -2.270 -4.774 -8.024
|
|
-0.506 -0.799 -0.886 0.031 -0.189 0.228 0.228 -0.230 -0.626
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -36.944 -6.210 -10.053 -6.209 -10.052 -12.767 -12.768 0.728 1.315
|
|
-25.270 -11.472 -22.728 -11.472 -22.728 11.115 11.115 -5.143 -20.866
|
|
|
|
2 -6.210 -37.882 -14.290 1.700 1.858 -2.622 -2.640 -4.840 -7.718
|
|
-11.472 -9.252 -13.001 -2.962 -9.602 6.424 6.426 -3.633 -11.783
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -35.043 -1.935 -3.522 -1.935 -3.521 -24.576 -24.576 4.885 12.284
|
|
-9.808 -0.807 -2.557 -0.807 -2.556 -4.896 -4.896 3.472 4.280
|
|
|
|
2 -1.935 -38.909 -14.496 4.659 8.093 -5.909 -5.930 -4.399 -5.679
|
|
-0.807 -6.058 -6.915 3.879 4.367 0.282 0.288 -0.867 -2.014
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -21.775 -4.986 -4.204 -4.986 -4.204 -10.032 -10.033 -0.566 -2.697
|
|
-20.062 -0.651 -5.241 -0.653 -5.238 -14.383 -14.382 5.604 8.217
|
|
|
|
2 -4.986 -30.497 -4.187 -1.096 -1.911 -7.419 -7.436 -2.962 -2.275
|
|
-0.651 -12.378 -13.819 5.629 7.453 -0.268 -0.261 -2.675 -6.336
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -23.542 -5.580 -6.146 -5.578 -6.147 -11.756 -11.756 -4.569 -5.182
|
|
-19.367 -4.645 -9.663 -4.644 -9.663 -15.490 -15.490 2.726 -0.652
|
|
|
|
2 -5.580 -29.269 -3.616 -3.815 -4.377 -5.783 -5.795 -3.250 -3.353
|
|
-4.645 -9.975 -12.349 2.686 1.957 -4.841 -4.838 -2.870 -6.274
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -25.655 -5.461 -5.044 -5.459 -5.045 -11.958 -11.960 -3.046 -1.827
|
|
-12.823 -3.739 -8.467 -3.738 -8.467 -11.144 -11.141 -1.481 -4.707
|
|
|
|
2 -5.461 -31.179 -5.743 -2.434 -2.173 -5.698 -5.711 -3.333 -3.385
|
|
-3.739 -5.243 -6.383 -0.210 -1.282 -3.410 -3.385 -2.091 -4.150
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -19.625 -4.333 1.931 -4.332 1.929 -7.764 -7.768 -0.767 4.282
|
|
-24.341 -4.771 -13.610 -4.770 -13.610 -21.489 -21.487 0.771 -5.422
|
|
|
|
2 -4.333 -30.656 -3.815 -1.957 -0.269 -6.470 -6.486 -2.287 -0.648
|
|
-4.771 -11.387 -12.395 3.006 0.963 -4.849 -4.818 -3.706 -7.697
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -17.340 -4.142 2.304 -4.144 2.306 -0.902 -0.902 -0.555 4.143
|
|
-11.090 -3.160 -4.652 -3.159 -4.653 -11.558 -11.558 0.274 -0.148
|
|
|
|
2 -4.142 -28.625 -1.368 -2.983 -1.468 -2.103 -2.118 -1.183 1.112
|
|
-3.160 -5.481 -5.933 0.541 0.877 -4.263 -4.243 -1.406 -2.797
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -23.470 -4.951 -0.196 -4.952 -0.195 -1.805 -1.810 0.189 3.192
|
|
-12.541 -4.272 -3.729 -4.272 -3.728 -9.590 -9.590 0.968 2.028
|
|
|
|
2 -4.951 -32.542 -6.234 -1.045 -0.339 -1.087 -1.161 -1.678 -0.490
|
|
-4.272 -6.922 -6.135 0.140 1.842 -3.347 -3.317 -1.848 -2.267
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -27.599 -7.066 -6.298 -7.066 -6.299 -8.804 -8.806 -3.113 -6.748
|
|
-17.016 -4.833 -5.624 -4.840 -5.619 -13.388 -13.390 4.765 3.602
|
|
|
|
2 -7.066 -33.185 -7.346 -3.974 -5.914 -4.541 -4.596 -3.209 -5.000
|
|
-4.833 -8.914 -10.380 1.884 2.303 -4.040 -4.042 -1.383 -3.199
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -20.798 -0.849 6.085 -0.845 6.082 0.139 0.138 -1.662 4.840
|
|
-33.389 -14.161 -18.934 -14.166 -18.931 -22.413 -22.413 -1.393 -8.968
|
|
|
|
2 -0.849 -33.787 -3.734 1.687 2.329 1.262 1.213 -2.320 1.952
|
|
-14.161 -15.407 -19.827 -3.858 -6.605 -8.593 -8.593 -5.171 -10.905
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 9 : 64.86 [%]
|
|
|
|
|
|
--------------------------------------------------------------------------------
|
|
q-point number 10 q = ( 0.500000, 0.500000, 0.500000) [r.l.u.]
|
|
--------------------------------------------------------------------------------
|
|
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -33.605 -7.522 -10.470 -7.535 -10.467 -7.521 -10.473 -3.040 -3.503
|
|
0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000
|
|
|
|
2 -7.522 -34.590 -12.824 -2.356 -2.923 -2.343 -2.945 -5.370 -7.813
|
|
-0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000
|
|
|
|
chi0(G,G') at the 2 th omega 0.6122 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -33.865 -7.590 -10.598 -7.603 -10.594 -7.589 -10.600 -3.030 -3.525
|
|
-0.413 -0.114 -0.189 -0.114 -0.189 -0.114 -0.189 -0.009 -0.057
|
|
|
|
2 -7.590 -34.746 -12.988 -2.337 -2.915 -2.324 -2.937 -5.418 -7.908
|
|
-0.114 -0.280 -0.230 0.004 -0.015 0.004 -0.015 -0.074 -0.138
|
|
|
|
chi0(G,G') at the 3 th omega 1.2245 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -34.790 -7.817 -11.040 -7.830 -11.036 -7.816 -11.042 -2.978 -3.567
|
|
-0.507 -0.130 -0.228 -0.130 -0.228 -0.130 -0.228 0.006 -0.045
|
|
|
|
2 -7.817 -35.305 -13.581 -2.249 -2.862 -2.237 -2.884 -5.589 -8.245
|
|
-0.130 -0.339 -0.295 0.022 0.002 0.023 0.002 -0.091 -0.171
|
|
|
|
chi0(G,G') at the 4 th omega 1.8367 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -37.156 -8.302 -12.077 -8.315 -12.073 -8.301 -12.079 -2.714 -3.432
|
|
-2.194 -0.313 -0.806 -0.313 -0.806 -0.312 -0.806 0.438 0.477
|
|
|
|
2 -8.302 -36.784 -15.178 -1.874 -2.546 -1.861 -2.568 -6.016 -9.087
|
|
-0.313 -1.392 -1.506 0.503 0.503 0.503 0.503 -0.369 -0.704
|
|
|
|
chi0(G,G') at the 5 th omega 2.4490 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -36.912 -8.687 -12.426 -8.700 -12.422 -8.686 -12.428 -3.353 -4.601
|
|
-0.941 -0.218 -0.422 -0.218 -0.422 -0.218 -0.422 0.055 -0.020
|
|
|
|
2 -8.687 -36.412 -14.704 -2.588 -3.387 -2.576 -3.409 -6.045 -9.139
|
|
-0.218 -0.614 -0.594 0.096 0.065 0.096 0.065 -0.173 -0.332
|
|
|
|
chi0(G,G') at the 6 th omega 3.0612 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -41.792 -9.868 -14.795 -9.880 -14.790 -9.868 -14.797 -3.075 -4.836
|
|
-1.751 -0.431 -0.788 -0.431 -0.788 -0.431 -0.788 0.097 -0.079
|
|
|
|
2 -9.868 -39.324 -17.893 -2.131 -3.060 -2.120 -3.083 -6.975 -11.000
|
|
-0.431 -1.148 -1.076 0.156 0.109 0.156 0.109 -0.391 -0.625
|
|
|
|
chi0(G,G') at the 7 th omega 3.6735 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -54.872 -12.670 -20.884 -12.680 -20.878 -12.672 -20.886 -1.905 -4.736
|
|
-5.040 -1.012 -2.205 -1.010 -2.204 -1.013 -2.205 0.525 0.255
|
|
|
|
2 -12.670 -47.337 -26.768 -0.381 -1.587 -0.376 -1.610 -9.515 -16.054
|
|
-1.012 -3.227 -3.430 0.760 0.731 0.757 0.731 -1.026 -1.920
|
|
|
|
chi0(G,G') at the 8 th omega 4.2857 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -16.659 -7.938 -6.305 -7.955 -6.301 -7.934 -6.309 -9.073 -13.087
|
|
-26.906 -5.093 -11.743 -5.093 -11.741 -5.096 -11.742 3.818 1.859
|
|
|
|
2 -7.938 -21.802 2.362 -10.009 -11.788 -9.988 -11.810 -2.140 -1.081
|
|
-5.093 -16.362 -18.364 4.164 4.012 4.159 4.006 -4.914 -10.210
|
|
|
|
chi0(G,G') at the 9 th omega 4.8980 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -35.429 -11.542 -15.520 -11.555 -15.516 -11.540 -15.525 -7.890 -12.993
|
|
-15.323 -5.875 -11.155 -5.875 -11.153 -5.876 -11.156 -2.117 -7.678
|
|
|
|
2 -11.542 -32.834 -10.964 -7.042 -9.644 -7.029 -9.669 -5.551 -8.547
|
|
-5.875 -7.486 -8.930 -1.646 -3.510 -1.646 -3.515 -3.320 -7.217
|
|
|
|
chi0(G,G') at the 10 th omega 5.5102 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -34.440 -10.554 -12.994 -10.567 -12.990 -10.553 -12.998 -7.001 -9.742
|
|
-19.415 -7.219 -14.468 -7.217 -14.467 -7.219 -14.470 -2.812 -10.261
|
|
|
|
2 -10.554 -33.597 -10.858 -5.721 -7.624 -5.708 -7.650 -5.288 -7.392
|
|
-7.219 -7.876 -10.325 -1.728 -4.462 -1.730 -4.467 -3.472 -8.140
|
|
|
|
chi0(G,G') at the 11 th omega 6.1224 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -15.605 -2.184 4.942 -2.192 4.946 -2.180 4.941 -1.642 6.157
|
|
-56.647 -22.566 -42.142 -22.553 -42.136 -22.568 -42.146 -10.669 -32.964
|
|
|
|
2 -2.184 -27.715 -0.823 -2.670 0.232 -2.662 0.220 -1.919 1.985
|
|
-22.566 -21.832 -27.602 -6.903 -15.306 -6.920 -15.317 -10.199 -23.068
|
|
|
|
chi0(G,G') at the 12 th omega 6.7347 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -12.241 -1.650 6.004 -1.668 6.012 -1.652 6.005 -0.876 6.985
|
|
-12.472 -4.506 -6.995 -4.491 -6.990 -4.503 -6.997 -1.701 -3.239
|
|
|
|
2 -1.650 -27.089 -0.982 -3.023 -0.451 -3.008 -0.472 -1.802 1.873
|
|
-4.506 -6.300 -6.263 -0.742 -1.171 -0.760 -1.169 -2.708 -4.051
|
|
|
|
chi0(G,G') at the 13 th omega 7.3469 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -29.413 -8.572 -5.463 -8.606 -5.466 -8.576 -5.462 -2.926 -0.176
|
|
-10.402 -4.873 -5.176 -4.860 -5.167 -4.879 -5.178 -2.083 -2.176
|
|
|
|
2 -8.572 -35.178 -11.696 -4.466 -4.152 -4.436 -4.172 -4.280 -5.061
|
|
-4.873 -6.668 -4.416 -1.797 -1.293 -1.821 -1.302 -3.492 -3.024
|
|
|
|
chi0(G,G') at the 14 th omega 7.9592 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 -55.997 -21.999 -24.821 -22.030 -24.816 -21.999 -24.819 -8.107 -12.297
|
|
-26.741 -12.518 -15.819 -12.530 -15.808 -12.530 -15.812 -1.922 -6.288
|
|
|
|
2 -21.999 -46.016 -27.868 -10.004 -12.271 -9.975 -12.290 -8.910 -16.316
|
|
-12.518 -13.108 -16.340 -4.287 -5.722 -4.286 -5.733 -5.234 -9.368
|
|
|
|
chi0(G,G') at the 15 th omega 8.5714 0.0000 [eV]
|
|
1 2 3 4 5 6 7 8 9
|
|
1 10.249 16.844 29.483 16.828 29.478 16.851 29.477 9.501 26.222
|
|
-25.265 -12.529 -16.966 -12.536 -16.963 -12.536 -16.964 -3.676 -10.327
|
|
|
|
2 16.844 -19.773 14.628 11.075 17.041 11.121 17.032 5.908 16.584
|
|
-12.529 -12.856 -15.435 -4.521 -6.936 -4.538 -6.940 -5.266 -9.889
|
|
|
|
No. of calculated frequencies > 15, stop printing
|
|
Average fulfillment of the sum rule on Im[epsilon] for q-point 10 : 64.06 [%]
|
|
|
|
================================================================================
|
|
== DATASET 4 ==================================================================
|
|
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
|
|
|
|
|
|
--- !DatasetInfo
|
|
iteration_state: {dtset: 4, }
|
|
dimensions: {natom: 5, nkpt: 4, mband: 100, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
|
|
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
|
|
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
|
|
meta: {optdriver: 4, gwcalctyp: 2, }
|
|
...
|
|
|
|
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
|
|
|
|
mkfilename : getscr/=0, take file _SCR from output of DATASET 3.
|
|
|
|
SIGMA: Calculation of the GW corrections
|
|
|
|
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
|
|
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
|
|
|
|
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
|
|
|
|
.Using single precision arithmetic ; gwpc = 4
|
|
|
|
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
|
|
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
|
|
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
|
|
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
|
|
Unit cell volume ucvol= 3.8273624E+02 bohr^3
|
|
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
|
|
|
|
--- Pseudopotential description ------------------------------------------------
|
|
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
|
|
Spheres core radius: rc_sph= 2.20000000
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
|
|
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
|
|
Radius for shape functions = 2.02290427
|
|
mmax= 910
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 744 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
|
|
Spheres core radius: rc_sph= 2.20669967
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = 1.81361893
|
|
mmax= 1500
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
|
|
Pseudopotential format is: paw10
|
|
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
|
|
Spheres core radius: rc_sph= 1.41465230
|
|
1 radial meshes are used:
|
|
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
|
|
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
|
|
Radius for shape functions = 1.20231231
|
|
mmax= 2001
|
|
Radial grid used for partial waves is grid 1
|
|
Radial grid used for projectors is grid 1
|
|
Radial grid used for (t)core density is grid 1
|
|
Radial grid used for Vloc is grid 1
|
|
Radial grid used for pseudo valence density is grid 1
|
|
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
|
|
Compensation charge density is not taken into account in XC energy/potential
|
|
pspatm: atomic psp has been read and splines computed
|
|
|
|
--------------------------------------------------------------------------------
|
|
|
|
==== K-mesh for the wavefunctions ====
|
|
Number of points in the irreducible wedge : 4
|
|
Reduced coordinates and weights :
|
|
|
|
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
|
|
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
|
|
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
|
|
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
|
|
|
|
Together with 48 symmetry operations and time-reversal symmetry
|
|
yields 64 points in the full Brillouin Zone.
|
|
|
|
|
|
==== Q-mesh for screening function ====
|
|
Number of points in the irreducible wedge : 10
|
|
Reduced coordinates and weights :
|
|
|
|
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
|
|
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
|
|
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
|
|
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
|
|
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
|
|
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
|
|
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
|
|
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
|
|
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
|
|
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
|
|
|
|
Together with 48 symmetry operations and time-reversal symmetry
|
|
yields 64 points in the full Brillouin Zone.
|
|
|
|
|
|
setmesh: FFT mesh size selected = 25x 25x 25
|
|
total number of points = 15625
|
|
|
|
|
|
|
|
******************************************
|
|
DFT+U Method used: FLL
|
|
******************************************
|
|
|
|
=======================================================================
|
|
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
|
|
(it is assumed that the wavefunction for the first reference
|
|
energy in PAW atomic data is an atomic eigenvalue)
|
|
|
|
Max value of the radius in atomic data file = 201.3994
|
|
Max value of the mesh in atomic data file = 910
|
|
PAW radius is = 2.2000
|
|
PAW value of the mesh for integration is = 587
|
|
Integral of atomic wavefunction until rpaw = 0.8418
|
|
|
|
For an atomic wfn truncated at rmax = 201.3994
|
|
The norm of the wfn is = 1.0000
|
|
The bare interaction (no renormalization) = 17.7996 eV
|
|
The bare interaction (for a renorm. wfn ) = 17.7996 eV
|
|
|
|
For an atomic wfn truncated at rmax = 2.2000
|
|
The norm of the wfn is = 0.8418
|
|
The bare interaction (no renormalization) = 16.0038 eV
|
|
The bare interaction (for a renorm. wfn ) = 22.5848 eV
|
|
=======================================================================
|
|
|
|
====================================
|
|
==== Info on PAW TABulated data ====
|
|
====================================
|
|
|
|
|
|
******************************
|
|
**** Atom type 1 ****
|
|
******************************
|
|
Number of (n,l) elements ....................... 6
|
|
Number of (l,m,n) elements ..................... 18
|
|
Number of (i,j) elements (packed form) ......... 21
|
|
Max L+1 leading to non-zero Gaunt .............. 5
|
|
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
|
|
lmn2_size ...................................... 171
|
|
lmnmix_sz ...................................... 171
|
|
Size of radial mesh ............................ 592
|
|
Size of radial mesh for partial waves........... 910
|
|
Size of radial mesh for [pseudo] core density... 592
|
|
Size of radial mesh for [pseudo] kin core density 0
|
|
Size of radial mesh for pseudo valence density.. 910
|
|
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
|
|
No of Q-points for the radial shape functions .. 0
|
|
Radial shape function type ..................... 3
|
|
shape_lambda ................................... 0
|
|
Use pseudized core density ..................... 1
|
|
Option for the use of hat density in XC terms .. 0
|
|
Use DFT+U ...................................... 1
|
|
L on which U is applied ........................ 2
|
|
Use Local Exact exchange ....................... 0
|
|
Number of (i,j) elements for PAW+U or EXX ..... 3
|
|
Number of projectors on which U or EXX acts .... 2
|
|
Use potential zero ............................. 0
|
|
Use spin-orbit coupling ........................ 0
|
|
Has Fock ...................................... 2
|
|
Has kij ...................................... 0
|
|
Has tproj ...................................... 0
|
|
Has tvale ...................................... 1
|
|
Has coretau .................................... 0
|
|
Has vhtnzc ..................................... 2
|
|
Has vhnzc ...................................... 2
|
|
Has vminushalf ................................. 0
|
|
Has nabla ...................................... 0
|
|
Has nablaphi ................................... 0
|
|
Has shapefuncg ................................. 0
|
|
Has wvl ........................................ 0
|
|
beta ............................................ -2.38787323E+01
|
|
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
|
|
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
|
|
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
|
|
Core-core Fock energy .......................... -3.47490679E+01
|
|
XC energy for the core density .................. -3.29033210E+01
|
|
Radius of the PAW sphere ........................ 2.20000000E+00
|
|
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
|
|
Value of the U parameter [eV] ................... 0.00000000E+00
|
|
Value of the J parameter [eV] ................... 0.00000000E+00
|
|
|
|
******************************
|
|
**** Atom type 2 ****
|
|
******************************
|
|
Number of (n,l) elements ....................... 6
|
|
Number of (l,m,n) elements ..................... 18
|
|
Number of (i,j) elements (packed form) ......... 21
|
|
Max L+1 leading to non-zero Gaunt .............. 5
|
|
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
|
|
lmn2_size ...................................... 171
|
|
lmnmix_sz ...................................... 171
|
|
Size of radial mesh ............................ 1084
|
|
Size of radial mesh for partial waves........... 1500
|
|
Size of radial mesh for [pseudo] core density... 1084
|
|
Size of radial mesh for [pseudo] kin core density 0
|
|
Size of radial mesh for pseudo valence density.. 1500
|
|
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
|
|
No of Q-points for the radial shape functions .. 0
|
|
Radial shape function type ..................... 2
|
|
shape_lambda ................................... 0
|
|
Use pseudized core density ..................... 1
|
|
Option for the use of hat density in XC terms .. 0
|
|
Use DFT+U ...................................... 0
|
|
Use Local Exact exchange ....................... 0
|
|
Use potential zero ............................. 0
|
|
Use spin-orbit coupling ........................ 0
|
|
Has Fock ...................................... 2
|
|
Has kij ...................................... 0
|
|
Has tproj ...................................... 0
|
|
Has tvale ...................................... 1
|
|
Has coretau .................................... 0
|
|
Has vhtnzc ..................................... 2
|
|
Has vhnzc ...................................... 2
|
|
Has vminushalf ................................. 0
|
|
Has nabla ...................................... 0
|
|
Has nablaphi ................................... 0
|
|
Has shapefuncg ................................. 0
|
|
Has wvl ........................................ 0
|
|
beta ............................................ -3.50169981E+01
|
|
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
|
|
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
|
|
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
|
|
Core-core Fock energy .......................... -9.79515177E+01
|
|
XC energy for the core density .................. -9.52281397E+01
|
|
Radius of the PAW sphere ........................ 2.20669967E+00
|
|
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
|
|
Sigma parameter in gaussian shape function ...... 1.81361893E+00
|
|
|
|
******************************
|
|
**** Atom type 3 ****
|
|
******************************
|
|
Number of (n,l) elements ....................... 4
|
|
Number of (l,m,n) elements ..................... 8
|
|
Number of (i,j) elements (packed form) ......... 10
|
|
Max L+1 leading to non-zero Gaunt .............. 3
|
|
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
|
|
lmn2_size ...................................... 36
|
|
lmnmix_sz ...................................... 36
|
|
Size of radial mesh ............................ 1311
|
|
Size of radial mesh for partial waves........... 2001
|
|
Size of radial mesh for [pseudo] core density... 1311
|
|
Size of radial mesh for [pseudo] kin core density 0
|
|
Size of radial mesh for pseudo valence density.. 2001
|
|
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
|
|
No of Q-points for the radial shape functions .. 0
|
|
Radial shape function type ..................... 2
|
|
shape_lambda ................................... 0
|
|
Use pseudized core density ..................... 1
|
|
Option for the use of hat density in XC terms .. 0
|
|
Use DFT+U ...................................... 0
|
|
Use Local Exact exchange ....................... 0
|
|
Use potential zero ............................. 0
|
|
Use spin-orbit coupling ........................ 0
|
|
Has Fock ...................................... 2
|
|
Has kij ...................................... 0
|
|
Has tproj ...................................... 0
|
|
Has tvale ...................................... 1
|
|
Has coretau .................................... 0
|
|
Has vhtnzc ..................................... 2
|
|
Has vhnzc ...................................... 2
|
|
Has vminushalf ................................. 0
|
|
Has nabla ...................................... 0
|
|
Has nablaphi ................................... 0
|
|
Has shapefuncg ................................. 0
|
|
Has wvl ........................................ 0
|
|
beta ............................................ -4.77231787E+00
|
|
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
|
|
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
|
|
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
|
|
Core-core Fock energy .......................... -4.69825338E+00
|
|
XC energy for the core density .................. -4.22468657E+00
|
|
Radius of the PAW sphere ........................ 1.41465230E+00
|
|
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
|
|
Sigma parameter in gaussian shape function ...... 1.20231231E+00
|
|
|
|
PAW TEST:
|
|
==== Compensation charge inside spheres ============
|
|
The following values must be close...
|
|
Compensation charge over spherical meshes = 5.992978790998858
|
|
Compensation charge over fine fft grid = 5.993710068169802
|
|
|
|
|
|
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
|
|
average of density, n = 0.107123
|
|
r_s = 1.3062
|
|
omega_plasma = 31.5717 [eV]
|
|
|
|
|
|
==== Results concerning PAW augmentation regions ====
|
|
|
|
Total pseudopotential strength Dij (hartree):
|
|
Atom # 1
|
|
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
|
|
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
|
|
|
|
|
|
Augmentation waves occupancies Rhoij:
|
|
Atom # 1
|
|
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
|
|
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
|
|
... only 12 components have been written...
|
|
Atom # 5
|
|
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
|
|
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
|
|
|
|
"PAW+U" part of augmentation waves occupancies Rhoij:
|
|
Atom # 1 - L=2 ONLY
|
|
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
|
|
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
|
|
|
|
---------- DFT+U DATA ---------------------------------------------------
|
|
|
|
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
|
|
|
|
|
|
== Occupation matrix for correlated orbitals:
|
|
|
|
Up component only...
|
|
0.22002 0.00000 0.00000 0.00000 0.00000
|
|
0.00000 0.22002 0.00000 0.00000 0.00000
|
|
0.00000 0.00000 0.20950 0.00000 0.00000
|
|
0.00000 0.00000 0.00000 0.22002 0.00000
|
|
0.00000 0.00000 0.00000 0.00000 0.20950
|
|
|
|
|
|
|
|
cRPA calculations using wannier weights from data.plowann
|
|
|
|
== Lower and upper values of the selected bands 0 0
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
|
|
== Lower and upper values of the selected bands 21 25
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
Reading of the Wannier weights from data.plowann
|
|
|
|
== Lower and upper values of the selected bands 21 25
|
|
== Number of atoms 1
|
|
== Atoms selected 1
|
|
== Nb of angular momenta used for each atom 1
|
|
== Value of the angular momenta for atom 1 is : 2
|
|
== Value of the projectors for atom 1 is : -2
|
|
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
|
|
|
|
==== Calculation of the screened interaction ====
|
|
|
|
Read K and Q mesh
|
|
Read l and bands from wanbz 21 25 5
|
|
|
|
|
|
==Calculation of the bare interaction V m==
|
|
|
|
==Definition of the orbitals==
|
|
Only one orbital
|
|
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
|
|
|
|
Diagonal bare interaction
|
|
1 15.807
|
|
2 16.338
|
|
3 16.734
|
|
4 15.838
|
|
5 16.290
|
|
|
|
U'=U(m1,m2,m1,m2) for the bare interaction
|
|
- 1 2 3 4 5
|
|
1 15.807 14.989 14.893 14.730 15.541
|
|
2 14.989 16.338 15.806 14.995 15.188
|
|
3 14.893 15.806 16.734 15.560 15.109
|
|
4 14.730 14.995 15.560 15.838 14.893
|
|
5 15.541 15.188 15.109 14.893 16.290
|
|
|
|
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 15.3765 0.0000
|
|
|
|
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 16.2014 -0.0000)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
|
|
- 1 2 3 4 5
|
|
1 15.807 0.461 0.529 0.450 0.210
|
|
2 0.461 16.338 0.294 0.456 0.452
|
|
3 0.529 0.294 16.734 0.375 0.530
|
|
4 0.450 0.456 0.375 15.838 0.448
|
|
5 0.210 0.452 0.530 0.448 16.290
|
|
|
|
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6268 -0.0000
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
|
|
- 1 2 3 4 5
|
|
1 15.807 0.461 0.529 0.450 0.210
|
|
2 0.461 16.338 0.294 0.456 0.452
|
|
3 0.529 0.294 16.734 0.375 0.530
|
|
4 0.450 0.456 0.375 15.838 0.448
|
|
5 0.210 0.452 0.530 0.448 16.290
|
|
|
|
|
|
|
|
== Calculation of the screened interaction on the correlated orbital U m ==
|
|
|
|
= Start loop over frequency
|
|
|
|
--- For frequency w = 1 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 3.490
|
|
2 3.660
|
|
3 3.876
|
|
4 3.493
|
|
5 3.764
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.490 2.595 2.491 2.505 3.137
|
|
2 2.595 3.660 3.099 2.593 2.710
|
|
3 2.491 3.099 3.876 3.022 2.626
|
|
4 2.505 2.593 3.022 3.493 2.603
|
|
5 3.137 2.710 2.626 2.603 3.764
|
|
|
|
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.9218 0.0000
|
|
|
|
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.6565 0.0000)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.490 0.428 0.493 0.419 0.207
|
|
2 0.428 3.660 0.284 0.423 0.425
|
|
3 0.493 0.284 3.876 0.358 0.435
|
|
4 0.419 0.423 0.358 3.493 0.422
|
|
5 0.207 0.425 0.435 0.422 3.764
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5730 0.0000
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.490 0.428 0.493 0.419 0.207
|
|
2 0.428 3.660 0.284 0.423 0.425
|
|
3 0.493 0.284 3.876 0.358 0.435
|
|
4 0.419 0.423 0.358 3.493 0.422
|
|
5 0.207 0.425 0.435 0.422 3.764
|
|
|
|
--- For frequency w = 2 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 3.462
|
|
2 3.631
|
|
3 3.847
|
|
4 3.466
|
|
5 3.736
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.462 2.567 2.463 2.477 3.109
|
|
2 2.567 3.631 3.070 2.565 2.682
|
|
3 2.463 3.070 3.847 2.994 2.598
|
|
4 2.477 2.565 2.994 3.466 2.576
|
|
5 3.109 2.682 2.598 2.576 3.736
|
|
|
|
Hubbard cRPA interaction for w = 2, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.8936 -0.0362
|
|
|
|
(Hubbard cRPA interaction for w = 2, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.6281 -0.0366)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.462 0.428 0.493 0.418 0.207
|
|
2 0.428 3.631 0.284 0.423 0.425
|
|
3 0.493 0.284 3.847 0.358 0.435
|
|
4 0.418 0.423 0.358 3.466 0.422
|
|
5 0.207 0.425 0.435 0.422 3.736
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5729 -0.0003
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.462 0.428 0.493 0.418 0.207
|
|
2 0.428 3.631 0.284 0.423 0.425
|
|
3 0.493 0.284 3.847 0.358 0.435
|
|
4 0.418 0.423 0.358 3.466 0.422
|
|
5 0.207 0.425 0.435 0.422 3.736
|
|
|
|
--- For frequency w = 3 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 3.372
|
|
2 3.536
|
|
3 3.752
|
|
4 3.376
|
|
5 3.645
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.372 2.475 2.372 2.389 3.019
|
|
2 2.475 3.536 2.976 2.474 2.590
|
|
3 2.372 2.976 3.752 2.903 2.508
|
|
4 2.389 2.474 2.903 3.376 2.487
|
|
5 3.019 2.590 2.508 2.487 3.645
|
|
|
|
Hubbard cRPA interaction for w = 3, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.8026 -0.0413
|
|
|
|
(Hubbard cRPA interaction for w = 3, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.5362 -0.0417)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.372 0.427 0.493 0.418 0.207
|
|
2 0.427 3.536 0.284 0.422 0.425
|
|
3 0.493 0.284 3.752 0.358 0.434
|
|
4 0.418 0.422 0.358 3.376 0.421
|
|
5 0.207 0.425 0.434 0.421 3.645
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5724 -0.0003
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.372 0.427 0.493 0.418 0.207
|
|
2 0.427 3.536 0.284 0.422 0.425
|
|
3 0.493 0.284 3.752 0.358 0.434
|
|
4 0.418 0.422 0.358 3.376 0.421
|
|
5 0.207 0.425 0.434 0.421 3.645
|
|
|
|
--- For frequency w = 4 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 3.192
|
|
2 3.346
|
|
3 3.564
|
|
4 3.198
|
|
5 3.463
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.192 2.293 2.192 2.212 2.838
|
|
2 2.293 3.346 2.788 2.292 2.406
|
|
3 2.192 2.788 3.564 2.720 2.327
|
|
4 2.212 2.292 2.720 3.198 2.310
|
|
5 2.838 2.406 2.327 2.310 3.463
|
|
|
|
Hubbard cRPA interaction for w = 4, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.6208 -0.0585
|
|
|
|
(Hubbard cRPA interaction for w = 4, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.3527 -0.0593)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.192 0.426 0.492 0.417 0.207
|
|
2 0.426 3.346 0.284 0.422 0.424
|
|
3 0.492 0.284 3.564 0.357 0.432
|
|
4 0.417 0.422 0.357 3.198 0.421
|
|
5 0.207 0.424 0.432 0.421 3.463
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5713 -0.0004
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 3.192 0.426 0.492 0.417 0.207
|
|
2 0.426 3.346 0.284 0.422 0.424
|
|
3 0.492 0.284 3.564 0.357 0.432
|
|
4 0.417 0.422 0.357 3.198 0.421
|
|
5 0.207 0.424 0.432 0.421 3.463
|
|
|
|
--- For frequency w = 5 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.877
|
|
2 3.012
|
|
3 3.237
|
|
4 2.889
|
|
5 3.143
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.877 1.972 1.876 1.904 2.521
|
|
2 1.972 3.012 2.459 1.975 2.083
|
|
3 1.876 2.459 3.237 2.404 2.009
|
|
4 1.904 1.975 2.404 2.889 2.000
|
|
5 2.521 2.083 2.009 2.000 3.143
|
|
|
|
Hubbard cRPA interaction for w = 5, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.3025 -0.2099
|
|
|
|
(Hubbard cRPA interaction for w = 5, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.0314 -0.2114)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.877 0.425 0.491 0.416 0.207
|
|
2 0.425 3.012 0.283 0.420 0.423
|
|
3 0.491 0.283 3.237 0.357 0.429
|
|
4 0.416 0.420 0.357 2.889 0.420
|
|
5 0.207 0.423 0.429 0.420 3.143
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5694 -0.0010
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.877 0.425 0.491 0.416 0.207
|
|
2 0.425 3.012 0.283 0.420 0.423
|
|
3 0.491 0.283 3.237 0.357 0.429
|
|
4 0.416 0.420 0.357 2.889 0.420
|
|
5 0.207 0.423 0.429 0.420 3.143
|
|
|
|
--- For frequency w = 6 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.656
|
|
2 2.753
|
|
3 2.983
|
|
4 2.675
|
|
5 2.911
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.656 1.737 1.651 1.698 2.295
|
|
2 1.737 2.753 2.207 1.749 1.843
|
|
3 1.651 2.207 2.983 2.173 1.780
|
|
4 1.698 1.749 2.173 2.675 1.790
|
|
5 2.295 1.843 1.780 1.790 2.911
|
|
|
|
Hubbard cRPA interaction for w = 6, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.0730 -0.5771
|
|
|
|
(Hubbard cRPA interaction for w = 6, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.7956 -0.5846)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.656 0.424 0.490 0.415 0.207
|
|
2 0.424 2.753 0.283 0.419 0.422
|
|
3 0.490 0.283 2.983 0.356 0.420
|
|
4 0.415 0.419 0.356 2.675 0.419
|
|
5 0.207 0.422 0.420 0.419 2.911
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5661 -0.0043
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.656 0.424 0.490 0.415 0.207
|
|
2 0.424 2.753 0.283 0.419 0.422
|
|
3 0.490 0.283 2.983 0.356 0.420
|
|
4 0.415 0.419 0.356 2.675 0.419
|
|
5 0.207 0.422 0.420 0.419 2.911
|
|
|
|
--- For frequency w = 7 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.915
|
|
2 3.093
|
|
3 3.281
|
|
4 2.878
|
|
5 3.202
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.915 2.031 1.914 1.911 2.570
|
|
2 2.031 3.093 2.518 2.000 2.154
|
|
3 1.914 2.518 3.281 2.418 2.056
|
|
4 1.911 2.000 2.418 2.878 2.015
|
|
5 2.570 2.154 2.056 2.015 3.202
|
|
|
|
Hubbard cRPA interaction for w = 7, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.3418 -0.8938
|
|
|
|
(Hubbard cRPA interaction for w = 7, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.0739 -0.9085)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.915 0.422 0.488 0.413 0.207
|
|
2 0.422 3.093 0.282 0.417 0.421
|
|
3 0.488 0.282 3.281 0.355 0.438
|
|
4 0.413 0.417 0.355 2.878 0.418
|
|
5 0.207 0.421 0.438 0.418 3.202
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5692 -0.0075
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.915 0.422 0.488 0.413 0.207
|
|
2 0.422 3.093 0.282 0.417 0.421
|
|
3 0.488 0.282 3.281 0.355 0.438
|
|
4 0.413 0.417 0.355 2.878 0.418
|
|
5 0.207 0.421 0.438 0.418 3.202
|
|
|
|
--- For frequency w = 8 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.127
|
|
2 2.240
|
|
3 2.439
|
|
4 2.106
|
|
5 2.403
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.127 1.215 1.105 1.130 1.776
|
|
2 1.215 2.240 1.669 1.187 1.332
|
|
3 1.105 1.669 2.439 1.614 1.243
|
|
4 1.130 1.187 1.614 2.106 1.230
|
|
5 1.776 1.332 1.243 1.230 2.403
|
|
|
|
Hubbard cRPA interaction for w = 8, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.5328 -1.8038
|
|
|
|
(Hubbard cRPA interaction for w = 8, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.2631 -1.8270)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.127 0.426 0.491 0.415 0.207
|
|
2 0.426 2.240 0.283 0.421 0.422
|
|
3 0.491 0.283 2.439 0.357 0.436
|
|
4 0.415 0.421 0.357 2.106 0.420
|
|
5 0.207 0.422 0.436 0.420 2.403
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5703 -0.0131
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.127 0.426 0.491 0.415 0.207
|
|
2 0.426 2.240 0.283 0.421 0.422
|
|
3 0.491 0.283 2.439 0.357 0.436
|
|
4 0.415 0.421 0.357 2.106 0.420
|
|
5 0.207 0.422 0.436 0.420 2.403
|
|
|
|
--- For frequency w = 9 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.342
|
|
2 2.459
|
|
3 2.668
|
|
4 2.324
|
|
5 2.621
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.342 1.427 1.319 1.345 1.993
|
|
2 1.427 2.459 1.893 1.407 1.546
|
|
3 1.319 1.893 2.668 1.836 1.457
|
|
4 1.345 1.407 1.836 2.324 1.445
|
|
5 1.993 1.546 1.457 1.445 2.621
|
|
|
|
Hubbard cRPA interaction for w = 9, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.7499 -1.6318
|
|
|
|
(Hubbard cRPA interaction for w = 9, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.4829 -1.6507)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.342 0.423 0.488 0.413 0.207
|
|
2 0.423 2.459 0.282 0.419 0.420
|
|
3 0.488 0.282 2.668 0.355 0.436
|
|
4 0.413 0.419 0.355 2.324 0.418
|
|
5 0.207 0.420 0.436 0.418 2.621
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5695 -0.0121
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.342 0.423 0.488 0.413 0.207
|
|
2 0.423 2.459 0.282 0.419 0.420
|
|
3 0.488 0.282 2.668 0.355 0.436
|
|
4 0.413 0.419 0.355 2.324 0.418
|
|
5 0.207 0.420 0.436 0.418 2.621
|
|
|
|
--- For frequency w = 10 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.644
|
|
2 2.812
|
|
3 3.002
|
|
4 2.631
|
|
5 2.911
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.644 1.751 1.634 1.648 2.289
|
|
2 1.751 2.812 2.238 1.736 1.864
|
|
3 1.634 2.238 3.002 2.156 1.768
|
|
4 1.648 1.736 2.156 2.631 1.745
|
|
5 2.289 1.864 1.768 1.745 2.911
|
|
|
|
Hubbard cRPA interaction for w = 10, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.0662 -2.1711
|
|
|
|
(Hubbard cRPA interaction for w = 10, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.8001 -2.1892)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.644 0.422 0.487 0.412 0.207
|
|
2 0.422 2.812 0.282 0.417 0.420
|
|
3 0.487 0.282 3.002 0.355 0.436
|
|
4 0.412 0.417 0.355 2.631 0.417
|
|
5 0.207 0.420 0.436 0.417 2.911
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5691 -0.0112
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.644 0.422 0.487 0.412 0.207
|
|
2 0.422 2.812 0.282 0.417 0.420
|
|
3 0.487 0.282 3.002 0.355 0.436
|
|
4 0.412 0.417 0.355 2.631 0.417
|
|
5 0.207 0.420 0.436 0.417 2.911
|
|
|
|
--- For frequency w = 11 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.754
|
|
2 2.954
|
|
3 3.162
|
|
4 2.763
|
|
5 3.047
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.754 1.878 1.770 1.767 2.412
|
|
2 1.878 2.954 2.389 1.871 2.005
|
|
3 1.770 2.389 3.162 2.302 1.918
|
|
4 1.767 1.871 2.302 2.763 1.877
|
|
5 2.412 2.005 1.918 1.877 3.047
|
|
|
|
Hubbard cRPA interaction for w = 11, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.2024 -1.7888
|
|
|
|
(Hubbard cRPA interaction for w = 11, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.9361 -1.8123)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.754 0.420 0.485 0.411 0.207
|
|
2 0.420 2.954 0.282 0.416 0.418
|
|
3 0.485 0.282 3.162 0.354 0.436
|
|
4 0.411 0.416 0.354 2.763 0.415
|
|
5 0.207 0.418 0.436 0.415 3.047
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5678 -0.0235
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.754 0.420 0.485 0.411 0.207
|
|
2 0.420 2.954 0.282 0.416 0.418
|
|
3 0.485 0.282 3.162 0.354 0.436
|
|
4 0.411 0.416 0.354 2.763 0.415
|
|
5 0.207 0.418 0.436 0.415 3.047
|
|
|
|
--- For frequency w = 12 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.552
|
|
2 2.762
|
|
3 2.955
|
|
4 2.529
|
|
5 2.841
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.552 1.663 1.539 1.535 2.208
|
|
2 1.663 2.762 2.185 1.648 1.788
|
|
3 1.539 2.185 2.955 2.076 1.684
|
|
4 1.535 1.648 2.076 2.529 1.643
|
|
5 2.208 1.788 1.684 1.643 2.841
|
|
|
|
Hubbard cRPA interaction for w = 12, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.9830 -1.8441
|
|
|
|
(Hubbard cRPA interaction for w = 12, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.7279 -1.8637)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.552 0.430 0.494 0.422 0.207
|
|
2 0.430 2.762 0.284 0.424 0.426
|
|
3 0.494 0.284 2.955 0.358 0.444
|
|
4 0.422 0.424 0.358 2.529 0.422
|
|
5 0.207 0.426 0.444 0.422 2.841
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5773 -0.0161
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.552 0.430 0.494 0.422 0.207
|
|
2 0.430 2.762 0.284 0.424 0.426
|
|
3 0.494 0.284 2.955 0.358 0.444
|
|
4 0.422 0.424 0.358 2.529 0.422
|
|
5 0.207 0.426 0.444 0.422 2.841
|
|
|
|
--- For frequency w = 13 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 1.726
|
|
2 1.855
|
|
3 2.017
|
|
4 1.684
|
|
5 1.986
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.726 0.822 0.697 0.720 1.367
|
|
2 0.822 1.855 1.268 0.788 0.935
|
|
3 0.697 1.268 2.017 1.194 0.831
|
|
4 0.720 0.788 1.194 1.684 0.816
|
|
5 1.367 0.935 0.831 0.816 1.986
|
|
|
|
Hubbard cRPA interaction for w = 13, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.1257 -1.4243
|
|
|
|
(Hubbard cRPA interaction for w = 13, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.8537 -1.4502)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.726 0.434 0.499 0.422 0.207
|
|
2 0.434 1.855 0.284 0.428 0.427
|
|
3 0.499 0.284 2.017 0.361 0.432
|
|
4 0.422 0.428 0.361 1.684 0.427
|
|
5 0.207 0.427 0.432 0.427 1.986
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5741 -0.0327
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.726 0.434 0.499 0.422 0.207
|
|
2 0.434 1.855 0.284 0.428 0.427
|
|
3 0.499 0.284 2.017 0.361 0.432
|
|
4 0.422 0.428 0.361 1.684 0.427
|
|
5 0.207 0.427 0.432 0.427 1.986
|
|
|
|
--- For frequency w = 14 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 2.149
|
|
2 2.419
|
|
3 2.568
|
|
4 2.161
|
|
5 2.389
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.149 1.299 1.162 1.165 1.780
|
|
2 1.299 2.419 1.826 1.306 1.399
|
|
3 1.162 1.826 2.568 1.703 1.283
|
|
4 1.165 1.306 1.703 2.161 1.250
|
|
5 1.780 1.399 1.283 1.250 2.389
|
|
|
|
Hubbard cRPA interaction for w = 14, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.6012 -2.1128
|
|
|
|
(Hubbard cRPA interaction for w = 14, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 2.3369 -2.1295)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.149 0.453 0.522 0.444 0.207
|
|
2 0.453 2.419 0.290 0.450 0.445
|
|
3 0.522 0.290 2.568 0.370 0.433
|
|
4 0.444 0.450 0.370 2.161 0.442
|
|
5 0.207 0.445 0.433 0.442 2.389
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5895 -0.0189
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 2.149 0.453 0.522 0.444 0.207
|
|
2 0.453 2.419 0.290 0.450 0.445
|
|
3 0.522 0.290 2.568 0.370 0.433
|
|
4 0.444 0.450 0.370 2.161 0.442
|
|
5 0.207 0.445 0.433 0.442 2.389
|
|
|
|
--- For frequency w = 15 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 1.632
|
|
2 1.874
|
|
3 2.043
|
|
4 1.665
|
|
5 1.867
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.632 0.755 0.628 0.652 1.262
|
|
2 0.755 1.874 1.290 0.779 0.853
|
|
3 0.628 1.290 2.043 1.190 0.748
|
|
4 0.652 0.779 1.190 1.665 0.736
|
|
5 1.262 0.853 0.748 0.736 1.867
|
|
|
|
Hubbard cRPA interaction for w = 15, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 1.0747 -3.0660
|
|
|
|
(Hubbard cRPA interaction for w = 15, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.8162 -3.0899)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.632 0.447 0.515 0.439 0.207
|
|
2 0.447 1.874 0.289 0.443 0.442
|
|
3 0.515 0.289 2.043 0.367 0.434
|
|
4 0.439 0.443 0.367 1.665 0.437
|
|
5 0.207 0.442 0.434 0.437 1.867
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5875 -0.0147
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.632 0.447 0.515 0.439 0.207
|
|
2 0.447 1.874 0.289 0.443 0.442
|
|
3 0.515 0.289 2.043 0.367 0.434
|
|
4 0.439 0.443 0.367 1.665 0.437
|
|
5 0.207 0.442 0.434 0.437 1.867
|
|
|
|
--- For frequency w = 16 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 0.516
|
|
2 0.753
|
|
3 0.906
|
|
4 0.524
|
|
5 0.762
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.516 -0.369 -0.503 -0.481 0.151
|
|
2 -0.369 0.753 0.159 -0.363 -0.265
|
|
3 -0.503 0.159 0.906 0.047 -0.379
|
|
4 -0.481 -0.363 0.047 0.524 -0.393
|
|
5 0.151 -0.266 -0.379 -0.393 0.762
|
|
|
|
Hubbard cRPA interaction for w = 16, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -0.0533 -2.4060
|
|
|
|
(Hubbard cRPA interaction for w = 16, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 0.6923 -2.4305)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.516 0.446 0.512 0.436 0.207
|
|
2 0.446 0.753 0.289 0.441 0.439
|
|
3 0.512 0.289 0.906 0.366 0.441
|
|
4 0.436 0.441 0.366 0.524 0.435
|
|
5 0.207 0.439 0.441 0.435 0.762
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5877 -0.0126
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.516 0.446 0.512 0.436 0.207
|
|
2 0.446 0.753 0.289 0.441 0.439
|
|
3 0.512 0.289 0.906 0.366 0.441
|
|
4 0.436 0.441 0.366 0.524 0.435
|
|
5 0.207 0.439 0.441 0.435 0.762
|
|
|
|
--- For frequency w = 17 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 0.898
|
|
2 0.995
|
|
3 1.165
|
|
4 0.875
|
|
5 1.155
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.898 -0.049 -0.177 -0.112 0.539
|
|
2 -0.049 0.995 0.410 -0.058 0.061
|
|
3 -0.177 0.410 1.165 0.356 -0.047
|
|
4 -0.112 -0.058 0.356 0.875 -0.018
|
|
5 0.539 0.061 -0.047 -0.018 1.155
|
|
|
|
Hubbard cRPA interaction for w = 17, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 0.2759 -5.1809
|
|
|
|
(Hubbard cRPA interaction for w = 17, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.0176 -5.2000)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.898 0.440 0.508 0.431 0.207
|
|
2 0.440 0.995 0.287 0.436 0.435
|
|
3 0.508 0.287 1.165 0.364 0.435
|
|
4 0.431 0.436 0.364 0.875 0.432
|
|
5 0.207 0.435 0.435 0.432 1.155
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5831 -0.0095
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.898 0.440 0.508 0.431 0.207
|
|
2 0.440 0.995 0.287 0.436 0.435
|
|
3 0.508 0.287 1.165 0.364 0.435
|
|
4 0.431 0.436 0.364 0.875 0.432
|
|
5 0.207 0.435 0.435 0.432 1.155
|
|
|
|
--- For frequency w = 18 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 -0.990
|
|
2 -0.726
|
|
3 -0.616
|
|
4 -0.975
|
|
5 -0.770
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -0.990 -1.851 -1.998 -1.975 -1.367
|
|
2 -1.851 -0.726 -1.338 -1.845 -1.757
|
|
3 -1.998 -1.338 -0.616 -1.459 -1.883
|
|
4 -1.975 -1.845 -1.459 -0.975 -1.896
|
|
5 -1.367 -1.757 -1.883 -1.896 -0.770
|
|
|
|
Hubbard cRPA interaction for w = 18, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -1.5525 -3.9392
|
|
|
|
(Hubbard cRPA interaction for w = 18, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -0.8153 -3.9618)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -0.990 0.444 0.509 0.433 0.208
|
|
2 0.444 -0.726 0.288 0.438 0.436
|
|
3 0.509 0.288 -0.616 0.365 0.433
|
|
4 0.433 0.438 0.365 -0.975 0.434
|
|
5 0.208 0.436 0.433 0.434 -0.770
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5831 -0.0110
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -0.990 0.444 0.509 0.433 0.208
|
|
2 0.444 -0.726 0.288 0.438 0.436
|
|
3 0.509 0.288 -0.616 0.365 0.433
|
|
4 0.433 0.438 0.365 -0.975 0.434
|
|
5 0.208 0.436 0.433 0.434 -0.770
|
|
|
|
--- For frequency w = 19 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 0.580
|
|
2 0.542
|
|
3 0.735
|
|
4 0.594
|
|
5 0.812
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.580 -0.435 -0.548 -0.410 0.209
|
|
2 -0.435 0.542 -0.030 -0.425 -0.336
|
|
3 -0.548 -0.030 0.735 0.001 -0.427
|
|
4 -0.410 -0.425 0.001 0.594 -0.327
|
|
5 0.209 -0.336 -0.427 -0.327 0.812
|
|
|
|
Hubbard cRPA interaction for w = 19, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -0.0876 -5.8648
|
|
|
|
(Hubbard cRPA interaction for w = 19, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 0.6526 -5.8870)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.580 0.441 0.507 0.430 0.208
|
|
2 0.441 0.542 0.287 0.436 0.434
|
|
3 0.507 0.287 0.735 0.364 0.431
|
|
4 0.430 0.436 0.364 0.594 0.432
|
|
5 0.208 0.434 0.431 0.432 0.812
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5819 -0.0101
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.580 0.441 0.507 0.430 0.208
|
|
2 0.441 0.542 0.287 0.436 0.434
|
|
3 0.507 0.287 0.735 0.364 0.431
|
|
4 0.430 0.436 0.364 0.594 0.432
|
|
5 0.208 0.434 0.431 0.432 0.812
|
|
|
|
--- For frequency w = 20 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 0.437
|
|
2 0.515
|
|
3 0.613
|
|
4 0.433
|
|
5 0.622
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.437 -0.503 -0.647 -0.544 0.043
|
|
2 -0.503 0.515 -0.097 -0.506 -0.424
|
|
3 -0.647 -0.097 0.613 -0.133 -0.544
|
|
4 -0.544 -0.506 -0.133 0.433 -0.477
|
|
5 0.043 -0.424 -0.544 -0.477 0.622
|
|
|
|
Hubbard cRPA interaction for w = 20, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -0.2019 -4.6428
|
|
|
|
(Hubbard cRPA interaction for w = 20, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 0.5239 -4.6626)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.437 0.438 0.504 0.429 0.207
|
|
2 0.438 0.515 0.287 0.433 0.433
|
|
3 0.504 0.287 0.613 0.363 0.421
|
|
4 0.429 0.433 0.363 0.433 0.430
|
|
5 0.207 0.433 0.421 0.430 0.622
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5760 -0.0092
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 0.437 0.438 0.504 0.429 0.207
|
|
2 0.438 0.515 0.287 0.433 0.433
|
|
3 0.504 0.287 0.613 0.363 0.421
|
|
4 0.429 0.433 0.363 0.433 0.430
|
|
5 0.207 0.433 0.421 0.430 0.622
|
|
|
|
--- For frequency w = 21 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 -1.357
|
|
2 -1.177
|
|
3 -1.109
|
|
4 -1.364
|
|
5 -1.169
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -1.357 -2.251 -2.415 -2.347 -1.750
|
|
2 -2.251 -1.177 -1.807 -2.256 -2.174
|
|
3 -2.415 -1.807 -1.109 -1.893 -2.314
|
|
4 -2.347 -2.256 -1.893 -1.364 -2.281
|
|
5 -1.750 -2.174 -2.314 -2.281 -1.169
|
|
|
|
Hubbard cRPA interaction for w = 21, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -1.9661 -4.7953
|
|
|
|
(Hubbard cRPA interaction for w = 21, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -1.2354 -4.8356)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -1.357 0.438 0.504 0.429 0.208
|
|
2 0.438 -1.177 0.287 0.433 0.433
|
|
3 0.504 0.287 -1.109 0.363 0.427
|
|
4 0.429 0.433 0.363 -1.364 0.430
|
|
5 0.208 0.433 0.427 0.430 -1.169
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5778 -0.0166
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -1.357 0.438 0.504 0.429 0.208
|
|
2 0.438 -1.177 0.287 0.433 0.433
|
|
3 0.504 0.287 -1.109 0.363 0.427
|
|
4 0.429 0.433 0.363 -1.364 0.430
|
|
5 0.208 0.433 0.427 0.430 -1.169
|
|
|
|
--- For frequency w = 22 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 -6.630
|
|
2 -6.418
|
|
3 -6.442
|
|
4 -6.644
|
|
5 -6.513
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -6.630 -7.495 -7.688 -7.603 -7.057
|
|
2 -7.495 -6.418 -7.085 -7.501 -7.450
|
|
3 -7.688 -7.085 -6.442 -7.194 -7.617
|
|
4 -7.603 -7.501 -7.194 -6.644 -7.566
|
|
5 -7.057 -7.450 -7.617 -7.566 -6.513
|
|
|
|
Hubbard cRPA interaction for w = 22, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -7.2464 -6.9215
|
|
|
|
(Hubbard cRPA interaction for w = 22, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -6.5295 -6.9731)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -6.630 0.436 0.501 0.426 0.208
|
|
2 0.436 -6.418 0.286 0.431 0.430
|
|
3 0.501 0.286 -6.442 0.362 0.411
|
|
4 0.426 0.431 0.362 -6.644 0.428
|
|
5 0.208 0.430 0.411 0.428 -6.513
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5710 -0.0202
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -6.630 0.436 0.501 0.426 0.208
|
|
2 0.436 -6.418 0.286 0.431 0.430
|
|
3 0.501 0.286 -6.442 0.362 0.411
|
|
4 0.426 0.431 0.362 -6.644 0.428
|
|
5 0.208 0.430 0.411 0.428 -6.513
|
|
|
|
--- For frequency w = 23 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 -6.974
|
|
2 -6.531
|
|
3 -6.678
|
|
4 -7.200
|
|
5 -6.704
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -6.974 -7.753 -8.044 -8.095 -7.326
|
|
2 -7.753 -6.531 -7.279 -7.869 -7.641
|
|
3 -8.044 -7.279 -6.678 -7.604 -7.916
|
|
4 -8.095 -7.869 -7.604 -7.200 -8.000
|
|
5 -7.326 -7.641 -7.916 -8.000 -6.704
|
|
|
|
Hubbard cRPA interaction for w = 23, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= -7.5656 -15.7684
|
|
|
|
(Hubbard cRPA interaction for w = 23, U=1/(2l+1) \sum U(m1,m1,m1,m1)= -6.8173 -15.8314)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -6.974 0.433 0.499 0.425 0.207
|
|
2 0.433 -6.531 0.286 0.428 0.430
|
|
3 0.499 0.286 -6.678 0.360 0.450
|
|
4 0.425 0.428 0.360 -7.200 0.426
|
|
5 0.207 0.430 0.450 0.426 -6.704
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5815 -0.0295
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 -6.974 0.433 0.499 0.425 0.207
|
|
2 0.433 -6.531 0.286 0.428 0.430
|
|
3 0.499 0.286 -6.678 0.360 0.450
|
|
4 0.425 0.428 0.360 -7.200 0.426
|
|
5 0.207 0.430 0.450 0.426 -6.704
|
|
|
|
--- For frequency w = 24 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 1.281
|
|
2 1.916
|
|
3 2.210
|
|
4 1.261
|
|
5 1.954
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.281 0.587 0.500 0.249 1.129
|
|
2 0.587 1.916 1.380 0.573 0.896
|
|
3 0.500 1.380 2.210 1.062 0.826
|
|
4 0.249 0.572 1.062 1.261 0.539
|
|
5 1.129 0.896 0.825 0.539 1.954
|
|
|
|
Hubbard cRPA interaction for w = 24, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 0.9640 -35.8170
|
|
|
|
(Hubbard cRPA interaction for w = 24, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 1.7242 -35.8580)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.281 0.436 0.502 0.428 0.207
|
|
2 0.436 1.916 0.286 0.431 0.432
|
|
3 0.502 0.286 2.210 0.362 0.462
|
|
4 0.428 0.431 0.362 1.261 0.428
|
|
5 0.207 0.432 0.462 0.428 1.954
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5874 -0.0176
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 1.281 0.436 0.502 0.428 0.207
|
|
2 0.436 1.916 0.286 0.431 0.432
|
|
3 0.502 0.286 2.210 0.362 0.462
|
|
4 0.428 0.431 0.362 1.261 0.428
|
|
5 0.207 0.432 0.462 0.428 1.954
|
|
|
|
--- For frequency w = 25 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 20.387
|
|
2 20.720
|
|
3 20.972
|
|
4 20.432
|
|
5 20.558
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 20.387 19.544 19.440 19.389 19.984
|
|
2 19.544 20.720 20.166 19.566 19.604
|
|
3 19.440 20.166 20.972 20.033 19.517
|
|
4 19.389 19.566 20.033 20.432 19.434
|
|
5 19.984 19.604 19.517 19.434 20.558
|
|
|
|
Hubbard cRPA interaction for w = 25, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 19.8570 -13.7879
|
|
|
|
(Hubbard cRPA interaction for w = 25, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 20.6137 -13.8208)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 20.387 0.435 0.500 0.426 0.207
|
|
2 0.435 20.720 0.286 0.430 0.430
|
|
3 0.500 0.286 20.972 0.361 0.455
|
|
4 0.426 0.430 0.361 20.432 0.427
|
|
5 0.207 0.430 0.455 0.427 20.558
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5849 -0.0134
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 20.387 0.435 0.500 0.426 0.207
|
|
2 0.435 20.720 0.286 0.430 0.430
|
|
3 0.500 0.286 20.972 0.361 0.455
|
|
4 0.426 0.430 0.361 20.432 0.427
|
|
5 0.207 0.430 0.455 0.427 20.558
|
|
|
|
--- For frequency w = 26 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 4.361
|
|
2 4.739
|
|
3 4.732
|
|
4 4.441
|
|
5 4.444
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.361 3.559 3.346 3.408 3.916
|
|
2 3.560 4.739 4.069 3.598 3.585
|
|
3 3.346 4.069 4.732 3.923 3.392
|
|
4 3.408 3.598 3.923 4.441 3.417
|
|
5 3.916 3.585 3.392 3.417 4.444
|
|
|
|
Hubbard cRPA interaction for w = 26, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.8057 -12.4935
|
|
|
|
(Hubbard cRPA interaction for w = 26, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.5434 -12.5410)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.361 0.434 0.500 0.426 0.207
|
|
2 0.434 4.739 0.286 0.430 0.430
|
|
3 0.500 0.286 4.732 0.361 0.434
|
|
4 0.426 0.430 0.361 4.441 0.427
|
|
5 0.207 0.430 0.434 0.427 4.444
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5780 -0.0208
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.361 0.434 0.500 0.426 0.207
|
|
2 0.434 4.739 0.286 0.430 0.430
|
|
3 0.500 0.286 4.732 0.361 0.434
|
|
4 0.426 0.430 0.361 4.441 0.427
|
|
5 0.207 0.430 0.434 0.427 4.444
|
|
|
|
--- For frequency w = 27 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 19.253
|
|
2 19.509
|
|
3 19.989
|
|
4 19.252
|
|
5 19.732
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 19.253 18.358 18.355 18.220 19.003
|
|
2 18.358 19.509 19.061 18.352 18.569
|
|
3 18.355 19.061 19.989 18.939 18.582
|
|
4 18.220 18.352 18.939 19.252 18.410
|
|
5 19.003 18.569 18.582 18.410 19.732
|
|
|
|
Hubbard cRPA interaction for w = 27, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 18.7773 -6.7021
|
|
|
|
(Hubbard cRPA interaction for w = 27, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 19.5471 -6.7337)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 19.253 0.433 0.498 0.423 0.207
|
|
2 0.433 19.509 0.285 0.428 0.428
|
|
3 0.498 0.285 19.989 0.360 0.476
|
|
4 0.423 0.428 0.360 19.252 0.425
|
|
5 0.207 0.428 0.476 0.425 19.732
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5887 -0.0133
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 19.253 0.433 0.498 0.423 0.207
|
|
2 0.433 19.509 0.285 0.428 0.428
|
|
3 0.498 0.285 19.989 0.360 0.476
|
|
4 0.423 0.428 0.360 19.252 0.425
|
|
5 0.207 0.428 0.476 0.425 19.732
|
|
|
|
--- For frequency w = 28 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 10.832
|
|
2 11.052
|
|
3 11.273
|
|
4 10.801
|
|
5 11.119
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.832 9.930 9.809 9.797 10.488
|
|
2 9.930 11.052 10.484 9.913 10.049
|
|
3 9.809 10.484 11.273 10.365 9.943
|
|
4 9.797 9.913 10.365 10.801 9.897
|
|
5 10.488 10.049 9.943 9.897 11.119
|
|
|
|
Hubbard cRPA interaction for w = 28, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 10.2571 -5.9448
|
|
|
|
(Hubbard cRPA interaction for w = 28, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 11.0155 -5.9775)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.832 0.432 0.498 0.422 0.207
|
|
2 0.432 11.052 0.285 0.427 0.428
|
|
3 0.498 0.285 11.273 0.360 0.461
|
|
4 0.422 0.427 0.360 10.801 0.425
|
|
5 0.207 0.428 0.461 0.425 11.119
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5839 -0.0184
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.832 0.432 0.498 0.422 0.207
|
|
2 0.432 11.052 0.285 0.427 0.428
|
|
3 0.498 0.285 11.273 0.360 0.461
|
|
4 0.422 0.427 0.360 10.801 0.425
|
|
5 0.207 0.428 0.461 0.425 11.119
|
|
|
|
--- For frequency w = 29 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 10.437
|
|
2 10.663
|
|
3 10.950
|
|
4 10.433
|
|
5 10.784
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.437 9.555 9.487 9.434 10.125
|
|
2 9.555 10.663 10.138 9.551 9.709
|
|
3 9.487 10.138 10.950 10.029 9.659
|
|
4 9.434 9.550 10.029 10.433 9.572
|
|
5 10.125 9.709 9.659 9.572 10.784
|
|
|
|
Hubbard cRPA interaction for w = 29, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.9114 -6.4012
|
|
|
|
(Hubbard cRPA interaction for w = 29, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.6534 -6.4303)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.437 0.431 0.496 0.422 0.207
|
|
2 0.431 10.663 0.285 0.426 0.428
|
|
3 0.496 0.285 10.950 0.360 0.443
|
|
4 0.422 0.426 0.360 10.433 0.424
|
|
5 0.207 0.428 0.443 0.424 10.784
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5777 -0.0147
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.437 0.431 0.496 0.422 0.207
|
|
2 0.431 10.663 0.285 0.426 0.428
|
|
3 0.496 0.285 10.950 0.360 0.443
|
|
4 0.422 0.426 0.360 10.433 0.424
|
|
5 0.207 0.428 0.443 0.424 10.784
|
|
|
|
--- For frequency w = 30 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.768
|
|
2 9.074
|
|
3 9.254
|
|
4 8.789
|
|
5 9.025
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.768 7.919 7.790 7.767 8.411
|
|
2 7.919 9.074 8.491 7.925 8.028
|
|
3 7.790 8.491 9.254 8.355 7.917
|
|
4 7.767 7.924 8.355 8.789 7.859
|
|
5 8.411 8.028 7.917 7.859 9.025
|
|
|
|
Hubbard cRPA interaction for w = 30, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.2333 -6.8496
|
|
|
|
(Hubbard cRPA interaction for w = 30, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.9821 -6.8833)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.768 0.428 0.493 0.420 0.207
|
|
2 0.428 9.074 0.284 0.423 0.425
|
|
3 0.493 0.284 9.254 0.358 0.449
|
|
4 0.420 0.423 0.358 8.789 0.422
|
|
5 0.207 0.425 0.449 0.422 9.025
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5782 -0.0185
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.768 0.428 0.493 0.420 0.207
|
|
2 0.428 9.074 0.284 0.423 0.425
|
|
3 0.493 0.284 9.254 0.358 0.449
|
|
4 0.420 0.423 0.358 8.789 0.422
|
|
5 0.207 0.425 0.449 0.422 9.025
|
|
|
|
--- For frequency w = 31 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.677
|
|
2 8.946
|
|
3 9.174
|
|
4 8.688
|
|
5 8.978
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.677 7.828 7.744 7.694 8.343
|
|
2 7.829 8.946 8.398 7.828 7.964
|
|
3 7.744 8.398 9.174 8.274 7.900
|
|
4 7.694 7.828 8.274 8.688 7.814
|
|
5 8.343 7.964 7.900 7.814 8.978
|
|
|
|
Hubbard cRPA interaction for w = 31, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.1616 -5.7245
|
|
|
|
(Hubbard cRPA interaction for w = 31, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.8925 -5.7703)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.677 0.429 0.495 0.420 0.207
|
|
2 0.429 8.946 0.284 0.424 0.426
|
|
3 0.495 0.284 9.174 0.358 0.433
|
|
4 0.420 0.424 0.358 8.688 0.423
|
|
5 0.207 0.426 0.433 0.423 8.978
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5726 -0.0241
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.677 0.429 0.495 0.420 0.207
|
|
2 0.429 8.946 0.284 0.424 0.426
|
|
3 0.495 0.284 9.174 0.358 0.433
|
|
4 0.420 0.424 0.358 8.688 0.423
|
|
5 0.207 0.426 0.433 0.423 8.978
|
|
|
|
--- For frequency w = 32 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.702
|
|
2 9.109
|
|
3 9.290
|
|
4 8.726
|
|
5 8.990
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.702 7.901 7.764 7.698 8.360
|
|
2 7.901 9.109 8.524 7.906 8.025
|
|
3 7.764 8.524 9.290 8.339 7.903
|
|
4 7.698 7.906 8.339 8.726 7.799
|
|
5 8.360 8.025 7.903 7.799 8.990
|
|
|
|
Hubbard cRPA interaction for w = 32, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.2102 -5.1433
|
|
|
|
(Hubbard cRPA interaction for w = 32, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.9633 -5.1854)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.702 0.429 0.494 0.420 0.206
|
|
2 0.429 9.109 0.284 0.424 0.425
|
|
3 0.494 0.284 9.290 0.358 0.458
|
|
4 0.420 0.424 0.358 8.726 0.422
|
|
5 0.206 0.425 0.458 0.422 8.990
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5802 -0.0223
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.702 0.429 0.494 0.420 0.206
|
|
2 0.429 9.109 0.284 0.424 0.425
|
|
3 0.494 0.284 9.290 0.358 0.458
|
|
4 0.420 0.424 0.358 8.726 0.422
|
|
5 0.206 0.425 0.458 0.422 8.990
|
|
|
|
--- For frequency w = 33 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 6.207
|
|
2 6.565
|
|
3 6.780
|
|
4 6.278
|
|
5 6.483
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 6.207 5.378 5.273 5.233 5.860
|
|
2 5.378 6.565 6.001 5.414 5.499
|
|
3 5.273 6.001 6.780 5.863 5.413
|
|
4 5.234 5.414 5.863 6.278 5.339
|
|
5 5.860 5.499 5.413 5.339 6.483
|
|
|
|
Hubbard cRPA interaction for w = 33, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 5.7145 -6.9569
|
|
|
|
(Hubbard cRPA interaction for w = 33, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 6.4627 -7.0074)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 6.207 0.436 0.501 0.428 0.207
|
|
2 0.436 6.565 0.286 0.430 0.433
|
|
3 0.501 0.286 6.780 0.361 0.445
|
|
4 0.428 0.430 0.361 6.278 0.428
|
|
5 0.207 0.433 0.445 0.428 6.483
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5826 -0.0292
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 6.207 0.436 0.501 0.428 0.207
|
|
2 0.436 6.565 0.286 0.430 0.433
|
|
3 0.501 0.286 6.780 0.361 0.445
|
|
4 0.428 0.430 0.361 6.278 0.428
|
|
5 0.207 0.433 0.445 0.428 6.483
|
|
|
|
--- For frequency w = 34 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 4.623
|
|
2 4.928
|
|
3 5.069
|
|
4 4.620
|
|
5 4.879
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.623 3.778 3.642 3.619 4.268
|
|
2 3.778 4.928 4.333 3.775 3.891
|
|
3 3.642 4.333 5.069 4.184 3.772
|
|
4 3.619 3.775 4.184 4.620 3.715
|
|
5 4.268 3.891 3.771 3.715 4.879
|
|
|
|
Hubbard cRPA interaction for w = 34, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 4.0830 -8.5152
|
|
|
|
(Hubbard cRPA interaction for w = 34, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.8240 -8.5609)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.623 0.434 0.500 0.424 0.207
|
|
2 0.434 4.928 0.285 0.430 0.429
|
|
3 0.500 0.285 5.069 0.361 0.439
|
|
4 0.424 0.430 0.361 4.620 0.426
|
|
5 0.207 0.429 0.439 0.426 4.879
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5787 -0.0268
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.623 0.434 0.500 0.424 0.207
|
|
2 0.434 4.928 0.285 0.430 0.429
|
|
3 0.500 0.285 5.069 0.361 0.439
|
|
4 0.424 0.430 0.361 4.620 0.426
|
|
5 0.207 0.429 0.439 0.426 4.879
|
|
|
|
--- For frequency w = 35 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 6.533
|
|
2 6.734
|
|
3 7.082
|
|
4 6.541
|
|
5 6.946
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 6.533 5.626 5.568 5.515 6.252
|
|
2 5.626 6.734 6.227 5.624 5.809
|
|
3 5.568 6.227 7.082 6.144 5.769
|
|
4 5.515 5.624 6.143 6.541 5.681
|
|
5 6.252 5.809 5.769 5.681 6.946
|
|
|
|
Hubbard cRPA interaction for w = 35, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 6.0107 -11.1634
|
|
|
|
(Hubbard cRPA interaction for w = 35, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 6.7673 -11.2190)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 6.533 0.439 0.502 0.429 0.208
|
|
2 0.439 6.734 0.286 0.434 0.432
|
|
3 0.502 0.286 7.082 0.363 0.458
|
|
4 0.429 0.434 0.363 6.541 0.428
|
|
5 0.208 0.432 0.458 0.428 6.946
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5871 -0.0289
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 6.533 0.439 0.502 0.429 0.208
|
|
2 0.439 6.734 0.286 0.434 0.432
|
|
3 0.502 0.286 7.082 0.363 0.458
|
|
4 0.429 0.434 0.363 6.541 0.428
|
|
5 0.208 0.432 0.458 0.428 6.946
|
|
|
|
--- For frequency w = 36 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 7.270
|
|
2 7.580
|
|
3 7.904
|
|
4 7.214
|
|
5 7.685
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 7.270 6.421 6.357 6.226 6.990
|
|
2 6.421 7.580 7.066 6.387 6.607
|
|
3 6.357 7.066 7.904 6.890 6.560
|
|
4 6.226 6.386 6.890 7.214 6.391
|
|
5 6.990 6.607 6.560 6.391 7.685
|
|
|
|
Hubbard cRPA interaction for w = 36, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 6.7776 -11.3644
|
|
|
|
(Hubbard cRPA interaction for w = 36, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 7.5304 -11.4048)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 7.270 0.437 0.501 0.429 0.208
|
|
2 0.437 7.580 0.287 0.433 0.432
|
|
3 0.501 0.287 7.904 0.362 0.456
|
|
4 0.429 0.433 0.362 7.214 0.427
|
|
5 0.208 0.432 0.456 0.427 7.685
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5854 -0.0265
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 7.270 0.437 0.501 0.429 0.208
|
|
2 0.437 7.580 0.287 0.433 0.432
|
|
3 0.501 0.287 7.904 0.362 0.456
|
|
4 0.429 0.433 0.362 7.214 0.427
|
|
5 0.208 0.432 0.456 0.427 7.685
|
|
|
|
--- For frequency w = 37 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.124
|
|
2 8.428
|
|
3 8.794
|
|
4 8.153
|
|
5 8.519
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.124 7.271 7.224 7.125 7.833
|
|
2 7.271 8.428 7.934 7.285 7.443
|
|
3 7.224 7.934 8.794 7.804 7.413
|
|
4 7.125 7.285 7.804 8.153 7.278
|
|
5 7.833 7.443 7.413 7.278 8.519
|
|
|
|
Hubbard cRPA interaction for w = 37, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 7.6495 -8.7909
|
|
|
|
(Hubbard cRPA interaction for w = 37, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.4036 -8.8402)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.124 0.446 0.507 0.435 0.208
|
|
2 0.446 8.428 0.287 0.441 0.436
|
|
3 0.507 0.287 8.794 0.364 0.453
|
|
4 0.435 0.441 0.364 8.153 0.432
|
|
5 0.208 0.436 0.453 0.432 8.519
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5894 -0.0256
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.124 0.446 0.507 0.435 0.208
|
|
2 0.446 8.428 0.287 0.441 0.436
|
|
3 0.507 0.287 8.794 0.364 0.453
|
|
4 0.435 0.441 0.364 8.153 0.432
|
|
5 0.208 0.436 0.453 0.432 8.519
|
|
|
|
--- For frequency w = 38 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.652
|
|
2 8.985
|
|
3 9.270
|
|
4 8.659
|
|
5 9.019
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.652 7.829 7.762 7.661 8.350
|
|
2 7.829 8.985 8.462 7.831 7.994
|
|
3 7.762 8.462 9.270 8.304 7.947
|
|
4 7.661 7.831 8.304 8.659 7.810
|
|
5 8.350 7.994 7.947 7.810 9.019
|
|
|
|
Hubbard cRPA interaction for w = 38, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.1795 -8.4970
|
|
|
|
(Hubbard cRPA interaction for w = 38, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.9171 -8.5383)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.652 0.439 0.501 0.430 0.207
|
|
2 0.439 8.985 0.286 0.434 0.432
|
|
3 0.501 0.286 9.270 0.362 0.437
|
|
4 0.430 0.434 0.362 8.659 0.427
|
|
5 0.207 0.432 0.437 0.427 9.019
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5798 -0.0266
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.652 0.439 0.501 0.430 0.207
|
|
2 0.439 8.985 0.286 0.434 0.432
|
|
3 0.501 0.286 9.270 0.362 0.437
|
|
4 0.430 0.434 0.362 8.659 0.427
|
|
5 0.207 0.432 0.437 0.427 9.019
|
|
|
|
--- For frequency w = 39 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.495
|
|
2 8.850
|
|
3 9.131
|
|
4 8.536
|
|
5 8.811
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.495 7.668 7.584 7.505 8.166
|
|
2 7.668 8.850 8.317 7.689 7.803
|
|
3 7.584 8.317 9.131 8.164 7.737
|
|
4 7.505 7.689 8.164 8.536 7.621
|
|
5 8.166 7.803 7.737 7.621 8.811
|
|
|
|
Hubbard cRPA interaction for w = 39, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.0134 -12.5040
|
|
|
|
(Hubbard cRPA interaction for w = 39, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.7647 -12.5606)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.495 0.442 0.504 0.432 0.207
|
|
2 0.442 8.850 0.286 0.437 0.433
|
|
3 0.504 0.286 9.131 0.363 0.449
|
|
4 0.432 0.437 0.363 8.536 0.430
|
|
5 0.207 0.433 0.449 0.430 8.811
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5863 -0.0285
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.495 0.442 0.504 0.432 0.207
|
|
2 0.442 8.850 0.286 0.437 0.433
|
|
3 0.504 0.286 9.131 0.363 0.449
|
|
4 0.432 0.437 0.363 8.536 0.430
|
|
5 0.207 0.433 0.449 0.430 8.811
|
|
|
|
--- For frequency w = 40 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 10.766
|
|
2 11.141
|
|
3 11.268
|
|
4 10.745
|
|
5 10.980
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.766 9.964 9.814 9.758 10.386
|
|
2 9.964 11.141 10.538 9.952 10.049
|
|
3 9.814 10.538 11.268 10.346 9.921
|
|
4 9.758 9.952 10.346 10.745 9.829
|
|
5 10.386 10.049 9.921 9.829 10.980
|
|
|
|
Hubbard cRPA interaction for w = 40, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 10.2406 -9.0164
|
|
|
|
(Hubbard cRPA interaction for w = 40, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.9799 -9.0587)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.766 0.438 0.502 0.430 0.207
|
|
2 0.438 11.141 0.286 0.434 0.432
|
|
3 0.502 0.286 11.268 0.361 0.437
|
|
4 0.430 0.434 0.361 10.745 0.427
|
|
5 0.207 0.432 0.437 0.427 10.980
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5801 -0.0210
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.766 0.438 0.502 0.430 0.207
|
|
2 0.438 11.141 0.286 0.434 0.432
|
|
3 0.502 0.286 11.268 0.361 0.437
|
|
4 0.430 0.434 0.361 10.745 0.427
|
|
5 0.207 0.432 0.437 0.427 10.980
|
|
|
|
--- For frequency w = 41 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 4.477
|
|
2 4.790
|
|
3 5.010
|
|
4 4.497
|
|
5 4.787
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.477 3.649 3.558 3.495 4.148
|
|
2 3.649 4.790 4.238 3.659 3.787
|
|
3 3.558 4.238 5.010 4.100 3.721
|
|
4 3.495 3.659 4.100 4.497 3.622
|
|
5 4.148 3.787 3.721 3.622 4.787
|
|
|
|
Hubbard cRPA interaction for w = 41, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.9807 -10.9958
|
|
|
|
(Hubbard cRPA interaction for w = 41, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.7123 -11.0485)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.477 0.442 0.505 0.433 0.207
|
|
2 0.442 4.790 0.287 0.438 0.433
|
|
3 0.505 0.287 5.010 0.363 0.425
|
|
4 0.433 0.438 0.363 4.497 0.430
|
|
5 0.207 0.433 0.425 0.430 4.787
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5791 -0.0276
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.477 0.442 0.505 0.433 0.207
|
|
2 0.442 4.790 0.287 0.438 0.433
|
|
3 0.505 0.287 5.010 0.363 0.425
|
|
4 0.433 0.438 0.363 4.497 0.430
|
|
5 0.207 0.433 0.425 0.430 4.787
|
|
|
|
--- For frequency w = 42 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 12.402
|
|
2 12.678
|
|
3 12.907
|
|
4 12.364
|
|
5 12.667
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 12.402 11.564 11.480 11.394 12.049
|
|
2 11.564 12.678 12.133 11.543 11.680
|
|
3 11.480 12.133 12.907 11.986 11.622
|
|
4 11.394 11.543 11.986 12.364 11.501
|
|
5 12.049 11.680 11.622 11.501 12.667
|
|
|
|
Hubbard cRPA interaction for w = 42, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 11.8769 -12.2960
|
|
|
|
(Hubbard cRPA interaction for w = 42, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 12.6035 -12.3568)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 12.402 0.438 0.501 0.430 0.207
|
|
2 0.438 12.678 0.286 0.434 0.432
|
|
3 0.501 0.286 12.907 0.362 0.422
|
|
4 0.430 0.434 0.362 12.364 0.427
|
|
5 0.207 0.432 0.422 0.427 12.667
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5755 -0.0278
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 12.402 0.438 0.501 0.430 0.207
|
|
2 0.438 12.678 0.286 0.434 0.432
|
|
3 0.501 0.286 12.907 0.362 0.422
|
|
4 0.430 0.434 0.362 12.364 0.427
|
|
5 0.207 0.432 0.422 0.427 12.667
|
|
|
|
--- For frequency w = 43 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 12.298
|
|
2 12.457
|
|
3 12.583
|
|
4 12.193
|
|
5 12.448
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 12.298 11.412 11.286 11.266 11.890
|
|
2 11.412 12.457 11.866 11.357 11.472
|
|
3 11.286 11.866 12.583 11.747 11.375
|
|
4 11.266 11.357 11.747 12.193 11.322
|
|
5 11.890 11.472 11.375 11.322 12.448
|
|
|
|
Hubbard cRPA interaction for w = 43, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 11.6785 -9.6034
|
|
|
|
(Hubbard cRPA interaction for w = 43, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 12.3958 -9.6733)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 12.298 0.436 0.500 0.430 0.207
|
|
2 0.436 12.457 0.286 0.432 0.431
|
|
3 0.500 0.286 12.583 0.361 0.410
|
|
4 0.430 0.432 0.361 12.193 0.426
|
|
5 0.207 0.431 0.410 0.426 12.448
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5713 -0.0333
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 12.298 0.436 0.500 0.430 0.207
|
|
2 0.436 12.457 0.286 0.432 0.431
|
|
3 0.500 0.286 12.583 0.361 0.410
|
|
4 0.430 0.432 0.361 12.193 0.426
|
|
5 0.207 0.431 0.410 0.426 12.448
|
|
|
|
--- For frequency w = 44 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 10.561
|
|
2 10.759
|
|
3 11.002
|
|
4 10.557
|
|
5 10.760
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.561 9.658 9.567 9.548 10.177
|
|
2 9.658 10.759 10.216 9.662 9.740
|
|
3 9.567 10.216 11.002 10.122 9.672
|
|
4 9.548 9.662 10.122 10.557 9.619
|
|
5 10.177 9.740 9.672 9.619 10.760
|
|
|
|
Hubbard cRPA interaction for w = 44, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.9841 -7.3362
|
|
|
|
(Hubbard cRPA interaction for w = 44, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.7281 -7.4288)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.561 0.438 0.503 0.428 0.207
|
|
2 0.438 10.759 0.286 0.433 0.431
|
|
3 0.503 0.286 11.002 0.362 0.432
|
|
4 0.428 0.433 0.362 10.557 0.429
|
|
5 0.207 0.431 0.432 0.429 10.760
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5811 -0.0419
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.561 0.438 0.503 0.428 0.207
|
|
2 0.438 10.759 0.286 0.433 0.431
|
|
3 0.503 0.286 11.002 0.362 0.432
|
|
4 0.428 0.433 0.362 10.557 0.429
|
|
5 0.207 0.431 0.432 0.429 10.760
|
|
|
|
--- For frequency w = 45 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 9.489
|
|
2 9.542
|
|
3 9.794
|
|
4 9.401
|
|
5 9.716
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.489 8.550 8.487 8.459 9.121
|
|
2 8.550 9.542 9.014 8.501 8.657
|
|
3 8.487 9.014 9.794 8.958 8.625
|
|
4 8.459 8.501 8.958 9.401 8.560
|
|
5 9.121 8.657 8.625 8.560 9.716
|
|
|
|
Hubbard cRPA interaction for w = 45, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 8.8721 -7.7746
|
|
|
|
(Hubbard cRPA interaction for w = 45, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 9.5881 -7.8666)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.489 0.443 0.507 0.430 0.207
|
|
2 0.443 9.542 0.287 0.436 0.433
|
|
3 0.507 0.287 9.794 0.364 0.407
|
|
4 0.430 0.436 0.364 9.401 0.433
|
|
5 0.207 0.433 0.407 0.433 9.716
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5738 -0.0416
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.489 0.443 0.507 0.430 0.207
|
|
2 0.443 9.542 0.287 0.436 0.433
|
|
3 0.507 0.287 9.794 0.364 0.407
|
|
4 0.430 0.436 0.364 9.401 0.433
|
|
5 0.207 0.433 0.407 0.433 9.716
|
|
|
|
--- For frequency w = 46 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 8.161
|
|
2 8.516
|
|
3 8.843
|
|
4 8.108
|
|
5 8.557
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.161 7.317 7.237 7.105 7.872
|
|
2 7.317 8.516 8.000 7.294 7.488
|
|
3 7.237 8.000 8.843 7.797 7.424
|
|
4 7.105 7.294 7.797 8.108 7.255
|
|
5 7.872 7.488 7.424 7.255 8.557
|
|
|
|
Hubbard cRPA interaction for w = 46, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 7.6705 -8.4952
|
|
|
|
(Hubbard cRPA interaction for w = 46, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 8.4370 -8.5779)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.161 0.438 0.502 0.427 0.207
|
|
2 0.438 8.516 0.285 0.433 0.430
|
|
3 0.502 0.285 8.843 0.362 0.466
|
|
4 0.427 0.433 0.362 8.108 0.428
|
|
5 0.207 0.430 0.466 0.428 8.557
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5894 -0.0398
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 8.161 0.438 0.502 0.427 0.207
|
|
2 0.438 8.516 0.285 0.433 0.430
|
|
3 0.502 0.285 8.843 0.362 0.466
|
|
4 0.427 0.433 0.362 8.108 0.428
|
|
5 0.207 0.430 0.466 0.428 8.557
|
|
|
|
--- For frequency w = 47 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 10.205
|
|
2 10.504
|
|
3 10.939
|
|
4 10.373
|
|
5 10.450
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.205 9.351 9.340 9.278 9.845
|
|
2 9.351 10.504 10.054 9.448 9.456
|
|
3 9.340 10.054 10.939 9.991 9.472
|
|
4 9.278 9.448 9.991 10.373 9.377
|
|
5 9.845 9.456 9.472 9.377 10.450
|
|
|
|
Hubbard cRPA interaction for w = 47, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.7479 -10.1802
|
|
|
|
(Hubbard cRPA interaction for w = 47, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.4942 -10.3288)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.205 0.439 0.503 0.429 0.208
|
|
2 0.439 10.504 0.287 0.433 0.432
|
|
3 0.503 0.287 10.939 0.363 0.428
|
|
4 0.429 0.433 0.363 10.373 0.430
|
|
5 0.208 0.432 0.428 0.430 10.450
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5819 -0.0634
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 10.205 0.439 0.503 0.429 0.208
|
|
2 0.439 10.504 0.287 0.433 0.432
|
|
3 0.503 0.287 10.939 0.363 0.428
|
|
4 0.429 0.433 0.363 10.373 0.430
|
|
5 0.208 0.432 0.428 0.430 10.450
|
|
|
|
--- For frequency w = 48 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 4.424
|
|
2 4.582
|
|
3 5.114
|
|
4 4.342
|
|
5 4.891
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.424 3.464 3.413 3.308 4.162
|
|
2 3.464 4.582 4.134 3.420 3.652
|
|
3 3.413 4.134 5.114 4.029 3.599
|
|
4 3.308 3.420 4.029 4.342 3.457
|
|
5 4.162 3.652 3.599 3.457 4.891
|
|
|
|
Hubbard cRPA interaction for w = 48, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.8652 -11.7942
|
|
|
|
(Hubbard cRPA interaction for w = 48, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.6706 -11.8991)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.424 0.440 0.502 0.430 0.208
|
|
2 0.440 4.582 0.286 0.434 0.432
|
|
3 0.502 0.286 5.114 0.363 0.519
|
|
4 0.430 0.434 0.363 4.342 0.429
|
|
5 0.208 0.432 0.519 0.429 4.891
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6055 -0.0478
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 4.424 0.440 0.502 0.430 0.208
|
|
2 0.440 4.582 0.286 0.434 0.432
|
|
3 0.502 0.286 5.114 0.363 0.519
|
|
4 0.430 0.434 0.363 4.342 0.429
|
|
5 0.208 0.432 0.519 0.429 4.891
|
|
|
|
--- For frequency w = 49 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 9.965
|
|
2 10.204
|
|
3 10.559
|
|
4 9.804
|
|
5 10.421
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.965 9.039 8.922 8.822 9.699
|
|
2 9.039 10.204 9.676 8.957 9.223
|
|
3 8.922 9.676 10.559 9.480 9.110
|
|
4 8.822 8.957 9.480 9.804 8.974
|
|
5 9.699 9.223 9.110 8.974 10.421
|
|
|
|
Hubbard cRPA interaction for w = 49, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.3903 -12.5686
|
|
|
|
(Hubbard cRPA interaction for w = 49, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.1905 -12.6509)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.965 0.435 0.501 0.426 0.207
|
|
2 0.435 10.204 0.285 0.431 0.429
|
|
3 0.501 0.285 10.559 0.361 0.512
|
|
4 0.426 0.431 0.361 9.804 0.427
|
|
5 0.207 0.429 0.512 0.427 10.421
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6015 -0.0377
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.965 0.435 0.501 0.426 0.207
|
|
2 0.435 10.204 0.285 0.431 0.429
|
|
3 0.501 0.285 10.559 0.361 0.512
|
|
4 0.426 0.431 0.361 9.804 0.427
|
|
5 0.207 0.429 0.512 0.427 10.421
|
|
|
|
--- For frequency w = 50 -------------
|
|
|
|
|
|
Diagonal cRPA interaction
|
|
1 9.967
|
|
2 10.239
|
|
3 10.609
|
|
4 9.943
|
|
5 10.349
|
|
|
|
U'=U(m1,m2,m1,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.967 9.078 9.007 8.916 9.668
|
|
2 9.078 10.239 9.736 9.064 9.238
|
|
3 9.007 9.736 10.609 9.592 9.181
|
|
4 8.916 9.064 9.592 9.943 9.052
|
|
5 9.668 9.238 9.181 9.052 10.349
|
|
|
|
Hubbard cRPA interaction for w = 50, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 9.4468 -14.8255
|
|
|
|
(Hubbard cRPA interaction for w = 50, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 10.2214 -14.8783)
|
|
|
|
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.967 0.439 0.501 0.430 0.207
|
|
2 0.439 10.239 0.285 0.435 0.430
|
|
3 0.501 0.285 10.609 0.361 0.478
|
|
4 0.430 0.435 0.361 9.943 0.427
|
|
5 0.207 0.430 0.478 0.427 10.349
|
|
|
|
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5930 -0.0295
|
|
|
|
|
|
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
|
|
- 1 2 3 4 5
|
|
1 9.967 0.439 0.501 0.430 0.207
|
|
2 0.439 10.239 0.285 0.435 0.430
|
|
3 0.501 0.285 10.609 0.361 0.478
|
|
4 0.430 0.435 0.361 9.943 0.427
|
|
5 0.207 0.430 0.478 0.427 10.349
|
|
|
|
==Reminder of the orbitals==
|
|
Only one orbital
|
|
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
|
|
|
|
-------------------------------------------------------------
|
|
Average U and J as a function of frequency
|
|
-------------------------------------------------------------
|
|
omega U(omega) J(omega)
|
|
0.000 2.9218 0.0000 0.5730 0.0000
|
|
0.612 2.8936 -0.0362 0.5729 -0.0003
|
|
1.224 2.8026 -0.0413 0.5724 -0.0003
|
|
1.837 2.6208 -0.0585 0.5713 -0.0004
|
|
2.449 2.3025 -0.2099 0.5694 -0.0010
|
|
3.061 2.0730 -0.5771 0.5661 -0.0043
|
|
3.673 2.3418 -0.8938 0.5692 -0.0075
|
|
4.286 1.5328 -1.8038 0.5703 -0.0131
|
|
4.898 1.7499 -1.6318 0.5695 -0.0121
|
|
5.510 2.0662 -2.1711 0.5691 -0.0112
|
|
6.122 2.2024 -1.7888 0.5678 -0.0235
|
|
6.735 1.9830 -1.8441 0.5773 -0.0161
|
|
7.347 1.1257 -1.4243 0.5741 -0.0327
|
|
7.959 1.6012 -2.1128 0.5895 -0.0189
|
|
8.571 1.0747 -3.0660 0.5875 -0.0147
|
|
9.184 -0.0533 -2.4060 0.5877 -0.0126
|
|
9.796 0.2759 -5.1809 0.5831 -0.0095
|
|
10.408 -1.5525 -3.9392 0.5831 -0.0110
|
|
11.020 -0.0876 -5.8648 0.5819 -0.0101
|
|
11.633 -0.2019 -4.6428 0.5760 -0.0092
|
|
12.245 -1.9661 -4.7953 0.5778 -0.0166
|
|
12.857 -7.2464 -6.9215 0.5710 -0.0202
|
|
13.469 -7.5656 -15.7684 0.5815 -0.0295
|
|
14.082 0.9640 -35.8170 0.5874 -0.0176
|
|
14.694 19.8570 -13.7879 0.5849 -0.0134
|
|
15.306 3.8057 -12.4935 0.5780 -0.0208
|
|
15.918 18.7773 -6.7021 0.5887 -0.0133
|
|
16.531 10.2571 -5.9448 0.5839 -0.0184
|
|
17.143 9.9114 -6.4012 0.5777 -0.0147
|
|
17.755 8.2333 -6.8496 0.5782 -0.0185
|
|
18.367 8.1616 -5.7245 0.5726 -0.0241
|
|
18.980 8.2102 -5.1433 0.5802 -0.0223
|
|
19.592 5.7145 -6.9569 0.5826 -0.0292
|
|
20.204 4.0830 -8.5152 0.5787 -0.0268
|
|
20.816 6.0107 -11.1634 0.5871 -0.0289
|
|
21.429 6.7776 -11.3644 0.5854 -0.0265
|
|
22.041 7.6495 -8.7909 0.5894 -0.0256
|
|
22.653 8.1795 -8.4970 0.5798 -0.0266
|
|
23.265 8.0134 -12.5040 0.5863 -0.0285
|
|
23.878 10.2406 -9.0164 0.5801 -0.0210
|
|
24.490 3.9807 -10.9958 0.5791 -0.0276
|
|
25.102 11.8769 -12.2960 0.5755 -0.0278
|
|
25.714 11.6785 -9.6034 0.5713 -0.0333
|
|
26.327 9.9841 -7.3362 0.5811 -0.0419
|
|
26.939 8.8721 -7.7746 0.5738 -0.0416
|
|
27.551 7.6705 -8.4952 0.5894 -0.0398
|
|
28.163 9.7479 -10.1802 0.5819 -0.0634
|
|
28.776 3.8652 -11.7942 0.6055 -0.0478
|
|
29.388 9.3903 -12.5686 0.6015 -0.0377
|
|
30.000 9.4468 -14.8255 0.5930 -0.0295
|
|
-------------------------------------------------------------
|
|
|
|
== END DATASET(S) ==============================================================
|
|
================================================================================
|
|
|
|
-outvars: echo values of variables after computation --------
|
|
acell 7.2605000000E+00 7.2605000000E+00 7.2605000000E+00 Bohr
|
|
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
|
|
dmatpuopt 1
|
|
dmftbandf1 0
|
|
dmftbandf2 25
|
|
dmftbandf3 0
|
|
dmftbandf4 0
|
|
dmftbandi1 0
|
|
dmftbandi2 21
|
|
dmftbandi3 0
|
|
dmftbandi4 0
|
|
dmft_solv1 5
|
|
dmft_solv2 0
|
|
dmft_solv3 5
|
|
dmft_solv4 5
|
|
ecut1 1.20000000E+01 Hartree
|
|
ecut2 1.20000000E+01 Hartree
|
|
ecut3 1.19824785E+01 Hartree
|
|
ecut4 1.19824785E+01 Hartree
|
|
ecuteps1 0.00000000E+00 Hartree
|
|
ecuteps2 0.00000000E+00 Hartree
|
|
ecuteps3 2.99561963E+00 Hartree
|
|
ecuteps4 0.00000000E+00 Hartree
|
|
ecutsigx1 0.00000000E+00 Hartree
|
|
ecutsigx2 0.00000000E+00 Hartree
|
|
ecutsigx3 0.00000000E+00 Hartree
|
|
ecutsigx4 1.98459801E+01 Hartree
|
|
ecutwfn1 0.00000000E+00 Hartree
|
|
ecutwfn2 0.00000000E+00 Hartree
|
|
ecutwfn3 1.19824785E+01 Hartree
|
|
ecutwfn4 1.19824785E+01 Hartree
|
|
etotal1 -1.5192840910E+02
|
|
etotal3 0.0000000000E+00
|
|
etotal4 0.0000000000E+00
|
|
fcart1 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
|
|
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
- fftalg 312
|
|
freqremax1 0.00000000E+00 Hartree
|
|
freqremax2 0.00000000E+00 Hartree
|
|
freqremax3 1.10247976E+00 Hartree
|
|
freqremax4 0.00000000E+00 Hartree
|
|
freqspmax1 0.00000000E+00 Hartree
|
|
freqspmax2 0.00000000E+00 Hartree
|
|
freqspmax3 0.00000000E+00 Hartree
|
|
freqspmax4 1.10247976E+00 Hartree
|
|
getden1 0
|
|
getden2 -1
|
|
getden3 0
|
|
getden4 0
|
|
getscr1 0
|
|
getscr2 0
|
|
getscr3 0
|
|
getscr4 3
|
|
getwfk1 0
|
|
getwfk2 0
|
|
getwfk3 -1
|
|
getwfk4 2
|
|
gwcalctyp1 0
|
|
gwcalctyp2 0
|
|
gwcalctyp3 2
|
|
gwcalctyp4 2
|
|
- gwpara1 2
|
|
- gwpara2 2
|
|
- gwpara3 1
|
|
- gwpara4 2
|
|
iscf1 17
|
|
iscf2 -2
|
|
iscf3 17
|
|
iscf4 17
|
|
ixc -1012
|
|
jdtset 1 2 3 4
|
|
kpt 1.25000000E-01 1.25000000E-01 1.25000000E-01
|
|
3.75000000E-01 1.25000000E-01 1.25000000E-01
|
|
3.75000000E-01 3.75000000E-01 1.25000000E-01
|
|
3.75000000E-01 3.75000000E-01 3.75000000E-01
|
|
kptrlatt 4 0 0 0 4 0 0 0 4
|
|
kptrlen 2.90420000E+01
|
|
kssform 3
|
|
lpawu 2 -1 -1
|
|
P mkmem 1
|
|
mqgrid1 0
|
|
mqgrid2 0
|
|
mqgrid3 0
|
|
mqgrid4 300
|
|
mqgriddg1 0
|
|
mqgriddg2 0
|
|
mqgriddg3 0
|
|
mqgriddg4 300
|
|
natom 5
|
|
nband 100
|
|
nbandkss1 0
|
|
nbandkss2 -1
|
|
nbandkss3 0
|
|
nbandkss4 0
|
|
nbdbuf1 0
|
|
nbdbuf2 4
|
|
nbdbuf3 0
|
|
nbdbuf4 0
|
|
ndtset 4
|
|
nfreqim1 -1
|
|
nfreqim2 -1
|
|
nfreqim3 0
|
|
nfreqim4 -1
|
|
nfreqre1 -1
|
|
nfreqre2 -1
|
|
nfreqre3 50
|
|
nfreqre4 -1
|
|
nfreqsp1 0
|
|
nfreqsp2 0
|
|
nfreqsp3 0
|
|
nfreqsp4 50
|
|
ngfft 24 24 24
|
|
ngfftdg 30 30 30
|
|
nkpt 4
|
|
nline 5
|
|
nnsclo 2
|
|
npweps1 0
|
|
npweps2 0
|
|
npweps3 93
|
|
npweps4 0
|
|
npwsigx1 0
|
|
npwsigx2 0
|
|
npwsigx3 0
|
|
npwsigx4 1647
|
|
npwwfn1 0
|
|
npwwfn2 0
|
|
npwwfn3 751
|
|
npwwfn4 751
|
|
nstep 40
|
|
nsym 48
|
|
ntypat 3
|
|
occ1 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.707032 1.361099 1.361099 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.189950 0.000101 0.000083 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 0.000076 0.000043 0.000003 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 0.000001 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
occ3 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
occ4 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
|
|
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
|
0.000000 0.000000 0.000000 0.000000
|
|
occopt 3
|
|
optdriver1 0
|
|
optdriver2 0
|
|
optdriver3 3
|
|
optdriver4 4
|
|
optforces1 2
|
|
optforces2 0
|
|
optforces3 2
|
|
optforces4 2
|
|
- paral_atom1 1
|
|
- paral_atom2 1
|
|
- paral_atom3 0
|
|
- paral_atom4 0
|
|
pawecutdg 2.00000000E+01 Hartree
|
|
pawoptosc 1
|
|
pawprtvol 3
|
|
plowan_bandi1 0
|
|
plowan_bandi2 21
|
|
plowan_bandi3 0
|
|
plowan_bandi4 0
|
|
plowan_bandf1 0
|
|
plowan_bandf2 25
|
|
plowan_bandf3 0
|
|
plowan_bandf4 0
|
|
plowan_compute1 0
|
|
plowan_compute2 1
|
|
plowan_compute3 10
|
|
plowan_compute4 10
|
|
plowan_natom 1
|
|
plowan_nt 1
|
|
plowan_realspace 1
|
|
plowan_it1 0 0 0
|
|
plowan_it2 0 0 0
|
|
plowan_it3 0 0 0
|
|
plowan_it4 0 0 0
|
|
plowan_iatom1 1
|
|
plowan_iatom2 1
|
|
plowan_iatom3 1
|
|
plowan_iatom4 1
|
|
plowan_nbl1 1
|
|
plowan_nbl2 1
|
|
plowan_nbl3 1
|
|
plowan_nbl4 1
|
|
plowan_lcalc1 2
|
|
plowan_lcalc2 2
|
|
plowan_lcalc3 2
|
|
plowan_lcalc4 2
|
|
plowan_projcalc1 -2
|
|
plowan_projcalc2 -2
|
|
plowan_projcalc3 -2
|
|
plowan_projcalc4 -2
|
|
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
|
|
spgroup 221
|
|
strten1 2.0903025574E-03 2.0903025574E-03 2.0903025574E-03
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
symchi 0
|
|
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
|
|
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
|
|
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
|
|
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
|
|
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
|
|
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
|
|
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
|
|
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
|
|
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
|
|
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
|
|
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
|
|
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
|
|
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
|
|
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
|
|
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
|
|
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
|
|
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
|
|
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
|
|
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
|
|
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
|
|
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
|
|
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
|
|
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
|
|
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
|
|
symsigma 0
|
|
tolvrs1 1.00000000E-13
|
|
tolvrs2 0.00000000E+00
|
|
tolvrs3 1.00000000E-15
|
|
tolvrs4 1.00000000E-15
|
|
tolwfr1 0.00000000E+00
|
|
tolwfr2 1.00000000E-18
|
|
tolwfr3 0.00000000E+00
|
|
tolwfr4 0.00000000E+00
|
|
tsmear 3.67493254E-03 Hartree
|
|
typat 1 2 3 3 3
|
|
ucrpa 1
|
|
ucrpa_bands1 -1 -1
|
|
ucrpa_bands2 -1 -1
|
|
ucrpa_bands3 21 25
|
|
ucrpa_bands4 -1 -1
|
|
usepawu1 1
|
|
usepawu2 10
|
|
usepawu3 1
|
|
usepawu4 1
|
|
useylm 1
|
|
wtk 0.12500 0.37500 0.37500 0.12500
|
|
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
1.9210455615E+00 1.9210455615E+00 1.9210455615E+00
|
|
1.9210455615E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 1.9210455615E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 1.9210455615E+00
|
|
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
3.6302500000E+00 3.6302500000E+00 3.6302500000E+00
|
|
3.6302500000E+00 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 3.6302500000E+00 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 3.6302500000E+00
|
|
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
|
|
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
|
|
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
|
|
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
|
|
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
|
|
znucl 23.00000 38.00000 8.00000
|
|
|
|
================================================================================
|
|
|
|
|
|
- Timing analysis has been suppressed with timopt=0
|
|
|
|
|
|
|
|
================================================================================
|
|
|
|
Suggested references for the acknowledgment of ABINIT usage.
|
|
|
|
The users of ABINIT have little formal obligations with respect to the ABINIT group
|
|
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
|
|
However, it is common practice in the scientific literature,
|
|
to acknowledge the efforts of people that have made the research possible.
|
|
In this spirit, please find below suggested citations of work written by ABINIT developers,
|
|
corresponding to implementations inside of ABINIT that you have used in the present run.
|
|
Note also that it will be of great value to readers of publications presenting these results,
|
|
to read papers enabling them to understand the theoretical formalism and details
|
|
of the ABINIT implementation.
|
|
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
|
|
-
|
|
- [1] Screened Coulomb interaction calculations: cRPA implementation and applications
|
|
- to dynamical screening and self-consistency in uranium dioxide and cerium
|
|
- B. Amadon, T. Applencourt and F. Bruneval Phys. Rev. B 89, 125110 (2014).
|
|
- Comment: Describes the cRPA implementation of the screened Coulomb interaction in PAW
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2014
|
|
-
|
|
- [2] Gamma and beta cerium: DFT+U calculations of ground-state parameters.
|
|
- B. Amadon, F. Jollet and M. Torrent, Phys. Rev. B 77, 155104 (2008).
|
|
- Comment: DFT+U calculations, usepawu/=0. Strong suggestion to cite this paper.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2008a
|
|
-
|
|
- [3] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
|
|
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
|
|
- Comment: PAW calculations. Strong suggestion to cite this paper.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
|
|
-
|
|
- [4] Libxc: A library of exchange and correlation functionals for density functional theory.
|
|
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
|
|
- Comment: to be cited when LibXC is used (negative value of ixc)
|
|
- Strong suggestion to cite this paper.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
|
|
-
|
|
- [5] The Abinit project: Impact, environment and recent developments.
|
|
- Computer Phys. Comm. 248, 107042 (2020).
|
|
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
|
|
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
|
|
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
|
|
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
|
|
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
|
|
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
|
|
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
|
|
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
|
|
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
|
|
- Comment: the fifth generic paper describing the ABINIT project.
|
|
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
|
|
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
|
|
- The licence allows the authors to put it on the Web.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
|
|
-
|
|
- [6] Recent developments in the ABINIT software package.
|
|
- Computer Phys. Comm. 205, 106 (2016).
|
|
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
|
|
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
|
|
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
|
|
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
|
|
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
|
|
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
|
|
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
|
|
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
|
|
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
|
|
- B.Xu, A.Zhou, J.W.Zwanziger.
|
|
- Comment: the fourth generic paper describing the ABINIT project.
|
|
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
|
|
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
|
|
- The licence allows the authors to put it on the Web.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
|
|
-
|
|
- [7] ABINIT: First-principles approach of materials and nanosystem properties.
|
|
- Computer Phys. Comm. 180, 2582-2615 (2009).
|
|
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
|
|
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
|
|
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
|
|
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
|
|
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
|
|
- Comment: the third generic paper describing the ABINIT project.
|
|
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
|
|
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
|
|
- The licence allows the authors to put it on the Web.
|
|
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
|
|
-
|
|
- Proc. 0 individual time (sec): cpu= 323.7 wall= 402.4
|
|
|
|
================================================================================
|
|
|
|
Calculation completed.
|
|
.Delivered 4 WARNINGs and 0 COMMENTs to log file.
|
|
+Overall time at end (sec) : cpu= 1402.7 wall= 1608.9
|