abinit/tests/tutoparal/Refs/tucalc_crpa_3.out

9411 lines
479 KiB
Plaintext

.Version 9.1.4 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu9.1 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Wed 20 May 2020.
- ( at 18h37 )
- input file -> tucrpa_3.in
- output file -> tucrpa_3.out
- root for input files -> tucrpa_I
- root for output files -> tucrpa_O
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- inpspheads : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
DATASET 11 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 11.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.489 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 12 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 12.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 11.139 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 13 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 13.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.617 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 14 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 14.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 300
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 12.463 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 21 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 21.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.489 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 22 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 22.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 11.139 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 23 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 23.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.617 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 24 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 24.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 300
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 12.463 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 31 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 31.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.489 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 32 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 32.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 11.139 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 33 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 33.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.617 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 34 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 34.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 300
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 12.463 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 41 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 41.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.489 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 42 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 42.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
Pmy_natom= 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 11.139 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 43 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 43.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 13.617 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
DATASET 44 : space group Pm -3 m (#221); Bravais cP (primitive cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 44.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 18
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 300
natom = 5 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 1 ntypat = 3
occopt = 3 xclevel = 1
- mband = 30 mffmem = 1 mkmem = 1
mpw = 762 nfft = 13824 nkpt = 4
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 30 nfftf = 27000
================================================================================
P This job should need less than 12.463 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 1.397 Mbytes ; DEN or POT disk file : 0.208 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 1
-
-outvars: echo values of preprocessed input variables --------
acell 7.2605000000E+00 7.2605000000E+00 7.2605000000E+00 Bohr
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
dmatpuopt 1
dmftbandf11 0
dmftbandf12 25
dmftbandf13 0
dmftbandf14 0
dmftbandf21 0
dmftbandf22 25
dmftbandf23 0
dmftbandf24 0
dmftbandf31 0
dmftbandf32 25
dmftbandf33 0
dmftbandf34 0
dmftbandf41 0
dmftbandf42 25
dmftbandf43 0
dmftbandf44 0
dmftbandi11 0
dmftbandi12 21
dmftbandi13 0
dmftbandi14 0
dmftbandi21 0
dmftbandi22 21
dmftbandi23 0
dmftbandi24 0
dmftbandi31 0
dmftbandi32 21
dmftbandi33 0
dmftbandi34 0
dmftbandi41 0
dmftbandi42 21
dmftbandi43 0
dmftbandi44 0
dmft_solv11 5
dmft_solv12 0
dmft_solv13 5
dmft_solv14 5
dmft_solv21 5
dmft_solv22 0
dmft_solv23 5
dmft_solv24 5
dmft_solv31 5
dmft_solv32 0
dmft_solv33 5
dmft_solv34 5
dmft_solv41 5
dmft_solv42 0
dmft_solv43 5
dmft_solv44 5
ecut11 1.20000000E+01 Hartree
ecut12 1.20000000E+01 Hartree
ecut13 1.19824785E+01 Hartree
ecut14 1.19824785E+01 Hartree
ecut21 1.20000000E+01 Hartree
ecut22 1.20000000E+01 Hartree
ecut23 1.19824785E+01 Hartree
ecut24 1.19824785E+01 Hartree
ecut31 1.20000000E+01 Hartree
ecut32 1.20000000E+01 Hartree
ecut33 1.19824785E+01 Hartree
ecut34 1.19824785E+01 Hartree
ecut41 1.20000000E+01 Hartree
ecut42 1.20000000E+01 Hartree
ecut43 1.19824785E+01 Hartree
ecut44 1.19824785E+01 Hartree
ecuteps11 3.00000000E+00 Hartree
ecuteps12 3.00000000E+00 Hartree
ecuteps13 2.99561963E+00 Hartree
ecuteps14 2.99561963E+00 Hartree
ecuteps21 5.00000000E+00 Hartree
ecuteps22 5.00000000E+00 Hartree
ecuteps23 4.86788191E+00 Hartree
ecuteps24 4.86788191E+00 Hartree
ecuteps31 7.00000000E+00 Hartree
ecuteps32 7.00000000E+00 Hartree
ecuteps33 6.74014418E+00 Hartree
ecuteps34 6.74014418E+00 Hartree
ecuteps41 9.00000000E+00 Hartree
ecuteps42 9.00000000E+00 Hartree
ecuteps43 8.98685890E+00 Hartree
ecuteps44 8.98685890E+00 Hartree
ecutsigx11 0.00000000E+00 Hartree
ecutsigx12 0.00000000E+00 Hartree
ecutsigx13 0.00000000E+00 Hartree
ecutsigx14 2.99561963E+01 Hartree
ecutsigx21 0.00000000E+00 Hartree
ecutsigx22 0.00000000E+00 Hartree
ecutsigx23 0.00000000E+00 Hartree
ecutsigx24 2.99561963E+01 Hartree
ecutsigx31 0.00000000E+00 Hartree
ecutsigx32 0.00000000E+00 Hartree
ecutsigx33 0.00000000E+00 Hartree
ecutsigx34 2.99561963E+01 Hartree
ecutsigx41 0.00000000E+00 Hartree
ecutsigx42 0.00000000E+00 Hartree
ecutsigx43 0.00000000E+00 Hartree
ecutsigx44 2.99561963E+01 Hartree
ecutwfn11 1.20000000E+01 Hartree
ecutwfn12 1.20000000E+01 Hartree
ecutwfn13 1.19824785E+01 Hartree
ecutwfn14 1.19824785E+01 Hartree
ecutwfn21 1.20000000E+01 Hartree
ecutwfn22 1.20000000E+01 Hartree
ecutwfn23 1.19824785E+01 Hartree
ecutwfn24 1.19824785E+01 Hartree
ecutwfn31 1.20000000E+01 Hartree
ecutwfn32 1.20000000E+01 Hartree
ecutwfn33 1.19824785E+01 Hartree
ecutwfn34 1.19824785E+01 Hartree
ecutwfn41 1.20000000E+01 Hartree
ecutwfn42 1.20000000E+01 Hartree
ecutwfn43 1.19824785E+01 Hartree
ecutwfn44 1.19824785E+01 Hartree
- fftalg 312
freqremax11 0.00000000E+00 Hartree
freqremax12 0.00000000E+00 Hartree
freqremax13 3.67493254E-01 Hartree
freqremax14 0.00000000E+00 Hartree
freqremax21 0.00000000E+00 Hartree
freqremax22 0.00000000E+00 Hartree
freqremax23 3.67493254E-01 Hartree
freqremax24 0.00000000E+00 Hartree
freqremax31 0.00000000E+00 Hartree
freqremax32 0.00000000E+00 Hartree
freqremax33 3.67493254E-01 Hartree
freqremax34 0.00000000E+00 Hartree
freqremax41 0.00000000E+00 Hartree
freqremax42 0.00000000E+00 Hartree
freqremax43 3.67493254E-01 Hartree
freqremax44 0.00000000E+00 Hartree
freqspmax11 0.00000000E+00 Hartree
freqspmax12 0.00000000E+00 Hartree
freqspmax13 0.00000000E+00 Hartree
freqspmax14 3.67493254E-01 Hartree
freqspmax21 0.00000000E+00 Hartree
freqspmax22 0.00000000E+00 Hartree
freqspmax23 0.00000000E+00 Hartree
freqspmax24 3.67493254E-01 Hartree
freqspmax31 0.00000000E+00 Hartree
freqspmax32 0.00000000E+00 Hartree
freqspmax33 0.00000000E+00 Hartree
freqspmax34 3.67493254E-01 Hartree
freqspmax41 0.00000000E+00 Hartree
freqspmax42 0.00000000E+00 Hartree
freqspmax43 0.00000000E+00 Hartree
freqspmax44 3.67493254E-01 Hartree
getden11 0
getden12 -1
getden13 0
getden14 0
getden21 0
getden22 -1
getden23 0
getden24 0
getden31 0
getden32 -1
getden33 0
getden34 0
getden41 0
getden42 -1
getden43 0
getden44 0
getscr11 0
getscr12 0
getscr13 0
getscr14 -1
getscr21 0
getscr22 0
getscr23 0
getscr24 -1
getscr31 0
getscr32 0
getscr33 0
getscr34 -1
getscr41 0
getscr42 0
getscr43 0
getscr44 -1
getwfk11 0
getwfk12 0
getwfk13 -1
getwfk14 -2
getwfk21 0
getwfk22 0
getwfk23 -1
getwfk24 -2
getwfk31 0
getwfk32 0
getwfk33 -1
getwfk34 -2
getwfk41 0
getwfk42 0
getwfk43 -1
getwfk44 -2
gwcalctyp11 0
gwcalctyp12 0
gwcalctyp13 2
gwcalctyp14 2
gwcalctyp21 0
gwcalctyp22 0
gwcalctyp23 2
gwcalctyp24 2
gwcalctyp31 0
gwcalctyp32 0
gwcalctyp33 2
gwcalctyp34 2
gwcalctyp41 0
gwcalctyp42 0
gwcalctyp43 2
gwcalctyp44 2
- gwpara11 2
- gwpara12 2
- gwpara13 1
- gwpara14 2
- gwpara21 2
- gwpara22 2
- gwpara23 1
- gwpara24 2
- gwpara31 2
- gwpara32 2
- gwpara33 1
- gwpara34 2
- gwpara41 2
- gwpara42 2
- gwpara43 1
- gwpara44 2
iscf11 17
iscf12 -2
iscf13 17
iscf14 17
iscf21 17
iscf22 -2
iscf23 17
iscf24 17
iscf31 17
iscf32 -2
iscf33 17
iscf34 17
iscf41 17
iscf42 -2
iscf43 17
iscf44 17
ixc -1012
jdtset 11 12 13 14 21 22 23 24 31 32
33 34 41 42 43 44
kpt 1.25000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 3.75000000E-01
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen 2.90420000E+01
kssform11 1
kssform12 3
kssform13 1
kssform14 1
kssform21 1
kssform22 3
kssform23 1
kssform24 1
kssform31 1
kssform32 3
kssform33 1
kssform34 1
kssform41 1
kssform42 3
kssform43 1
kssform44 1
lpawu 2 -1 -1
P mkmem 1
mqgrid11 0
mqgrid12 0
mqgrid13 0
mqgrid14 300
mqgrid21 0
mqgrid22 0
mqgrid23 0
mqgrid24 300
mqgrid31 0
mqgrid32 0
mqgrid33 0
mqgrid34 300
mqgrid41 0
mqgrid42 0
mqgrid43 0
mqgrid44 300
mqgriddg11 0
mqgriddg12 0
mqgriddg13 0
mqgriddg14 300
mqgriddg21 0
mqgriddg22 0
mqgriddg23 0
mqgriddg24 300
mqgriddg31 0
mqgriddg32 0
mqgriddg33 0
mqgriddg34 300
mqgriddg41 0
mqgriddg42 0
mqgriddg43 0
mqgriddg44 300
natom 5
nband 30
nbandkss11 0
nbandkss12 -1
nbandkss13 0
nbandkss14 0
nbandkss21 0
nbandkss22 -1
nbandkss23 0
nbandkss24 0
nbandkss31 0
nbandkss32 -1
nbandkss33 0
nbandkss34 0
nbandkss41 0
nbandkss42 -1
nbandkss43 0
nbandkss44 0
nbdbuf11 0
nbdbuf12 4
nbdbuf13 0
nbdbuf14 0
nbdbuf21 0
nbdbuf22 4
nbdbuf23 0
nbdbuf24 0
nbdbuf31 0
nbdbuf32 4
nbdbuf33 0
nbdbuf34 0
nbdbuf41 0
nbdbuf42 4
nbdbuf43 0
nbdbuf44 0
ndtset 16
nfreqim11 -1
nfreqim12 -1
nfreqim13 0
nfreqim14 -1
nfreqim21 -1
nfreqim22 -1
nfreqim23 0
nfreqim24 -1
nfreqim31 -1
nfreqim32 -1
nfreqim33 0
nfreqim34 -1
nfreqim41 -1
nfreqim42 -1
nfreqim43 0
nfreqim44 -1
nfreqre11 -1
nfreqre12 -1
nfreqre13 1
nfreqre14 -1
nfreqre21 -1
nfreqre22 -1
nfreqre23 1
nfreqre24 -1
nfreqre31 -1
nfreqre32 -1
nfreqre33 1
nfreqre34 -1
nfreqre41 -1
nfreqre42 -1
nfreqre43 1
nfreqre44 -1
nfreqsp11 0
nfreqsp12 0
nfreqsp13 0
nfreqsp14 1
nfreqsp21 0
nfreqsp22 0
nfreqsp23 0
nfreqsp24 1
nfreqsp31 0
nfreqsp32 0
nfreqsp33 0
nfreqsp34 1
nfreqsp41 0
nfreqsp42 0
nfreqsp43 0
nfreqsp44 1
ngfft 24 24 24
ngfftdg 30 30 30
nkpt 4
nline 5
nnsclo 2
npweps11 0
npweps12 0
npweps13 93
npweps14 93
npweps21 0
npweps22 0
npweps23 203
npweps24 203
npweps31 0
npweps32 0
npweps33 341
npweps34 341
npweps41 0
npweps42 0
npweps43 485
npweps44 485
npwsigx11 0
npwsigx12 0
npwsigx13 0
npwsigx14 2969
npwsigx21 0
npwsigx22 0
npwsigx23 0
npwsigx24 2969
npwsigx31 0
npwsigx32 0
npwsigx33 0
npwsigx34 2969
npwsigx41 0
npwsigx42 0
npwsigx43 0
npwsigx44 2969
npwwfn11 0
npwwfn12 0
npwwfn13 751
npwwfn14 751
npwwfn21 0
npwwfn22 0
npwwfn23 751
npwwfn24 751
npwwfn31 0
npwwfn32 0
npwwfn33 751
npwwfn34 751
npwwfn41 0
npwwfn42 0
npwwfn43 751
npwwfn44 751
nstep 40
nsym 48
ntypat 3
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occopt 3
optdriver11 0
optdriver12 0
optdriver13 3
optdriver14 4
optdriver21 0
optdriver22 0
optdriver23 3
optdriver24 4
optdriver31 0
optdriver32 0
optdriver33 3
optdriver34 4
optdriver41 0
optdriver42 0
optdriver43 3
optdriver44 4
optforces11 2
optforces12 0
optforces13 2
optforces14 2
optforces21 2
optforces22 0
optforces23 2
optforces24 2
optforces31 2
optforces32 0
optforces33 2
optforces34 2
optforces41 2
optforces42 0
optforces43 2
optforces44 2
- paral_atom11 1
- paral_atom12 1
- paral_atom13 0
- paral_atom14 0
- paral_atom21 1
- paral_atom22 1
- paral_atom23 0
- paral_atom24 0
- paral_atom31 1
- paral_atom32 1
- paral_atom33 0
- paral_atom34 0
- paral_atom41 1
- paral_atom42 1
- paral_atom43 0
- paral_atom44 0
pawecutdg 2.00000000E+01 Hartree
pawoptosc 1
pawprtvol 3
plowan_bandi11 0
plowan_bandi12 21
plowan_bandi13 0
plowan_bandi14 0
plowan_bandi21 0
plowan_bandi22 21
plowan_bandi23 0
plowan_bandi24 0
plowan_bandi31 0
plowan_bandi32 21
plowan_bandi33 0
plowan_bandi34 0
plowan_bandi41 0
plowan_bandi42 21
plowan_bandi43 0
plowan_bandi44 0
plowan_bandf11 0
plowan_bandf12 25
plowan_bandf13 0
plowan_bandf14 0
plowan_bandf21 0
plowan_bandf22 25
plowan_bandf23 0
plowan_bandf24 0
plowan_bandf31 0
plowan_bandf32 25
plowan_bandf33 0
plowan_bandf34 0
plowan_bandf41 0
plowan_bandf42 25
plowan_bandf43 0
plowan_bandf44 0
plowan_compute11 0
plowan_compute12 1
plowan_compute13 10
plowan_compute14 10
plowan_compute21 0
plowan_compute22 1
plowan_compute23 10
plowan_compute24 10
plowan_compute31 0
plowan_compute32 1
plowan_compute33 10
plowan_compute34 10
plowan_compute41 0
plowan_compute42 1
plowan_compute43 10
plowan_compute44 10
plowan_natom 1
plowan_nt 1
plowan_realspace 1
plowan_it11 0 0 0
plowan_it12 0 0 0
plowan_it13 0 0 0
plowan_it14 0 0 0
plowan_it21 0 0 0
plowan_it22 0 0 0
plowan_it23 0 0 0
plowan_it24 0 0 0
plowan_it31 0 0 0
plowan_it32 0 0 0
plowan_it33 0 0 0
plowan_it34 0 0 0
plowan_it41 0 0 0
plowan_it42 0 0 0
plowan_it43 0 0 0
plowan_it44 0 0 0
plowan_iatom11 1
plowan_iatom12 1
plowan_iatom13 1
plowan_iatom14 1
plowan_iatom21 1
plowan_iatom22 1
plowan_iatom23 1
plowan_iatom24 1
plowan_iatom31 1
plowan_iatom32 1
plowan_iatom33 1
plowan_iatom34 1
plowan_iatom41 1
plowan_iatom42 1
plowan_iatom43 1
plowan_iatom44 1
plowan_nbl11 1
plowan_nbl12 1
plowan_nbl13 1
plowan_nbl14 1
plowan_nbl21 1
plowan_nbl22 1
plowan_nbl23 1
plowan_nbl24 1
plowan_nbl31 1
plowan_nbl32 1
plowan_nbl33 1
plowan_nbl34 1
plowan_nbl41 1
plowan_nbl42 1
plowan_nbl43 1
plowan_nbl44 1
plowan_lcalc11 2
plowan_lcalc12 2
plowan_lcalc13 2
plowan_lcalc14 2
plowan_lcalc21 2
plowan_lcalc22 2
plowan_lcalc23 2
plowan_lcalc24 2
plowan_lcalc31 2
plowan_lcalc32 2
plowan_lcalc33 2
plowan_lcalc34 2
plowan_lcalc41 2
plowan_lcalc42 2
plowan_lcalc43 2
plowan_lcalc44 2
plowan_projcalc11 -2
plowan_projcalc12 -2
plowan_projcalc13 -2
plowan_projcalc14 -2
plowan_projcalc21 -2
plowan_projcalc22 -2
plowan_projcalc23 -2
plowan_projcalc24 -2
plowan_projcalc31 -2
plowan_projcalc32 -2
plowan_projcalc33 -2
plowan_projcalc34 -2
plowan_projcalc41 -2
plowan_projcalc42 -2
plowan_projcalc43 -2
plowan_projcalc44 -2
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
symchi 0
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
symsigma 0
tolvrs11 1.00000000E-13
tolvrs12 0.00000000E+00
tolvrs13 1.00000000E-15
tolvrs14 1.00000000E-15
tolvrs21 1.00000000E-13
tolvrs22 0.00000000E+00
tolvrs23 1.00000000E-15
tolvrs24 1.00000000E-15
tolvrs31 1.00000000E-13
tolvrs32 0.00000000E+00
tolvrs33 1.00000000E-15
tolvrs34 1.00000000E-15
tolvrs41 1.00000000E-13
tolvrs42 0.00000000E+00
tolvrs43 1.00000000E-15
tolvrs44 1.00000000E-15
tolwfr11 0.00000000E+00
tolwfr12 1.00000000E-18
tolwfr13 0.00000000E+00
tolwfr14 0.00000000E+00
tolwfr21 0.00000000E+00
tolwfr22 1.00000000E-18
tolwfr23 0.00000000E+00
tolwfr24 0.00000000E+00
tolwfr31 0.00000000E+00
tolwfr32 1.00000000E-18
tolwfr33 0.00000000E+00
tolwfr34 0.00000000E+00
tolwfr41 0.00000000E+00
tolwfr42 1.00000000E-18
tolwfr43 0.00000000E+00
tolwfr44 0.00000000E+00
tsmear 3.67493254E-03 Hartree
typat 1 2 3 3 3
ucrpa 1
ucrpa_bands11 -1 -1
ucrpa_bands12 -1 -1
ucrpa_bands13 21 25
ucrpa_bands14 -1 -1
ucrpa_bands21 -1 -1
ucrpa_bands22 -1 -1
ucrpa_bands23 21 25
ucrpa_bands24 -1 -1
ucrpa_bands31 -1 -1
ucrpa_bands32 -1 -1
ucrpa_bands33 21 25
ucrpa_bands34 -1 -1
ucrpa_bands41 -1 -1
ucrpa_bands42 -1 -1
ucrpa_bands43 21 25
ucrpa_bands44 -1 -1
usepawu11 1
usepawu12 10
usepawu13 1
usepawu14 1
usepawu21 1
usepawu22 10
usepawu23 1
usepawu24 1
usepawu31 1
usepawu32 10
usepawu33 1
usepawu34 1
usepawu41 1
usepawu42 10
usepawu43 1
usepawu44 1
useylm 1
wtk 0.12500 0.37500 0.37500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9210455615E+00 1.9210455615E+00 1.9210455615E+00
1.9210455615E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 1.9210455615E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.9210455615E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.6302500000E+00 3.6302500000E+00 3.6302500000E+00
3.6302500000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 3.6302500000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.6302500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 23.00000 38.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 11.
chkinp: Checking input parameters for consistency, jdtset= 12.
chkinp: Checking input parameters for consistency, jdtset= 13.
chkinp: Checking input parameters for consistency, jdtset= 14.
chkinp: Checking input parameters for consistency, jdtset= 21.
chkinp: Checking input parameters for consistency, jdtset= 22.
chkinp: Checking input parameters for consistency, jdtset= 23.
chkinp: Checking input parameters for consistency, jdtset= 24.
chkinp: Checking input parameters for consistency, jdtset= 31.
chkinp: Checking input parameters for consistency, jdtset= 32.
chkinp: Checking input parameters for consistency, jdtset= 33.
chkinp: Checking input parameters for consistency, jdtset= 34.
chkinp: Checking input parameters for consistency, jdtset= 41.
chkinp: Checking input parameters for consistency, jdtset= 42.
chkinp: Checking input parameters for consistency, jdtset= 43.
chkinp: Checking input parameters for consistency, jdtset= 44.
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
2.42644211E+03 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 756.500 756.488
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 17, nstep: 40, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -151.59780617659 -1.516E+02 1.231E+00 1.636E+01
ETOT 2 -152.22190312340 -6.241E-01 7.333E-03 9.858E+01
ETOT 3 -151.96620511740 2.557E-01 8.150E-04 3.773E+00
ETOT 4 -151.93401569879 3.219E-02 5.565E-05 5.794E-01
ETOT 5 -151.92919954164 4.816E-03 2.433E-05 1.149E-01
ETOT 6 -151.92843078230 7.688E-04 3.273E-05 2.087E-03
ETOT 7 -151.92841382544 1.696E-05 6.021E-05 5.692E-04
ETOT 8 -151.92840955802 4.267E-06 7.374E-05 6.478E-05
ETOT 9 -151.92840910068 4.573E-07 7.823E-05 3.528E-07
ETOT 10 -151.92840909836 2.316E-09 7.871E-05 7.893E-08
ETOT 11 -151.92840909774 6.189E-10 7.268E-05 5.483E-10
ETOT 12 -151.92840909774 4.604E-12 6.148E-05 4.036E-11
ETOT 13 -151.92840909774 -4.547E-13 4.815E-05 5.003E-14
At SCF step 13 nres2 = 5.00E-14 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 11, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: -4.547E-13, res2: 5.003E-14, residm: 4.815E-05, diffor: null, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.09030303E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.09030303E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.09030303E-03, ]
pressure_GPa: -6.1499E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 5.992978762622291
Compensation charge over fine fft grid = 5.993710117139132
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.124E-08; max= 48.149E-06
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS11_EIG
Fermi (or HOMO) energy (hartree) = 0.28542 Average Vxc (hartree)= -0.43944
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54694
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 1.70703 1.36110 1.36110 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 11, }
comment : Components of total free energy in Hartree
kinetic : 4.22101100754273E+01
hartree : 3.42934572188861E+01
xc : -1.94923346183530E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
local_psp : -1.09494290651675E+02
spherical_terms : 8.43864068890430E+00
internal : -1.51925010352367E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy : -1.51928409296303E+02
total_energy_eV : -4.13418226460090E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 11, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.47235865514179E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
xc_dc : -3.05329760621924E+01
spherical_terms : 1.21214552536544E+00
internal : -1.51925010153801E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy_dc : -1.51928409097737E+02
total_energy_dc_eV : -4.13418225919765E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.1499E+01 GPa]
- sigma(1 1)= 6.14988281E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.14988281E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.14988281E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--------------------------------------------------------------------------------
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
prteigrs : about to open file tucrpa_O_DS12_EIG
Non-SCF case, kpt 1 ( 0.12500 0.12500 0.12500), residuals and eigenvalues=
7.71E-19 6.33E-19 7.60E-19 1.24E-19 5.91E-19 2.91E-19 4.70E-19 1.39E-19
1.34E-19 7.74E-20 5.53E-19 6.30E-19 3.49E-19 5.34E-19 8.08E-19 2.79E-19
1.64E-19 1.89E-19 4.57E-19 7.73E-19 8.90E-19 3.14E-19 7.30E-19 8.80E-19
5.88E-19 7.41E-19 7.23E-19 9.03E-13 5.17E-19 8.72E-05
-2.1011E+00 -1.1520E+00 -1.1520E+00 -1.1520E+00 -9.6527E-01 -4.2839E-01
-3.8629E-01 -3.8629E-01 -3.0392E-01 -3.0392E-01 -2.9801E-01 8.3122E-02
9.7741E-02 9.7741E-02 1.4333E-01 1.4333E-01 1.6821E-01 1.8079E-01
1.9240E-01 1.9240E-01 2.7895E-01 2.8264E-01 2.8264E-01 3.7033E-01
3.7033E-01 4.4811E-01 4.4811E-01 4.8883E-01 5.4658E-01 5.4707E-01
prteigrs : nnsclo,ikpt= 40 1 max resid (incl. the buffer)= 8.71941E-05
prteigrs : prtvol=0 or 1, do not print more k-points.
prteigrs : nnsclo,ikpt= 40 2 max resid (incl. the buffer)= 1.42199E-10
prteigrs : nnsclo,ikpt= 40 3 max resid (incl. the buffer)= 1.07619E-11
prteigrs : nnsclo,ikpt= 40 4 max resid (incl. the buffer)= 1.06803E-12
--- !ResultsGS
iteration_state: {dtset: 12, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.985E-19, diffor: 0.000E+00, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = 5.992978839976715
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
(This is PAW atomic orbital occupations)
(For Wannier orbital occupations, refer to DFT+DMFT occupations above)
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
======================================================================================
== Start computation of Projected Local Orbitals Wannier functions == -1
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
(The band structure is shifted by fermie = 7.7667 eV )
Wannier band structure for atom 1
1 -0.176 -0.076 -0.076 2.310 2.310
2 -0.038 0.989 1.009 2.297 3.960
3 1.017 1.075 1.344 3.024 5.194
4 1.484 1.520 1.520 5.121 5.121
Print the psichi coefficients in data.plowann
======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using conjugate gradient wavefunctions and energies (kssform=3)
outkss: Not allowed options found !
Program does not stop but _KSS file will not be created...
outkss: see the log file for more information.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 47.209E-20; max= 99.852E-20
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS12_EIG
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54707
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 13 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 13, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 3, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 12.
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 18x 18x 18
total number of points = 5832
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 23
- Remaining bands to be divided among processors nbcw = 7
- Number of bands treated by each node ~1
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
2 0.000 -16.885 -7.574 -0.270 -0.270 -0.268 -0.268 -6.622 -7.970
0.000 -0.000 0.000 0.001 0.001 -0.001 -0.001 0.002 0.000
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 4.7952
dielectric constant without local fields = 4.9029
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 13.42 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.209 0.002 -0.002 0.004 -0.004 0.006 -0.006 -0.002 0.002
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.209 0.002 -0.002 0.004 -0.004 0.006 -0.006 -0.002 0.002
0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -13.647 -5.016 -3.434 -5.023 -3.439 -5.015 -3.433 -1.217 -1.420
-0.000 0.000 0.000 0.002 0.000 -0.002 -0.001 0.002 0.001
2 -5.016 -21.359 -10.256 -1.252 -1.234 -1.249 -1.231 -9.092 -6.710
-0.000 0.000 -0.000 0.004 0.004 -0.004 -0.004 0.004 0.005
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 23.42 [%]
--------------------------------------------------------------------------------
q-point number 3 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.105 -2.942 -1.634 -4.259 -4.258 -2.941 -1.635 -1.251 -1.325
-0.000 -0.001 -0.002 -0.001 -0.001 -0.003 -0.002 0.000 0.001
2 -2.942 -19.786 -8.634 -1.294 -1.294 0.219 0.048 -8.284 -7.849
0.001 -0.000 0.001 0.001 0.001 -0.004 -0.004 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 26.31 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.000000,-0.250000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.634 -2.289 -2.289 -0.531 0.458 -2.288 -2.288 0.290 -0.078
-0.000 -0.000 -0.000 0.000 0.001 -0.001 -0.001 0.002 0.003
2 -2.289 -18.785 -9.600 0.012 -0.176 -1.409 -1.410 -7.271 -6.795
0.000 -0.000 0.000 0.006 0.003 0.000 0.000 0.008 0.009
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 31.17 [%]
--------------------------------------------------------------------------------
q-point number 5 q = ( 0.500000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.092 -2.395 -5.386 -7.964 -6.017 -7.951 -6.008 -0.994 -1.176
0.000 0.000 0.000 0.002 0.002 -0.002 -0.002 0.002 0.002
2 -2.395 -13.762 -7.997 -1.067 -1.018 -1.069 -1.016 -4.092 -4.941
-0.000 0.000 0.000 0.002 0.002 -0.002 -0.001 0.003 0.003
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 20.54 [%]
--------------------------------------------------------------------------------
q-point number 6 q = ( 0.500000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.946 -0.756 -3.277 -7.095 -7.096 -6.414 -4.675 -1.117 -1.140
0.000 -0.001 -0.000 0.001 0.001 -0.004 -0.003 0.002 0.002
2 -0.756 -12.446 -6.160 -1.040 -1.038 0.219 0.034 -3.704 -5.929
0.001 0.000 0.000 0.001 0.001 -0.003 -0.003 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 21.77 [%]
--------------------------------------------------------------------------------
q-point number 7 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.150 1.129 -0.825 -5.646 -5.646 -5.634 -5.633 0.017 0.359
-0.000 0.000 -0.000 0.003 0.003 -0.003 -0.003 0.003 0.001
2 1.129 -10.793 -3.843 0.117 0.117 0.117 0.121 -2.867 -4.986
-0.000 -0.000 -0.000 0.002 0.002 -0.002 -0.002 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 7 : 23.33 [%]
--------------------------------------------------------------------------------
q-point number 8 q = ( 0.500000, 0.500000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -22.175 -4.719 -8.330 -4.727 -8.342 -9.986 -7.807 -1.507 -1.279
0.000 0.001 0.000 0.001 -0.000 -0.001 -0.000 -0.001 -0.000
2 -4.719 -15.467 -10.695 -0.840 -1.065 -3.067 -2.581 -2.979 -6.726
-0.001 -0.000 -0.001 -0.000 -0.000 -0.002 -0.000 0.002 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 8 : 19.26 [%]
--------------------------------------------------------------------------------
q-point number 9 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -20.988 -3.474 -6.774 -3.481 -6.787 -9.075 -9.075 -0.491 0.426
0.000 0.001 -0.000 0.002 -0.000 0.000 0.000 -0.001 -0.000
2 -3.474 -14.646 -9.585 0.136 0.271 -2.880 -2.875 -2.222 -5.707
-0.001 -0.000 -0.002 -0.000 -0.001 -0.000 -0.000 0.000 -0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 9 : 20.11 [%]
--------------------------------------------------------------------------------
q-point number 10 q = ( 0.500000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.613 -6.394 -10.333 -6.399 -10.343 -6.394 -10.331 -2.977 -3.839
-0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000
2 -6.394 -16.339 -12.127 -2.253 -3.078 -2.249 -3.071 -3.985 -7.911
0.000 -0.000 -0.000 0.001 0.001 -0.001 -0.001 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 10 : 18.41 [%]
================================================================================
== DATASET 14 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 14, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 4, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 12.
mkfilename : getscr/=0, take file _SCR from output of DATASET 13.
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 30x 30x 30
total number of points = 27000
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
cRPA calculations using wannier weights from data.plowann
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
==== Calculation of the screened interaction ====
Read K and Q mesh
Read l and bands from wanbz 21 25 5
==Calculation of the bare interaction V m==
==Definition of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
Diagonal bare interaction
1 15.853
2 16.385
3 16.795
4 15.884
5 16.351
U'=U(m1,m2,m1,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 14.982 14.893 14.724 15.514
2 14.982 16.385 15.786 14.988 15.181
3 14.893 15.786 16.795 15.540 15.108
4 14.724 14.988 15.540 15.884 14.886
5 15.514 15.181 15.108 14.886 16.351
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 15.3789 0.0000
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 16.2535 0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6667 -0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
== Calculation of the screened interaction on the correlated orbital U m ==
= Start loop over frequency
--- For frequency w = 1 -------------
Diagonal cRPA interaction
1 3.827
2 4.011
3 4.287
4 3.830
5 4.165
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.827 2.855 2.767 2.759 3.418
2 2.855 4.011 3.387 2.852 2.991
3 2.767 3.387 4.287 3.304 2.932
4 2.759 2.852 3.304 3.830 2.876
5 3.418 2.991 2.932 2.876 4.165
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.2161 -0.0000
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 4.0240 -0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.827 0.466 0.535 0.457 0.247
2 0.466 4.011 0.325 0.461 0.467
3 0.535 0.325 4.287 0.394 0.473
4 0.457 0.461 0.394 3.830 0.463
5 0.247 0.467 0.473 0.463 4.165
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6309 -0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.827 0.466 0.535 0.457 0.247
2 0.466 4.011 0.325 0.461 0.467
3 0.535 0.325 4.287 0.394 0.473
4 0.457 0.461 0.394 3.830 0.463
5 0.247 0.467 0.473 0.463 4.165
==Reminder of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
-------------------------------------------------------------
Average U and J as a function of frequency
-------------------------------------------------------------
omega U(omega) J(omega)
0.000 3.2161 -0.0000 0.6309 -0.0000
-------------------------------------------------------------
================================================================================
== DATASET 21 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 21, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 756.500 756.488
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 21, }
solver: {iscf: 17, nstep: 40, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -151.59780617659 -1.516E+02 1.231E+00 1.636E+01
ETOT 2 -152.22190312340 -6.241E-01 7.333E-03 9.858E+01
ETOT 3 -151.96620511740 2.557E-01 8.150E-04 3.773E+00
ETOT 4 -151.93401569879 3.219E-02 5.565E-05 5.794E-01
ETOT 5 -151.92919954164 4.816E-03 2.433E-05 1.149E-01
ETOT 6 -151.92843078230 7.688E-04 3.273E-05 2.087E-03
ETOT 7 -151.92841382544 1.696E-05 6.021E-05 5.692E-04
ETOT 8 -151.92840955802 4.267E-06 7.374E-05 6.478E-05
ETOT 9 -151.92840910068 4.573E-07 7.823E-05 3.528E-07
ETOT 10 -151.92840909836 2.316E-09 7.871E-05 7.893E-08
ETOT 11 -151.92840909774 6.189E-10 7.268E-05 5.483E-10
ETOT 12 -151.92840909774 4.604E-12 6.148E-05 4.036E-11
ETOT 13 -151.92840909774 -4.547E-13 4.815E-05 5.003E-14
At SCF step 13 nres2 = 5.00E-14 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 21, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: -4.547E-13, res2: 5.003E-14, residm: 4.815E-05, diffor: null, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.09030303E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.09030303E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.09030303E-03, ]
pressure_GPa: -6.1499E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 5.992978762622291
Compensation charge over fine fft grid = 5.993710117139132
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.124E-08; max= 48.149E-06
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS21_EIG
Fermi (or HOMO) energy (hartree) = 0.28542 Average Vxc (hartree)= -0.43944
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54694
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 1.70703 1.36110 1.36110 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 21, }
comment : Components of total free energy in Hartree
kinetic : 4.22101100754273E+01
hartree : 3.42934572188861E+01
xc : -1.94923346183530E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
local_psp : -1.09494290651675E+02
spherical_terms : 8.43864068890430E+00
internal : -1.51925010352367E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy : -1.51928409296303E+02
total_energy_eV : -4.13418226460090E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 21, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.47235865514179E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
xc_dc : -3.05329760621924E+01
spherical_terms : 1.21214552536544E+00
internal : -1.51925010153801E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy_dc : -1.51928409097737E+02
total_energy_dc_eV : -4.13418225919765E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.1499E+01 GPa]
- sigma(1 1)= 6.14988281E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.14988281E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.14988281E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 22 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 22, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 21.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--------------------------------------------------------------------------------
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
prteigrs : about to open file tucrpa_O_DS22_EIG
Non-SCF case, kpt 1 ( 0.12500 0.12500 0.12500), residuals and eigenvalues=
7.71E-19 6.33E-19 7.60E-19 1.24E-19 5.91E-19 2.91E-19 4.70E-19 1.39E-19
1.34E-19 7.74E-20 5.53E-19 6.30E-19 3.49E-19 5.34E-19 8.08E-19 2.79E-19
1.64E-19 1.89E-19 4.57E-19 7.73E-19 8.90E-19 3.14E-19 7.30E-19 8.80E-19
5.88E-19 7.41E-19 7.23E-19 9.03E-13 5.17E-19 8.72E-05
-2.1011E+00 -1.1520E+00 -1.1520E+00 -1.1520E+00 -9.6527E-01 -4.2839E-01
-3.8629E-01 -3.8629E-01 -3.0392E-01 -3.0392E-01 -2.9801E-01 8.3122E-02
9.7741E-02 9.7741E-02 1.4333E-01 1.4333E-01 1.6821E-01 1.8079E-01
1.9240E-01 1.9240E-01 2.7895E-01 2.8264E-01 2.8264E-01 3.7033E-01
3.7033E-01 4.4811E-01 4.4811E-01 4.8883E-01 5.4658E-01 5.4707E-01
prteigrs : nnsclo,ikpt= 40 1 max resid (incl. the buffer)= 8.71941E-05
prteigrs : prtvol=0 or 1, do not print more k-points.
prteigrs : nnsclo,ikpt= 40 2 max resid (incl. the buffer)= 1.42199E-10
prteigrs : nnsclo,ikpt= 40 3 max resid (incl. the buffer)= 1.07619E-11
prteigrs : nnsclo,ikpt= 40 4 max resid (incl. the buffer)= 1.06803E-12
--- !ResultsGS
iteration_state: {dtset: 22, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.985E-19, diffor: 0.000E+00, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = 5.992978839976715
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
(This is PAW atomic orbital occupations)
(For Wannier orbital occupations, refer to DFT+DMFT occupations above)
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
======================================================================================
== Start computation of Projected Local Orbitals Wannier functions == -1
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
(The band structure is shifted by fermie = 7.7667 eV )
Wannier band structure for atom 1
1 -0.176 -0.076 -0.076 2.310 2.310
2 -0.038 0.989 1.009 2.297 3.960
3 1.017 1.075 1.344 3.024 5.194
4 1.484 1.520 1.520 5.121 5.121
Print the psichi coefficients in data.plowann
======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using conjugate gradient wavefunctions and energies (kssform=3)
outkss: Not allowed options found !
Program does not stop but _KSS file will not be created...
outkss: see the log file for more information.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 47.209E-20; max= 99.852E-20
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS22_EIG
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54707
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 23 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 23, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 3, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 22.
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 20x 20x 20
total number of points = 8000
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 23
- Remaining bands to be divided among processors nbcw = 7
- Number of bands treated by each node ~1
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
2 0.000 -16.885 -7.574 -0.270 -0.270 -0.268 -0.268 -6.622 -7.970
0.000 0.000 -0.000 0.001 0.001 -0.001 -0.001 0.002 0.000
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 4.7254
dielectric constant without local fields = 4.9029
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 12.85 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.212 0.003 -0.003 0.005 -0.005 0.008 -0.008 -0.002 0.002
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.212 0.003 -0.003 0.005 -0.005 0.008 -0.008 -0.002 0.002
0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -13.647 -5.016 -3.434 -5.023 -3.439 -5.015 -3.433 -1.217 -1.420
0.000 0.000 0.000 0.002 0.000 -0.002 -0.001 0.002 0.001
2 -5.016 -21.359 -10.256 -1.252 -1.234 -1.249 -1.231 -9.092 -6.710
-0.000 -0.000 -0.000 0.004 0.004 -0.004 -0.004 0.004 0.005
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 22.92 [%]
--------------------------------------------------------------------------------
q-point number 3 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.105 -2.942 -1.634 -4.259 -4.258 -2.941 -1.635 -1.251 -1.325
-0.000 -0.001 -0.002 -0.001 -0.001 -0.003 -0.002 0.000 0.001
2 -2.942 -19.786 -8.634 -1.294 -1.294 0.219 0.048 -8.284 -7.849
0.001 -0.000 0.001 0.001 0.001 -0.004 -0.004 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 25.88 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.000000,-0.250000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.634 -2.289 -2.289 -0.531 0.458 -2.288 -2.288 0.290 -0.078
-0.000 -0.000 -0.000 0.000 0.001 -0.001 -0.001 0.002 0.003
2 -2.289 -18.785 -9.600 0.012 -0.176 -1.409 -1.410 -7.271 -6.795
0.000 -0.000 -0.000 0.006 0.003 0.000 0.000 0.008 0.009
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 30.86 [%]
--------------------------------------------------------------------------------
q-point number 5 q = ( 0.500000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.092 -2.395 -5.386 -7.964 -6.017 -7.951 -6.008 -0.994 -1.176
-0.000 0.000 0.000 0.002 0.002 -0.002 -0.002 0.002 0.002
2 -2.395 -13.762 -7.997 -1.067 -1.018 -1.069 -1.016 -4.092 -4.941
-0.000 0.000 0.000 0.002 0.002 -0.002 -0.001 0.003 0.003
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 19.97 [%]
--------------------------------------------------------------------------------
q-point number 6 q = ( 0.500000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.946 -0.756 -3.277 -7.095 -7.096 -6.414 -4.675 -1.117 -1.140
-0.000 -0.001 -0.000 0.001 0.001 -0.004 -0.003 0.002 0.002
2 -0.756 -12.446 -6.160 -1.040 -1.038 0.219 0.034 -3.704 -5.929
0.001 0.000 0.000 0.001 0.001 -0.003 -0.003 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 21.23 [%]
--------------------------------------------------------------------------------
q-point number 7 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.150 1.129 -0.825 -5.646 -5.646 -5.634 -5.633 0.017 0.359
-0.000 0.000 -0.000 0.003 0.003 -0.003 -0.003 0.003 0.001
2 1.129 -10.793 -3.843 0.117 0.117 0.117 0.121 -2.867 -4.986
-0.000 -0.000 -0.000 0.002 0.002 -0.002 -0.002 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 7 : 22.83 [%]
--------------------------------------------------------------------------------
q-point number 8 q = ( 0.500000, 0.500000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -22.175 -4.719 -8.330 -4.727 -8.342 -9.986 -7.807 -1.507 -1.279
-0.000 0.001 0.000 0.001 -0.000 -0.001 -0.000 -0.001 -0.000
2 -4.719 -15.467 -10.695 -0.840 -1.065 -3.067 -2.581 -2.979 -6.726
-0.001 -0.000 -0.001 -0.000 -0.000 -0.002 -0.000 0.002 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 8 : 18.62 [%]
--------------------------------------------------------------------------------
q-point number 9 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -20.988 -3.474 -6.774 -3.481 -6.787 -9.075 -9.075 -0.491 0.426
0.000 0.001 -0.000 0.002 -0.000 0.000 0.000 -0.001 -0.000
2 -3.474 -14.646 -9.585 0.136 0.271 -2.880 -2.875 -2.222 -5.707
-0.001 0.000 -0.002 -0.000 -0.001 -0.000 -0.000 0.000 -0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 9 : 19.51 [%]
--------------------------------------------------------------------------------
q-point number 10 q = ( 0.500000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.613 -6.394 -10.333 -6.399 -10.343 -6.394 -10.331 -2.977 -3.839
-0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000
2 -6.394 -16.339 -12.127 -2.253 -3.078 -2.249 -3.071 -3.985 -7.911
0.000 0.000 -0.000 0.001 0.001 -0.001 -0.001 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 10 : 17.73 [%]
================================================================================
== DATASET 24 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 24, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 4, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 22.
mkfilename : getscr/=0, take file _SCR from output of DATASET 23.
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 30x 30x 30
total number of points = 27000
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
cRPA calculations using wannier weights from data.plowann
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
==== Calculation of the screened interaction ====
Read K and Q mesh
Read l and bands from wanbz 21 25 5
==Calculation of the bare interaction V m==
==Definition of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
Diagonal bare interaction
1 15.853
2 16.385
3 16.795
4 15.884
5 16.351
U'=U(m1,m2,m1,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 14.982 14.893 14.724 15.514
2 14.982 16.385 15.786 14.988 15.181
3 14.893 15.786 16.795 15.540 15.108
4 14.724 14.988 15.540 15.884 14.886
5 15.514 15.181 15.108 14.886 16.351
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 15.3789 0.0000
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 16.2535 0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6667 0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
== Calculation of the screened interaction on the correlated orbital U m ==
= Start loop over frequency
--- For frequency w = 1 -------------
Diagonal cRPA interaction
1 3.622
2 3.809
3 4.014
4 3.627
5 3.886
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.622 2.702 2.589 2.608 3.176
2 2.702 3.809 3.165 2.697 2.796
3 2.589 3.165 4.014 3.078 2.712
4 2.608 2.697 3.078 3.627 2.683
5 3.176 2.796 2.712 2.683 3.886
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 3.0148 -0.0000
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.7917 -0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.622 0.450 0.515 0.440 0.247
2 0.450 3.809 0.319 0.445 0.452
3 0.515 0.319 4.014 0.385 0.453
4 0.440 0.445 0.385 3.627 0.447
5 0.247 0.452 0.453 0.447 3.886
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6096 0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.622 0.450 0.515 0.440 0.247
2 0.450 3.809 0.319 0.445 0.452
3 0.515 0.319 4.014 0.385 0.453
4 0.440 0.445 0.385 3.627 0.447
5 0.247 0.452 0.453 0.447 3.886
==Reminder of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
-------------------------------------------------------------
Average U and J as a function of frequency
-------------------------------------------------------------
omega U(omega) J(omega)
0.000 3.0148 -0.0000 0.6096 0.0000
-------------------------------------------------------------
================================================================================
== DATASET 31 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 31, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 756.500 756.488
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 31, }
solver: {iscf: 17, nstep: 40, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -151.59780617659 -1.516E+02 1.231E+00 1.636E+01
ETOT 2 -152.22190312340 -6.241E-01 7.333E-03 9.858E+01
ETOT 3 -151.96620511740 2.557E-01 8.150E-04 3.773E+00
ETOT 4 -151.93401569879 3.219E-02 5.565E-05 5.794E-01
ETOT 5 -151.92919954164 4.816E-03 2.433E-05 1.149E-01
ETOT 6 -151.92843078230 7.688E-04 3.273E-05 2.087E-03
ETOT 7 -151.92841382544 1.696E-05 6.021E-05 5.692E-04
ETOT 8 -151.92840955802 4.267E-06 7.374E-05 6.478E-05
ETOT 9 -151.92840910068 4.573E-07 7.823E-05 3.528E-07
ETOT 10 -151.92840909836 2.316E-09 7.871E-05 7.893E-08
ETOT 11 -151.92840909774 6.189E-10 7.268E-05 5.483E-10
ETOT 12 -151.92840909774 4.604E-12 6.148E-05 4.036E-11
ETOT 13 -151.92840909774 -4.547E-13 4.815E-05 5.003E-14
At SCF step 13 nres2 = 5.00E-14 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 31, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: -4.547E-13, res2: 5.003E-14, residm: 4.815E-05, diffor: null, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.09030303E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.09030303E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.09030303E-03, ]
pressure_GPa: -6.1499E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 5.992978762622291
Compensation charge over fine fft grid = 5.993710117139132
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.124E-08; max= 48.149E-06
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS31_EIG
Fermi (or HOMO) energy (hartree) = 0.28542 Average Vxc (hartree)= -0.43944
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54694
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 1.70703 1.36110 1.36110 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 31, }
comment : Components of total free energy in Hartree
kinetic : 4.22101100754273E+01
hartree : 3.42934572188861E+01
xc : -1.94923346183530E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
local_psp : -1.09494290651675E+02
spherical_terms : 8.43864068890430E+00
internal : -1.51925010352367E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy : -1.51928409296303E+02
total_energy_eV : -4.13418226460090E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 31, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.47235865514179E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
xc_dc : -3.05329760621924E+01
spherical_terms : 1.21214552536544E+00
internal : -1.51925010153801E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy_dc : -1.51928409097737E+02
total_energy_dc_eV : -4.13418225919765E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.1499E+01 GPa]
- sigma(1 1)= 6.14988281E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.14988281E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.14988281E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 32 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 32, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 31.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--------------------------------------------------------------------------------
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
prteigrs : about to open file tucrpa_O_DS32_EIG
Non-SCF case, kpt 1 ( 0.12500 0.12500 0.12500), residuals and eigenvalues=
7.71E-19 6.33E-19 7.60E-19 1.24E-19 5.91E-19 2.91E-19 4.70E-19 1.39E-19
1.34E-19 7.74E-20 5.53E-19 6.30E-19 3.49E-19 5.34E-19 8.08E-19 2.79E-19
1.64E-19 1.89E-19 4.57E-19 7.73E-19 8.90E-19 3.14E-19 7.30E-19 8.80E-19
5.88E-19 7.41E-19 7.23E-19 9.03E-13 5.17E-19 8.72E-05
-2.1011E+00 -1.1520E+00 -1.1520E+00 -1.1520E+00 -9.6527E-01 -4.2839E-01
-3.8629E-01 -3.8629E-01 -3.0392E-01 -3.0392E-01 -2.9801E-01 8.3122E-02
9.7741E-02 9.7741E-02 1.4333E-01 1.4333E-01 1.6821E-01 1.8079E-01
1.9240E-01 1.9240E-01 2.7895E-01 2.8264E-01 2.8264E-01 3.7033E-01
3.7033E-01 4.4811E-01 4.4811E-01 4.8883E-01 5.4658E-01 5.4707E-01
prteigrs : nnsclo,ikpt= 40 1 max resid (incl. the buffer)= 8.71941E-05
prteigrs : prtvol=0 or 1, do not print more k-points.
prteigrs : nnsclo,ikpt= 40 2 max resid (incl. the buffer)= 1.42199E-10
prteigrs : nnsclo,ikpt= 40 3 max resid (incl. the buffer)= 1.07619E-11
prteigrs : nnsclo,ikpt= 40 4 max resid (incl. the buffer)= 1.06803E-12
--- !ResultsGS
iteration_state: {dtset: 32, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.985E-19, diffor: 0.000E+00, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = 5.992978839976715
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
(This is PAW atomic orbital occupations)
(For Wannier orbital occupations, refer to DFT+DMFT occupations above)
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
======================================================================================
== Start computation of Projected Local Orbitals Wannier functions == -1
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
(The band structure is shifted by fermie = 7.7667 eV )
Wannier band structure for atom 1
1 -0.176 -0.076 -0.076 2.310 2.310
2 -0.038 0.989 1.009 2.297 3.960
3 1.017 1.075 1.344 3.024 5.194
4 1.484 1.520 1.520 5.121 5.121
Print the psichi coefficients in data.plowann
======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using conjugate gradient wavefunctions and energies (kssform=3)
outkss: Not allowed options found !
Program does not stop but _KSS file will not be created...
outkss: see the log file for more information.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 47.209E-20; max= 99.852E-20
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS32_EIG
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54707
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 33 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 33, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 3, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 32.
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 20x 20x 20
total number of points = 8000
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 23
- Remaining bands to be divided among processors nbcw = 7
- Number of bands treated by each node ~1
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
2 0.000 -16.885 -7.574 -0.270 -0.270 -0.268 -0.268 -6.622 -7.970
0.000 0.000 -0.000 0.001 0.001 -0.001 -0.001 0.002 0.000
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 4.7057
dielectric constant without local fields = 4.9029
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 12.66 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.213 0.003 -0.003 0.005 -0.005 0.008 -0.008 -0.001 0.001
-0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.213 0.003 -0.003 0.005 -0.005 0.008 -0.008 -0.001 0.001
-0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -13.647 -5.016 -3.434 -5.023 -3.439 -5.015 -3.433 -1.217 -1.420
0.000 0.000 0.000 0.002 0.000 -0.002 -0.001 0.002 0.001
2 -5.016 -21.359 -10.256 -1.252 -1.234 -1.249 -1.231 -9.092 -6.710
-0.000 -0.000 -0.000 0.004 0.004 -0.004 -0.004 0.004 0.005
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 22.76 [%]
--------------------------------------------------------------------------------
q-point number 3 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.105 -2.942 -1.634 -4.259 -4.258 -2.941 -1.635 -1.251 -1.325
-0.000 -0.001 -0.002 -0.001 -0.001 -0.003 -0.002 0.000 0.001
2 -2.942 -19.786 -8.634 -1.294 -1.294 0.219 0.048 -8.284 -7.849
0.001 -0.000 0.001 0.001 0.001 -0.004 -0.004 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 25.74 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.000000,-0.250000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.634 -2.289 -2.289 -0.531 0.458 -2.288 -2.288 0.290 -0.078
-0.000 -0.000 -0.000 0.000 0.001 -0.001 -0.001 0.002 0.003
2 -2.289 -18.785 -9.600 0.012 -0.176 -1.409 -1.410 -7.271 -6.795
0.000 -0.000 -0.000 0.006 0.003 0.000 0.000 0.008 0.009
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 30.76 [%]
--------------------------------------------------------------------------------
q-point number 5 q = ( 0.500000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.092 -2.395 -5.386 -7.964 -6.017 -7.951 -6.008 -0.994 -1.176
-0.000 0.000 0.000 0.002 0.002 -0.002 -0.002 0.002 0.002
2 -2.395 -13.762 -7.997 -1.067 -1.018 -1.069 -1.016 -4.092 -4.941
-0.000 0.000 0.000 0.002 0.002 -0.002 -0.001 0.003 0.003
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 19.79 [%]
--------------------------------------------------------------------------------
q-point number 6 q = ( 0.500000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.946 -0.756 -3.277 -7.095 -7.096 -6.414 -4.675 -1.117 -1.140
-0.000 -0.001 -0.000 0.001 0.001 -0.004 -0.003 0.002 0.002
2 -0.756 -12.446 -6.160 -1.040 -1.038 0.219 0.034 -3.704 -5.929
0.001 0.000 0.000 0.001 0.001 -0.003 -0.003 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 21.05 [%]
--------------------------------------------------------------------------------
q-point number 7 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.150 1.129 -0.825 -5.646 -5.646 -5.634 -5.633 0.017 0.359
-0.000 0.000 -0.000 0.003 0.003 -0.003 -0.003 0.003 0.001
2 1.129 -10.793 -3.843 0.117 0.117 0.117 0.121 -2.867 -4.986
-0.000 -0.000 -0.000 0.002 0.002 -0.002 -0.002 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 7 : 22.66 [%]
--------------------------------------------------------------------------------
q-point number 8 q = ( 0.500000, 0.500000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -22.175 -4.719 -8.330 -4.727 -8.342 -9.986 -7.807 -1.507 -1.279
-0.000 0.001 0.000 0.001 -0.000 -0.001 -0.000 -0.001 -0.000
2 -4.719 -15.467 -10.695 -0.840 -1.065 -3.067 -2.581 -2.979 -6.726
-0.001 -0.000 -0.001 -0.000 -0.000 -0.002 -0.000 0.002 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 8 : 18.42 [%]
--------------------------------------------------------------------------------
q-point number 9 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -20.988 -3.474 -6.774 -3.481 -6.787 -9.075 -9.075 -0.491 0.426
0.000 0.001 -0.000 0.002 -0.000 0.000 0.000 -0.001 -0.000
2 -3.474 -14.646 -9.585 0.136 0.271 -2.880 -2.875 -2.222 -5.707
-0.001 0.000 -0.002 -0.000 -0.001 -0.000 -0.000 0.000 -0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 9 : 19.31 [%]
--------------------------------------------------------------------------------
q-point number 10 q = ( 0.500000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.613 -6.394 -10.333 -6.399 -10.343 -6.394 -10.331 -2.977 -3.839
-0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000
2 -6.394 -16.339 -12.127 -2.253 -3.078 -2.249 -3.071 -3.985 -7.911
0.000 0.000 -0.000 0.001 0.001 -0.001 -0.001 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 10 : 17.51 [%]
================================================================================
== DATASET 34 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 34, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 4, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 32.
mkfilename : getscr/=0, take file _SCR from output of DATASET 33.
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 30x 30x 30
total number of points = 27000
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
cRPA calculations using wannier weights from data.plowann
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
==== Calculation of the screened interaction ====
Read K and Q mesh
Read l and bands from wanbz 21 25 5
==Calculation of the bare interaction V m==
==Definition of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
Diagonal bare interaction
1 15.853
2 16.385
3 16.795
4 15.884
5 16.351
U'=U(m1,m2,m1,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 14.982 14.893 14.724 15.514
2 14.982 16.385 15.786 14.988 15.181
3 14.893 15.786 16.795 15.540 15.108
4 14.724 14.988 15.540 15.884 14.886
5 15.514 15.181 15.108 14.886 16.351
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 15.3789 0.0000
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 16.2535 0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6667 0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
== Calculation of the screened interaction on the correlated orbital U m ==
= Start loop over frequency
--- For frequency w = 1 -------------
Diagonal cRPA interaction
1 3.582
2 3.771
3 3.956
4 3.586
5 3.827
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.582 2.693 2.581 2.597 3.128
2 2.693 3.771 3.128 2.687 2.778
3 2.581 3.128 3.956 3.040 2.694
4 2.597 2.687 3.040 3.586 2.663
5 3.128 2.778 2.694 2.663 3.827
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.9879 -0.0000
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.7443 -0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.582 0.438 0.496 0.427 0.246
2 0.438 3.771 0.314 0.433 0.437
3 0.496 0.314 3.956 0.375 0.438
4 0.427 0.433 0.375 3.586 0.433
5 0.246 0.437 0.438 0.433 3.827
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5929 -0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.582 0.438 0.496 0.427 0.246
2 0.438 3.771 0.314 0.433 0.437
3 0.496 0.314 3.956 0.375 0.438
4 0.427 0.433 0.375 3.586 0.433
5 0.246 0.437 0.438 0.433 3.827
==Reminder of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
-------------------------------------------------------------
Average U and J as a function of frequency
-------------------------------------------------------------
omega U(omega) J(omega)
0.000 2.9879 -0.0000 0.5929 -0.0000
-------------------------------------------------------------
================================================================================
== DATASET 41 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 41, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 756.500 756.488
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
--- !BeginCycle
iteration_state: {dtset: 41, }
solver: {iscf: 17, nstep: 40, nline: 5, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-13, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -151.59780617659 -1.516E+02 1.231E+00 1.636E+01
ETOT 2 -152.22190312340 -6.241E-01 7.333E-03 9.858E+01
ETOT 3 -151.96620511740 2.557E-01 8.150E-04 3.773E+00
ETOT 4 -151.93401569879 3.219E-02 5.565E-05 5.794E-01
ETOT 5 -151.92919954164 4.816E-03 2.433E-05 1.149E-01
ETOT 6 -151.92843078230 7.688E-04 3.273E-05 2.087E-03
ETOT 7 -151.92841382544 1.696E-05 6.021E-05 5.692E-04
ETOT 8 -151.92840955802 4.267E-06 7.374E-05 6.478E-05
ETOT 9 -151.92840910068 4.573E-07 7.823E-05 3.528E-07
ETOT 10 -151.92840909836 2.316E-09 7.871E-05 7.893E-08
ETOT 11 -151.92840909774 6.189E-10 7.268E-05 5.483E-10
ETOT 12 -151.92840909774 4.604E-12 6.148E-05 4.036E-11
ETOT 13 -151.92840909774 -4.547E-13 4.815E-05 5.003E-14
At SCF step 13 nres2 = 5.00E-14 < tolvrs= 1.00E-13 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 41, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: -4.547E-13, res2: 5.003E-14, residm: 4.815E-05, diffor: null, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 2.09030303E-03, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 2.09030303E-03, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 2.09030303E-03, ]
pressure_GPa: -6.1499E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 5.992978762622291
Compensation charge over fine fft grid = 5.993710117139132
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 40.124E-08; max= 48.149E-06
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
3 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
3 -0.00000000000000 -0.00000000000000 -0.00000000000000
4 -0.00000000000000 -0.00000000000000 -0.00000000000000
5 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS41_EIG
Fermi (or HOMO) energy (hartree) = 0.28542 Average Vxc (hartree)= -0.43944
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54694
occupation numbers for kpt# 1
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
2.00000 2.00000 2.00000 2.00000 1.70703 1.36110 1.36110 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 41, }
comment : Components of total free energy in Hartree
kinetic : 4.22101100754273E+01
hartree : 3.42934572188861E+01
xc : -1.94923346183530E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
local_psp : -1.09494290651675E+02
spherical_terms : 8.43864068890430E+00
internal : -1.51925010352367E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy : -1.51928409296303E+02
total_energy_eV : -4.13418226460090E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 41, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -1.47235865514179E+01
Ewald energy : -1.14220316979058E+02
psp_core : 6.33972391350157E+00
xc_dc : -3.05329760621924E+01
spherical_terms : 1.21214552536544E+00
internal : -1.51925010153801E+02
'-kT*entropy' : -3.39894393651752E-03
total_energy_dc : -1.51928409097737E+02
total_energy_dc_eV : -4.13418225919765E+03
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 2.09030303E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 2.09030303E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 2.09030303E-03 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -6.1499E+01 GPa]
- sigma(1 1)= 6.14988281E+01 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 6.14988281E+01 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 6.14988281E+01 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 42 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 42, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 41.
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 12.000 => boxcut(ratio)= 2.11977
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 30 30 30
ecut(hartree)= 20.000 => boxcut(ratio)= 2.05246
--------------------------------------------------------------------------------
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
================================================================================
prteigrs : about to open file tucrpa_O_DS42_EIG
Non-SCF case, kpt 1 ( 0.12500 0.12500 0.12500), residuals and eigenvalues=
7.71E-19 6.33E-19 7.60E-19 1.24E-19 5.91E-19 2.91E-19 4.70E-19 1.39E-19
1.34E-19 7.74E-20 5.53E-19 6.30E-19 3.49E-19 5.34E-19 8.08E-19 2.79E-19
1.64E-19 1.89E-19 4.57E-19 7.73E-19 8.90E-19 3.14E-19 7.30E-19 8.80E-19
5.88E-19 7.41E-19 7.23E-19 9.03E-13 5.17E-19 8.72E-05
-2.1011E+00 -1.1520E+00 -1.1520E+00 -1.1520E+00 -9.6527E-01 -4.2839E-01
-3.8629E-01 -3.8629E-01 -3.0392E-01 -3.0392E-01 -2.9801E-01 8.3122E-02
9.7741E-02 9.7741E-02 1.4333E-01 1.4333E-01 1.6821E-01 1.8079E-01
1.9240E-01 1.9240E-01 2.7895E-01 2.8264E-01 2.8264E-01 3.7033E-01
3.7033E-01 4.4811E-01 4.4811E-01 4.8883E-01 5.4658E-01 5.4707E-01
prteigrs : nnsclo,ikpt= 40 1 max resid (incl. the buffer)= 8.71941E-05
prteigrs : prtvol=0 or 1, do not print more k-points.
prteigrs : nnsclo,ikpt= 40 2 max resid (incl. the buffer)= 1.42199E-10
prteigrs : nnsclo,ikpt= 40 3 max resid (incl. the buffer)= 1.07619E-11
prteigrs : nnsclo,ikpt= 40 4 max resid (incl. the buffer)= 1.06803E-12
--- !ResultsGS
iteration_state: {dtset: 42, }
comment : Summary of ground state results
lattice_vectors:
- [ 7.2605000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 7.2605000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 7.2605000, ]
lattice_lengths: [ 7.26050, 7.26050, 7.26050, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.8273624E+02
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.985E-19, diffor: 0.000E+00, }
etotal : -1.51928409E+02
entropy : 0.00000000E+00
fermie : 2.85423675E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, V]
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, Sr]
- [ 5.0000E-01, 0.0000E+00, 0.0000E+00, O]
- [ 0.0000E+00, 5.0000E-01, 0.0000E+00, O]
- [ 0.0000E+00, 0.0000E+00, 5.0000E-01, O]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.20000 11.28156114
2 2.20670 7.30899763
3 1.41465 4.59018622
4 1.41465 4.59018622
5 1.41465 4.59018622
PAW TEST:
==== Compensation charge inside spheres ============
Compensation charge over spherical meshes = 5.992978839976715
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
(This is PAW atomic orbital occupations)
(For Wannier orbital occupations, refer to DFT+DMFT occupations above)
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
======================================================================================
== Start computation of Projected Local Orbitals Wannier functions == -1
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== For each k-point of the path, gives the eigenvalues (in eV) of the Hamiltonian in the Wannier basis
(The band structure is shifted by fermie = 7.7667 eV )
Wannier band structure for atom 1
1 -0.176 -0.076 -0.076 2.310 2.310
2 -0.038 0.989 1.009 2.297 3.960
3 1.017 1.075 1.344 3.024 5.194
4 1.484 1.520 1.520 5.121 5.121
Print the psichi coefficients in data.plowann
======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using conjugate gradient wavefunctions and energies (kssform=3)
outkss: Not allowed options found !
Program does not stop but _KSS file will not be created...
outkss: see the log file for more information.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 47.209E-20; max= 99.852E-20
reduced coordinates (array xred) for 5 atoms
0.000000000000 0.000000000000 0.000000000000
0.500000000000 0.500000000000 0.500000000000
0.500000000000 0.000000000000 0.000000000000
0.000000000000 0.500000000000 0.000000000000
0.000000000000 0.000000000000 0.500000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.92104556148385 1.92104556148385 1.92104556148385
3 1.92104556148385 0.00000000000000 0.00000000000000
4 0.00000000000000 1.92104556148385 0.00000000000000
5 0.00000000000000 0.00000000000000 1.92104556148385
length scales= 7.260500000000 7.260500000000 7.260500000000 bohr
= 3.842091122968 3.842091122968 3.842091122968 angstroms
prteigrs : about to open file tucrpa_O_DS42_EIG
Eigenvalues (hartree) for nkpt= 4 k points:
kpt# 1, nband= 30, wtk= 0.12500, kpt= 0.1250 0.1250 0.1250 (reduced coord)
-2.10113 -1.15203 -1.15202 -1.15202 -0.96527 -0.42839 -0.38629 -0.38629
-0.30392 -0.30392 -0.29801 0.08312 0.09774 0.09774 0.14333 0.14333
0.16821 0.18079 0.19240 0.19240 0.27895 0.28264 0.28264 0.37033
0.37033 0.44811 0.44811 0.48883 0.54658 0.54707
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 43 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 43, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 3, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 42.
SCREENING: Calculation of the susceptibility and dielectric matrices
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: The calculation of the polarisability is constrained (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for the screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 24x 24x 24
total number of points = 13824
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 3001
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 2
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
- screening: taking advantage of time-reversal symmetry
- Maximum band index for partially occupied states nbvw = 23
- Remaining bands to be divided among processors nbcw = 7
- Number of bands treated by each node ~1
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
calculating chi0 at frequencies [eV] :
1 0.000000E+00 0.000000E+00
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
--------------------------------------------------------------------------------
q-point number 1 q = ( 0.000000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
2 0.000 -16.885 -7.574 -0.270 -0.270 -0.268 -0.268 -6.622 -7.970
0.000 -0.000 0.000 0.001 0.001 -0.001 -0.001 0.002 0.000
For q-point: 0.000010 0.000020 0.000030
dielectric constant = 4.6936
dielectric constant without local fields = 4.9029
Average fulfillment of the sum rule on Im[epsilon] for q-point 1 : 12.59 [%]
Heads and wings of the symmetrical epsilon^-1(G,G')
Upper and lower wings at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
0.213 0.003 -0.003 0.005 -0.005 0.008 -0.008 -0.001 0.001
0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000
1 2 3 4 5 6 7 8 9
0.213 0.003 -0.003 0.005 -0.005 0.008 -0.008 -0.001 0.001
0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000
--------------------------------------------------------------------------------
q-point number 2 q = (-0.250000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -13.647 -5.016 -3.434 -5.023 -3.439 -5.015 -3.433 -1.217 -1.420
0.000 0.000 0.000 0.002 0.000 -0.002 -0.001 0.002 0.001
2 -5.016 -21.359 -10.256 -1.252 -1.234 -1.249 -1.231 -9.092 -6.710
-0.000 0.000 -0.000 0.004 0.004 -0.004 -0.004 0.004 0.005
Average fulfillment of the sum rule on Im[epsilon] for q-point 2 : 22.70 [%]
--------------------------------------------------------------------------------
q-point number 3 q = (-0.250000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -10.105 -2.942 -1.634 -4.259 -4.258 -2.941 -1.635 -1.251 -1.325
0.000 -0.001 -0.002 -0.001 -0.001 -0.003 -0.002 0.000 0.001
2 -2.942 -19.786 -8.634 -1.294 -1.294 0.219 0.048 -8.284 -7.849
0.001 0.000 0.001 0.001 0.001 -0.004 -0.004 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 3 : 25.68 [%]
--------------------------------------------------------------------------------
q-point number 4 q = ( 0.000000,-0.250000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -5.634 -2.289 -2.289 -0.531 0.458 -2.288 -2.288 0.290 -0.078
0.000 -0.000 -0.000 0.000 0.001 -0.001 -0.001 0.002 0.003
2 -2.289 -18.785 -9.600 0.012 -0.176 -1.409 -1.410 -7.271 -6.795
0.000 0.000 0.000 0.006 0.003 0.000 0.000 0.008 0.009
Average fulfillment of the sum rule on Im[epsilon] for q-point 4 : 30.72 [%]
--------------------------------------------------------------------------------
q-point number 5 q = ( 0.500000,-0.250000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -19.092 -2.395 -5.386 -7.964 -6.017 -7.951 -6.008 -0.994 -1.176
-0.000 0.000 0.000 0.002 0.002 -0.002 -0.002 0.002 0.002
2 -2.395 -13.762 -7.997 -1.067 -1.018 -1.069 -1.016 -4.092 -4.941
-0.000 -0.000 0.000 0.002 0.002 -0.002 -0.001 0.003 0.003
Average fulfillment of the sum rule on Im[epsilon] for q-point 5 : 19.72 [%]
--------------------------------------------------------------------------------
q-point number 6 q = ( 0.500000, 0.000000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -16.946 -0.756 -3.277 -7.095 -7.096 -6.414 -4.675 -1.117 -1.140
0.000 -0.001 -0.000 0.001 0.001 -0.004 -0.003 0.002 0.002
2 -0.756 -12.446 -6.160 -1.040 -1.038 0.219 0.034 -3.704 -5.929
0.001 -0.000 0.000 0.001 0.001 -0.003 -0.003 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 6 : 20.99 [%]
--------------------------------------------------------------------------------
q-point number 7 q = ( 0.500000, 0.000000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -14.150 1.129 -0.825 -5.646 -5.646 -5.634 -5.633 0.017 0.359
0.000 0.000 -0.000 0.003 0.003 -0.003 -0.003 0.003 0.001
2 1.129 -10.793 -3.843 0.117 0.117 0.117 0.121 -2.867 -4.986
-0.000 -0.000 -0.000 0.002 0.002 -0.002 -0.002 0.003 0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 7 : 22.60 [%]
--------------------------------------------------------------------------------
q-point number 8 q = ( 0.500000, 0.500000,-0.250000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -22.175 -4.719 -8.330 -4.727 -8.342 -9.986 -7.807 -1.507 -1.279
-0.000 0.001 0.000 0.001 -0.000 -0.001 -0.000 -0.001 -0.000
2 -4.719 -15.467 -10.695 -0.840 -1.065 -3.067 -2.581 -2.979 -6.726
-0.001 0.000 -0.001 -0.000 -0.000 -0.002 -0.000 0.002 0.000
Average fulfillment of the sum rule on Im[epsilon] for q-point 8 : 18.35 [%]
--------------------------------------------------------------------------------
q-point number 9 q = ( 0.500000, 0.500000, 0.000000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -20.988 -3.474 -6.774 -3.481 -6.787 -9.075 -9.075 -0.491 0.426
0.000 0.001 -0.000 0.002 0.000 0.000 0.000 -0.001 -0.000
2 -3.474 -14.646 -9.585 0.136 0.271 -2.880 -2.875 -2.222 -5.707
-0.001 -0.000 -0.002 -0.000 -0.001 -0.000 -0.000 0.000 -0.001
Average fulfillment of the sum rule on Im[epsilon] for q-point 9 : 19.24 [%]
--------------------------------------------------------------------------------
q-point number 10 q = ( 0.500000, 0.500000, 0.500000) [r.l.u.]
--------------------------------------------------------------------------------
chi0(G,G') at the 1 th omega 0.0000 0.0000 [eV]
1 2 3 4 5 6 7 8 9
1 -23.613 -6.394 -10.333 -6.399 -10.343 -6.394 -10.331 -2.977 -3.839
0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000
2 -6.394 -16.339 -12.127 -2.253 -3.078 -2.249 -3.071 -3.985 -7.911
0.000 0.000 -0.000 0.001 0.001 -0.001 -0.001 0.002 0.002
Average fulfillment of the sum rule on Im[epsilon] for q-point 10 : 17.42 [%]
================================================================================
== DATASET 44 ==================================================================
- mpi_nproc: 4, omp_nthreads: 1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 44, }
dimensions: {natom: 5, nkpt: 4, mband: 30, nsppol: 1, nspinor: 1, nspden: 1, mpw: 762, }
cutoff_energies: {ecut: 12.0, pawecutdg: 20.0, }
electrons: {nelect: 4.10000000E+01, charge: 0.00000000E+00, occopt: 3.00000000E+00, tsmear: 3.67493254E-03, }
meta: {optdriver: 4, gwcalctyp: 2, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 42.
mkfilename : getscr/=0, take file _SCR from output of DATASET 43.
SIGMA: Calculation of the GW corrections
Based on a program developped by R.W. Godby, V. Olevano, G. Onida, and L. Reining.
Incorporated in ABINIT by V. Olevano, G.-M. Rignanese, and M. Torrent.
cRPA Calculation: Calculation of the screened Coulomb interaction (ucrpa/=0)
.Using single precision arithmetic ; gwpc = 4
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 7.2605000 0.0000000 0.0000000 G(1)= 0.1377316 0.0000000 0.0000000
R(2)= 0.0000000 7.2605000 0.0000000 G(2)= 0.0000000 0.1377316 0.0000000
R(3)= 0.0000000 0.0000000 7.2605000 G(3)= 0.0000000 0.0000000 0.1377316
Unit cell volume ucvol= 3.8273624E+02 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/V.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/V.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20000000
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 910 , AA= 0.60796E-03 BB= 0.13983E-01
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 2.02290427
mmax= 910
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 744 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/Sr.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 6 (lmn_size= 18), orbitals= 0 0 1 1 2 2
Spheres core radius: rc_sph= 2.20669967
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.22443E-03 BB= 0.85283E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.81361893
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1337 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 3 psp file is ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm: opening atomic psp file ../../../Pspdir/Psdj_paw_pw_std/O.xml
- pspatm : Reading pseudopotential header in XML form from ../../../Pspdir/Psdj_paw_pw_std/O.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.41465230
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.72565E-03 BB= 0.58052E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.20231231
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1762 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==== K-mesh for the wavefunctions ====
Number of points in the irreducible wedge : 4
Reduced coordinates and weights :
1) 1.25000000E-01 1.25000000E-01 1.25000000E-01 0.12500
2) 3.75000000E-01 1.25000000E-01 1.25000000E-01 0.37500
3) 3.75000000E-01 3.75000000E-01 1.25000000E-01 0.37500
4) 3.75000000E-01 3.75000000E-01 3.75000000E-01 0.12500
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
==== Q-mesh for screening function ====
Number of points in the irreducible wedge : 10
Reduced coordinates and weights :
1) 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.01563
2) -2.50000000E-01 -2.50000000E-01 -2.50000000E-01 0.12500
3) -2.50000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
4) 0.00000000E+00 -2.50000000E-01 0.00000000E+00 0.09375
5) 5.00000000E-01 -2.50000000E-01 -2.50000000E-01 0.18750
6) 5.00000000E-01 0.00000000E+00 -2.50000000E-01 0.18750
7) 5.00000000E-01 0.00000000E+00 0.00000000E+00 0.04688
8) 5.00000000E-01 5.00000000E-01 -2.50000000E-01 0.09375
9) 5.00000000E-01 5.00000000E-01 0.00000000E+00 0.04688
10) 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.01563
Together with 48 symmetry operations and time-reversal symmetry
yields 64 points in the full Brillouin Zone.
setmesh: FFT mesh size selected = 30x 30x 30
total number of points = 27000
******************************************
DFT+U Method used: FLL
******************************************
=======================================================================
== Calculation of diagonal bare Coulomb interaction on ATOMIC orbitals
(it is assumed that the wavefunction for the first reference
energy in PAW atomic data is an atomic eigenvalue)
Max value of the radius in atomic data file = 201.3994
Max value of the mesh in atomic data file = 910
PAW radius is = 2.2000
PAW value of the mesh for integration is = 587
Integral of atomic wavefunction until rpaw = 0.8418
For an atomic wfn truncated at rmax = 201.3994
The norm of the wfn is = 1.0000
The bare interaction (no renormalization) = 17.7996 eV
The bare interaction (for a renorm. wfn ) = 17.7996 eV
For an atomic wfn truncated at rmax = 2.2000
The norm of the wfn is = 0.8418
The bare interaction (no renormalization) = 16.0038 eV
The bare interaction (for a renorm. wfn ) = 22.5848 eV
=======================================================================
====================================
==== Info on PAW TABulated data ====
====================================
******************************
**** Atom type 1 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 592
Size of radial mesh for partial waves........... 910
Size of radial mesh for [pseudo] core density... 592
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 910
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 3
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 1
L on which U is applied ........................ 2
Use Local Exact exchange ....................... 0
Number of (i,j) elements for PAW+U or EXX ..... 3
Number of projectors on which U or EXX acts .... 2
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -2.38787323E+01
1/q d(tNcore(q))/dq for q=0 ..................... -8.36241024E-01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -5.81436255E+02
Core-core Fock energy .......................... -3.47490679E+01
XC energy for the core density .................. -3.29033210E+01
Radius of the PAW sphere ........................ 2.20000000E+00
Compensation charge radius (if >rshp, g(r)=0) ... 2.02290427E+00
Value of the U parameter [eV] ................... 0.00000000E+00
Value of the J parameter [eV] ................... 0.00000000E+00
******************************
**** Atom type 2 ****
******************************
Number of (n,l) elements ....................... 6
Number of (l,m,n) elements ..................... 18
Number of (i,j) elements (packed form) ......... 21
Max L+1 leading to non-zero Gaunt .............. 5
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 5
lmn2_size ...................................... 171
lmnmix_sz ...................................... 171
Size of radial mesh ............................ 1084
Size of radial mesh for partial waves........... 1500
Size of radial mesh for [pseudo] core density... 1084
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 1500
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -3.50169981E+01
1/q d(tNcore(q))/dq for q=0 ..................... -1.90902080E+01
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -8.44725503E+02
Core-core Fock energy .......................... -9.79515177E+01
XC energy for the core density .................. -9.52281397E+01
Radius of the PAW sphere ........................ 2.20669967E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.81361893E+00
Sigma parameter in gaussian shape function ...... 1.81361893E+00
******************************
**** Atom type 3 ****
******************************
Number of (n,l) elements ....................... 4
Number of (l,m,n) elements ..................... 8
Number of (i,j) elements (packed form) ......... 10
Max L+1 leading to non-zero Gaunt .............. 3
Max L+1 leading to non-zero Gaunt (pawlcutd) ... 3
lmn2_size ...................................... 36
lmnmix_sz ...................................... 36
Size of radial mesh ............................ 1311
Size of radial mesh for partial waves........... 2001
Size of radial mesh for [pseudo] core density... 1311
Size of radial mesh for [pseudo] kin core density 0
Size of radial mesh for pseudo valence density.. 2001
No of Q-points for tcorespl/tvalespl/tcoretauspl 300
No of Q-points for the radial shape functions .. 0
Radial shape function type ..................... 2
shape_lambda ................................... 0
Use pseudized core density ..................... 1
Option for the use of hat density in XC terms .. 0
Use DFT+U ...................................... 0
Use Local Exact exchange ....................... 0
Use potential zero ............................. 0
Use spin-orbit coupling ........................ 0
Has Fock ...................................... 2
Has kij ...................................... 0
Has tproj ...................................... 0
Has tvale ...................................... 1
Has coretau .................................... 0
Has vhtnzc ..................................... 2
Has vhnzc ...................................... 2
Has vminushalf ................................. 0
Has nabla ...................................... 0
Has nablaphi ................................... 0
Has shapefuncg ................................. 0
Has wvl ........................................ 0
beta ............................................ -4.77231787E+00
1/q d(tNcore(q))/dq for q=0 ..................... -6.31259309E-03
d^2(tNcore(q))/dq^2 for q=0 ..................... 1.00000000E+00
1/q d(tNvale(q))/dq for q=0 ..................... -1.54482914E+02
Core-core Fock energy .......................... -4.69825338E+00
XC energy for the core density .................. -4.22468657E+00
Radius of the PAW sphere ........................ 1.41465230E+00
Compensation charge radius (if >rshp, g(r)=0) ... 1.20231231E+00
Sigma parameter in gaussian shape function ...... 1.20231231E+00
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close...
Compensation charge over spherical meshes = 5.992978839976715
Compensation charge over fine fft grid = 5.993710117139132
Total number of electrons per unit cell = 41.0000 (Spherical mesh), 41.0007 (FFT mesh)
average of density, n = 0.107123
r_s = 1.3062
omega_plasma = 31.5717 [eV]
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
-0.52901 0.07215 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.07215 0.02108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -1.07571 0.00000 0.00000 0.26166 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.26166 0.00000 0.00000 0.16980 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07746 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.07738 ...
... only 12 components have been written...
Atom # 5
0.59758 -1.75345 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-1.75345 5.20994 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372 0.00000 0.00000
0.00000 0.00000 0.00000 -0.30242 0.00000 0.00000 0.88079 0.00000
0.00000 0.00000 0.00000 0.00000 -0.30103 0.00000 0.00000 0.87372
0.00000 0.00000 0.87372 0.00000 0.00000 0.11627 0.00000 0.00000
0.00000 0.00000 0.00000 0.88079 0.00000 0.00000 0.08201 0.00000
0.00000 0.00000 0.00000 0.00000 0.87372 0.00000 0.00000 0.11627
Augmentation waves occupancies Rhoij:
Atom # 1
1.99247 -0.06313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
-0.06313 1.04593 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 1.99540 0.00000 0.00000 -0.03421 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 -0.03421 0.00000 0.00000 0.18118 0.00000 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 ...
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.70711 ...
... only 12 components have been written...
Atom # 5
1.97791 0.02387 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02387 0.00075 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.94313 0.00000 0.00000 0.05969 0.00000 0.00000
0.00000 0.00000 0.00000 1.96637 0.00000 0.00000 0.07003 0.00000
0.00000 0.00000 0.00000 0.00000 1.94313 0.00000 0.00000 0.05969
0.00000 0.00000 0.05969 0.00000 0.00000 0.00192 0.00000 0.00000
0.00000 0.00000 0.00000 0.07003 0.00000 0.00000 0.00265 0.00000
0.00000 0.00000 0.00000 0.00000 0.05969 0.00000 0.00000 0.00192
"PAW+U" part of augmentation waves occupancies Rhoij:
Atom # 1 - L=2 ONLY
0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000
0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000
0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000
0.00000 0.00000 0.00000 0.70711 0.00000 0.00000 0.00000 0.00000 0.05936 0.00000
0.00000 0.00000 0.00000 0.00000 0.82648 0.00000 0.00000 0.00000 0.00000 0.16598
0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000 0.00000
0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000 0.00000 0.00000
0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840 0.00000 0.00000
0.00000 0.00000 0.00000 0.05936 0.00000 0.00000 0.00000 0.00000 0.01041 0.00000
0.00000 0.00000 0.00000 0.00000 0.16598 0.00000 0.00000 0.00000 0.00000 0.03840
---------- DFT+U DATA ---------------------------------------------------
====== For Atom 1, occupations for correlated orbitals. lpawu = 2
== Occupation matrix for correlated orbitals:
Up component only...
0.22002 0.00000 0.00000 0.00000 0.00000
0.00000 0.22002 0.00000 0.00000 0.00000
0.00000 0.00000 0.20950 0.00000 0.00000
0.00000 0.00000 0.00000 0.22002 0.00000
0.00000 0.00000 0.00000 0.00000 0.20950
cRPA calculations using wannier weights from data.plowann
== Lower and upper values of the selected bands 0 0
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reading of the Wannier weights from data.plowann
== Lower and upper values of the selected bands 21 25
== Number of atoms 1
== Atoms selected 1
== Nb of angular momenta used for each atom 1
== Value of the angular momenta for atom 1 is : 2
== Value of the projectors for atom 1 is : -2
Reconstruction of the full Brillouin Zone using data.plowann in the IBZ
==== Calculation of the screened interaction ====
Read K and Q mesh
Read l and bands from wanbz 21 25 5
==Calculation of the bare interaction V m==
==Definition of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
Diagonal bare interaction
1 15.853
2 16.385
3 16.795
4 15.884
5 16.351
U'=U(m1,m2,m1,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 14.982 14.893 14.724 15.514
2 14.982 16.385 15.786 14.988 15.181
3 14.893 15.786 16.795 15.540 15.108
4 14.724 14.988 15.540 15.884 14.886
5 15.514 15.181 15.108 14.886 16.351
Hubbard bare interaction U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 15.3789 0.0000
(Hubbard bare interaction U=1/(2l+1) \sum U(m1,m1,m1,m1)= 16.2535 0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
bare interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.6667 -0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the bare interaction
- 1 2 3 4 5
1 15.853 0.485 0.554 0.473 0.248
2 0.485 16.385 0.330 0.480 0.481
3 0.554 0.330 16.795 0.403 0.550
4 0.473 0.480 0.403 15.884 0.477
5 0.248 0.481 0.550 0.477 16.351
== Calculation of the screened interaction on the correlated orbital U m ==
= Start loop over frequency
--- For frequency w = 1 -------------
Diagonal cRPA interaction
1 3.571
2 3.764
3 3.944
4 3.575
5 3.814
U'=U(m1,m2,m1,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.571 2.694 2.589 2.597 3.118
2 2.694 3.764 3.124 2.688 2.783
3 2.589 3.124 3.944 3.036 2.707
4 2.597 2.688 3.036 3.575 2.666
5 3.118 2.783 2.707 2.666 3.814
Hubbard cRPA interaction for w = 1, U=1/(2l+1)**2 \sum U(m1,m2,m1,m2)= 2.9869 0.0000
(Hubbard cRPA interaction for w = 1, U=1/(2l+1) \sum U(m1,m1,m1,m1)= 3.7338 0.0000)
Hund coupling J=U(m1,m1,m2,m2) for the cRPA interaction
- 1 2 3 4 5
1 3.571 0.429 0.481 0.417 0.245
2 0.429 3.764 0.309 0.424 0.425
3 0.481 0.309 3.944 0.366 0.429
4 0.417 0.424 0.366 3.575 0.421
5 0.245 0.425 0.429 0.421 3.814
cRPA interaction value of J=U-1/((2l+1)(2l)) \sum_{m1,m2} (U(m1,m2,m1,m2)-U(m1,m2,m2,m1))= 0.5814 0.0000
Hund coupling J2=U(m1,m2,m2,m1) for the cRPA interaction
- 1 2 3 4 5
1 3.571 0.429 0.481 0.417 0.245
2 0.429 3.764 0.309 0.424 0.425
3 0.481 0.309 3.944 0.366 0.429
4 0.417 0.424 0.366 3.575 0.421
5 0.245 0.425 0.429 0.421 3.814
==Reminder of the orbitals==
Only one orbital
Orbital with l= 2 on atom 1 with spin's orientations Up-Up
-------------------------------------------------------------
Average U and J as a function of frequency
-------------------------------------------------------------
omega U(omega) J(omega)
0.000 2.9869 0.0000 0.5814 0.0000
-------------------------------------------------------------
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 7.2605000000E+00 7.2605000000E+00 7.2605000000E+00 Bohr
amu 5.09415000E+01 8.76200000E+01 1.59994000E+01
dmatpuopt 1
dmftbandf11 0
dmftbandf12 25
dmftbandf13 0
dmftbandf14 0
dmftbandf21 0
dmftbandf22 25
dmftbandf23 0
dmftbandf24 0
dmftbandf31 0
dmftbandf32 25
dmftbandf33 0
dmftbandf34 0
dmftbandf41 0
dmftbandf42 25
dmftbandf43 0
dmftbandf44 0
dmftbandi11 0
dmftbandi12 21
dmftbandi13 0
dmftbandi14 0
dmftbandi21 0
dmftbandi22 21
dmftbandi23 0
dmftbandi24 0
dmftbandi31 0
dmftbandi32 21
dmftbandi33 0
dmftbandi34 0
dmftbandi41 0
dmftbandi42 21
dmftbandi43 0
dmftbandi44 0
dmft_solv11 5
dmft_solv12 0
dmft_solv13 5
dmft_solv14 5
dmft_solv21 5
dmft_solv22 0
dmft_solv23 5
dmft_solv24 5
dmft_solv31 5
dmft_solv32 0
dmft_solv33 5
dmft_solv34 5
dmft_solv41 5
dmft_solv42 0
dmft_solv43 5
dmft_solv44 5
ecut11 1.20000000E+01 Hartree
ecut12 1.20000000E+01 Hartree
ecut13 1.19824785E+01 Hartree
ecut14 1.19824785E+01 Hartree
ecut21 1.20000000E+01 Hartree
ecut22 1.20000000E+01 Hartree
ecut23 1.19824785E+01 Hartree
ecut24 1.19824785E+01 Hartree
ecut31 1.20000000E+01 Hartree
ecut32 1.20000000E+01 Hartree
ecut33 1.19824785E+01 Hartree
ecut34 1.19824785E+01 Hartree
ecut41 1.20000000E+01 Hartree
ecut42 1.20000000E+01 Hartree
ecut43 1.19824785E+01 Hartree
ecut44 1.19824785E+01 Hartree
ecuteps11 3.00000000E+00 Hartree
ecuteps12 3.00000000E+00 Hartree
ecuteps13 2.99561963E+00 Hartree
ecuteps14 2.99561963E+00 Hartree
ecuteps21 5.00000000E+00 Hartree
ecuteps22 5.00000000E+00 Hartree
ecuteps23 4.86788191E+00 Hartree
ecuteps24 4.86788191E+00 Hartree
ecuteps31 7.00000000E+00 Hartree
ecuteps32 7.00000000E+00 Hartree
ecuteps33 6.74014418E+00 Hartree
ecuteps34 6.74014418E+00 Hartree
ecuteps41 9.00000000E+00 Hartree
ecuteps42 9.00000000E+00 Hartree
ecuteps43 8.98685890E+00 Hartree
ecuteps44 8.98685890E+00 Hartree
ecutsigx11 0.00000000E+00 Hartree
ecutsigx12 0.00000000E+00 Hartree
ecutsigx13 0.00000000E+00 Hartree
ecutsigx14 2.99561963E+01 Hartree
ecutsigx21 0.00000000E+00 Hartree
ecutsigx22 0.00000000E+00 Hartree
ecutsigx23 0.00000000E+00 Hartree
ecutsigx24 2.99561963E+01 Hartree
ecutsigx31 0.00000000E+00 Hartree
ecutsigx32 0.00000000E+00 Hartree
ecutsigx33 0.00000000E+00 Hartree
ecutsigx34 2.99561963E+01 Hartree
ecutsigx41 0.00000000E+00 Hartree
ecutsigx42 0.00000000E+00 Hartree
ecutsigx43 0.00000000E+00 Hartree
ecutsigx44 2.99561963E+01 Hartree
ecutwfn11 1.20000000E+01 Hartree
ecutwfn12 1.20000000E+01 Hartree
ecutwfn13 1.19824785E+01 Hartree
ecutwfn14 1.19824785E+01 Hartree
ecutwfn21 1.20000000E+01 Hartree
ecutwfn22 1.20000000E+01 Hartree
ecutwfn23 1.19824785E+01 Hartree
ecutwfn24 1.19824785E+01 Hartree
ecutwfn31 1.20000000E+01 Hartree
ecutwfn32 1.20000000E+01 Hartree
ecutwfn33 1.19824785E+01 Hartree
ecutwfn34 1.19824785E+01 Hartree
ecutwfn41 1.20000000E+01 Hartree
ecutwfn42 1.20000000E+01 Hartree
ecutwfn43 1.19824785E+01 Hartree
ecutwfn44 1.19824785E+01 Hartree
etotal11 -1.5192840910E+02
etotal13 0.0000000000E+00
etotal14 0.0000000000E+00
etotal21 -1.5192840910E+02
etotal23 0.0000000000E+00
etotal24 0.0000000000E+00
etotal31 -1.5192840910E+02
etotal33 0.0000000000E+00
etotal34 0.0000000000E+00
etotal41 -1.5192840910E+02
etotal43 0.0000000000E+00
etotal44 0.0000000000E+00
fcart11 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart14 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart21 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart23 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart24 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart31 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart33 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart34 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart41 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart43 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart44 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 312
freqremax11 0.00000000E+00 Hartree
freqremax12 0.00000000E+00 Hartree
freqremax13 3.67493254E-01 Hartree
freqremax14 0.00000000E+00 Hartree
freqremax21 0.00000000E+00 Hartree
freqremax22 0.00000000E+00 Hartree
freqremax23 3.67493254E-01 Hartree
freqremax24 0.00000000E+00 Hartree
freqremax31 0.00000000E+00 Hartree
freqremax32 0.00000000E+00 Hartree
freqremax33 3.67493254E-01 Hartree
freqremax34 0.00000000E+00 Hartree
freqremax41 0.00000000E+00 Hartree
freqremax42 0.00000000E+00 Hartree
freqremax43 3.67493254E-01 Hartree
freqremax44 0.00000000E+00 Hartree
freqspmax11 0.00000000E+00 Hartree
freqspmax12 0.00000000E+00 Hartree
freqspmax13 0.00000000E+00 Hartree
freqspmax14 3.67493254E-01 Hartree
freqspmax21 0.00000000E+00 Hartree
freqspmax22 0.00000000E+00 Hartree
freqspmax23 0.00000000E+00 Hartree
freqspmax24 3.67493254E-01 Hartree
freqspmax31 0.00000000E+00 Hartree
freqspmax32 0.00000000E+00 Hartree
freqspmax33 0.00000000E+00 Hartree
freqspmax34 3.67493254E-01 Hartree
freqspmax41 0.00000000E+00 Hartree
freqspmax42 0.00000000E+00 Hartree
freqspmax43 0.00000000E+00 Hartree
freqspmax44 3.67493254E-01 Hartree
getden11 0
getden12 -1
getden13 0
getden14 0
getden21 0
getden22 -1
getden23 0
getden24 0
getden31 0
getden32 -1
getden33 0
getden34 0
getden41 0
getden42 -1
getden43 0
getden44 0
getscr11 0
getscr12 0
getscr13 0
getscr14 -1
getscr21 0
getscr22 0
getscr23 0
getscr24 -1
getscr31 0
getscr32 0
getscr33 0
getscr34 -1
getscr41 0
getscr42 0
getscr43 0
getscr44 -1
getwfk11 0
getwfk12 0
getwfk13 -1
getwfk14 -2
getwfk21 0
getwfk22 0
getwfk23 -1
getwfk24 -2
getwfk31 0
getwfk32 0
getwfk33 -1
getwfk34 -2
getwfk41 0
getwfk42 0
getwfk43 -1
getwfk44 -2
gwcalctyp11 0
gwcalctyp12 0
gwcalctyp13 2
gwcalctyp14 2
gwcalctyp21 0
gwcalctyp22 0
gwcalctyp23 2
gwcalctyp24 2
gwcalctyp31 0
gwcalctyp32 0
gwcalctyp33 2
gwcalctyp34 2
gwcalctyp41 0
gwcalctyp42 0
gwcalctyp43 2
gwcalctyp44 2
- gwpara11 2
- gwpara12 2
- gwpara13 1
- gwpara14 2
- gwpara21 2
- gwpara22 2
- gwpara23 1
- gwpara24 2
- gwpara31 2
- gwpara32 2
- gwpara33 1
- gwpara34 2
- gwpara41 2
- gwpara42 2
- gwpara43 1
- gwpara44 2
iscf11 17
iscf12 -2
iscf13 17
iscf14 17
iscf21 17
iscf22 -2
iscf23 17
iscf24 17
iscf31 17
iscf32 -2
iscf33 17
iscf34 17
iscf41 17
iscf42 -2
iscf43 17
iscf44 17
ixc -1012
jdtset 11 12 13 14 21 22 23 24 31 32
33 34 41 42 43 44
kpt 1.25000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 1.25000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 1.25000000E-01
3.75000000E-01 3.75000000E-01 3.75000000E-01
kptrlatt 4 0 0 0 4 0 0 0 4
kptrlen 2.90420000E+01
kssform11 1
kssform12 3
kssform13 1
kssform14 1
kssform21 1
kssform22 3
kssform23 1
kssform24 1
kssform31 1
kssform32 3
kssform33 1
kssform34 1
kssform41 1
kssform42 3
kssform43 1
kssform44 1
lpawu 2 -1 -1
P mkmem 1
mqgrid11 0
mqgrid12 0
mqgrid13 0
mqgrid14 300
mqgrid21 0
mqgrid22 0
mqgrid23 0
mqgrid24 300
mqgrid31 0
mqgrid32 0
mqgrid33 0
mqgrid34 300
mqgrid41 0
mqgrid42 0
mqgrid43 0
mqgrid44 300
mqgriddg11 0
mqgriddg12 0
mqgriddg13 0
mqgriddg14 300
mqgriddg21 0
mqgriddg22 0
mqgriddg23 0
mqgriddg24 300
mqgriddg31 0
mqgriddg32 0
mqgriddg33 0
mqgriddg34 300
mqgriddg41 0
mqgriddg42 0
mqgriddg43 0
mqgriddg44 300
natom 5
nband 30
nbandkss11 0
nbandkss12 -1
nbandkss13 0
nbandkss14 0
nbandkss21 0
nbandkss22 -1
nbandkss23 0
nbandkss24 0
nbandkss31 0
nbandkss32 -1
nbandkss33 0
nbandkss34 0
nbandkss41 0
nbandkss42 -1
nbandkss43 0
nbandkss44 0
nbdbuf11 0
nbdbuf12 4
nbdbuf13 0
nbdbuf14 0
nbdbuf21 0
nbdbuf22 4
nbdbuf23 0
nbdbuf24 0
nbdbuf31 0
nbdbuf32 4
nbdbuf33 0
nbdbuf34 0
nbdbuf41 0
nbdbuf42 4
nbdbuf43 0
nbdbuf44 0
ndtset 16
nfreqim11 -1
nfreqim12 -1
nfreqim13 0
nfreqim14 -1
nfreqim21 -1
nfreqim22 -1
nfreqim23 0
nfreqim24 -1
nfreqim31 -1
nfreqim32 -1
nfreqim33 0
nfreqim34 -1
nfreqim41 -1
nfreqim42 -1
nfreqim43 0
nfreqim44 -1
nfreqre11 -1
nfreqre12 -1
nfreqre13 1
nfreqre14 -1
nfreqre21 -1
nfreqre22 -1
nfreqre23 1
nfreqre24 -1
nfreqre31 -1
nfreqre32 -1
nfreqre33 1
nfreqre34 -1
nfreqre41 -1
nfreqre42 -1
nfreqre43 1
nfreqre44 -1
nfreqsp11 0
nfreqsp12 0
nfreqsp13 0
nfreqsp14 1
nfreqsp21 0
nfreqsp22 0
nfreqsp23 0
nfreqsp24 1
nfreqsp31 0
nfreqsp32 0
nfreqsp33 0
nfreqsp34 1
nfreqsp41 0
nfreqsp42 0
nfreqsp43 0
nfreqsp44 1
ngfft 24 24 24
ngfftdg 30 30 30
nkpt 4
nline 5
nnsclo 2
npweps11 0
npweps12 0
npweps13 93
npweps14 93
npweps21 0
npweps22 0
npweps23 203
npweps24 203
npweps31 0
npweps32 0
npweps33 341
npweps34 341
npweps41 0
npweps42 0
npweps43 485
npweps44 485
npwsigx11 0
npwsigx12 0
npwsigx13 0
npwsigx14 2969
npwsigx21 0
npwsigx22 0
npwsigx23 0
npwsigx24 2969
npwsigx31 0
npwsigx32 0
npwsigx33 0
npwsigx34 2969
npwsigx41 0
npwsigx42 0
npwsigx43 0
npwsigx44 2969
npwwfn11 0
npwwfn12 0
npwwfn13 751
npwwfn14 751
npwwfn21 0
npwwfn22 0
npwwfn23 751
npwwfn24 751
npwwfn31 0
npwwfn32 0
npwwfn33 751
npwwfn34 751
npwwfn41 0
npwwfn42 0
npwwfn43 751
npwwfn44 751
nstep 40
nsym 48
ntypat 3
occ11 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.707032 1.361099 1.361099 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.189950 0.000101 0.000083 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000076 0.000043 0.000003 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000001 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ13 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ14 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ21 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.707032 1.361099 1.361099 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.189950 0.000101 0.000083 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000076 0.000043 0.000003 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000001 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ23 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ24 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ31 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.707032 1.361099 1.361099 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.189950 0.000101 0.000083 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000076 0.000043 0.000003 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000001 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ33 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ34 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ41 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.707032 1.361099 1.361099 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.189950 0.000101 0.000083 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000076 0.000043 0.000003 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 0.000001 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ43 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ44 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000 1.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occopt 3
optdriver11 0
optdriver12 0
optdriver13 3
optdriver14 4
optdriver21 0
optdriver22 0
optdriver23 3
optdriver24 4
optdriver31 0
optdriver32 0
optdriver33 3
optdriver34 4
optdriver41 0
optdriver42 0
optdriver43 3
optdriver44 4
optforces11 2
optforces12 0
optforces13 2
optforces14 2
optforces21 2
optforces22 0
optforces23 2
optforces24 2
optforces31 2
optforces32 0
optforces33 2
optforces34 2
optforces41 2
optforces42 0
optforces43 2
optforces44 2
- paral_atom11 1
- paral_atom12 1
- paral_atom13 0
- paral_atom14 0
- paral_atom21 1
- paral_atom22 1
- paral_atom23 0
- paral_atom24 0
- paral_atom31 1
- paral_atom32 1
- paral_atom33 0
- paral_atom34 0
- paral_atom41 1
- paral_atom42 1
- paral_atom43 0
- paral_atom44 0
pawecutdg 2.00000000E+01 Hartree
pawoptosc 1
pawprtvol 3
plowan_bandi11 0
plowan_bandi12 21
plowan_bandi13 0
plowan_bandi14 0
plowan_bandi21 0
plowan_bandi22 21
plowan_bandi23 0
plowan_bandi24 0
plowan_bandi31 0
plowan_bandi32 21
plowan_bandi33 0
plowan_bandi34 0
plowan_bandi41 0
plowan_bandi42 21
plowan_bandi43 0
plowan_bandi44 0
plowan_bandf11 0
plowan_bandf12 25
plowan_bandf13 0
plowan_bandf14 0
plowan_bandf21 0
plowan_bandf22 25
plowan_bandf23 0
plowan_bandf24 0
plowan_bandf31 0
plowan_bandf32 25
plowan_bandf33 0
plowan_bandf34 0
plowan_bandf41 0
plowan_bandf42 25
plowan_bandf43 0
plowan_bandf44 0
plowan_compute11 0
plowan_compute12 1
plowan_compute13 10
plowan_compute14 10
plowan_compute21 0
plowan_compute22 1
plowan_compute23 10
plowan_compute24 10
plowan_compute31 0
plowan_compute32 1
plowan_compute33 10
plowan_compute34 10
plowan_compute41 0
plowan_compute42 1
plowan_compute43 10
plowan_compute44 10
plowan_natom 1
plowan_nt 1
plowan_realspace 1
plowan_it11 0 0 0
plowan_it12 0 0 0
plowan_it13 0 0 0
plowan_it14 0 0 0
plowan_it21 0 0 0
plowan_it22 0 0 0
plowan_it23 0 0 0
plowan_it24 0 0 0
plowan_it31 0 0 0
plowan_it32 0 0 0
plowan_it33 0 0 0
plowan_it34 0 0 0
plowan_it41 0 0 0
plowan_it42 0 0 0
plowan_it43 0 0 0
plowan_it44 0 0 0
plowan_iatom11 1
plowan_iatom12 1
plowan_iatom13 1
plowan_iatom14 1
plowan_iatom21 1
plowan_iatom22 1
plowan_iatom23 1
plowan_iatom24 1
plowan_iatom31 1
plowan_iatom32 1
plowan_iatom33 1
plowan_iatom34 1
plowan_iatom41 1
plowan_iatom42 1
plowan_iatom43 1
plowan_iatom44 1
plowan_nbl11 1
plowan_nbl12 1
plowan_nbl13 1
plowan_nbl14 1
plowan_nbl21 1
plowan_nbl22 1
plowan_nbl23 1
plowan_nbl24 1
plowan_nbl31 1
plowan_nbl32 1
plowan_nbl33 1
plowan_nbl34 1
plowan_nbl41 1
plowan_nbl42 1
plowan_nbl43 1
plowan_nbl44 1
plowan_lcalc11 2
plowan_lcalc12 2
plowan_lcalc13 2
plowan_lcalc14 2
plowan_lcalc21 2
plowan_lcalc22 2
plowan_lcalc23 2
plowan_lcalc24 2
plowan_lcalc31 2
plowan_lcalc32 2
plowan_lcalc33 2
plowan_lcalc34 2
plowan_lcalc41 2
plowan_lcalc42 2
plowan_lcalc43 2
plowan_lcalc44 2
plowan_projcalc11 -2
plowan_projcalc12 -2
plowan_projcalc13 -2
plowan_projcalc14 -2
plowan_projcalc21 -2
plowan_projcalc22 -2
plowan_projcalc23 -2
plowan_projcalc24 -2
plowan_projcalc31 -2
plowan_projcalc32 -2
plowan_projcalc33 -2
plowan_projcalc34 -2
plowan_projcalc41 -2
plowan_projcalc42 -2
plowan_projcalc43 -2
plowan_projcalc44 -2
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 221
strten11 2.0903030331E-03 2.0903030331E-03 2.0903030331E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten14 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten21 2.0903030331E-03 2.0903030331E-03 2.0903030331E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten23 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten24 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten31 2.0903030331E-03 2.0903030331E-03 2.0903030331E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten33 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten34 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten41 2.0903030331E-03 2.0903030331E-03 2.0903030331E-03
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten43 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten44 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symchi 0
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1
-1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1
1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1 0 1 0 -1 0 0 0 0 1
0 -1 0 -1 0 0 0 0 1 0 1 0 1 0 0 0 0 -1
0 1 0 -1 0 0 0 0 -1 0 -1 0 1 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0 0 0 1 -1 0 0 0 1 0
0 0 -1 -1 0 0 0 1 0 0 0 1 1 0 0 0 -1 0
0 0 1 -1 0 0 0 -1 0 0 0 -1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0
-1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0
1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0
0 -1 0 0 0 -1 1 0 0 0 1 0 0 0 1 -1 0 0
0 1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0
0 0 -1 0 -1 0 1 0 0 0 0 1 0 1 0 -1 0 0
0 0 1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0
symsigma 0
tolvrs11 1.00000000E-13
tolvrs12 0.00000000E+00
tolvrs13 1.00000000E-15
tolvrs14 1.00000000E-15
tolvrs21 1.00000000E-13
tolvrs22 0.00000000E+00
tolvrs23 1.00000000E-15
tolvrs24 1.00000000E-15
tolvrs31 1.00000000E-13
tolvrs32 0.00000000E+00
tolvrs33 1.00000000E-15
tolvrs34 1.00000000E-15
tolvrs41 1.00000000E-13
tolvrs42 0.00000000E+00
tolvrs43 1.00000000E-15
tolvrs44 1.00000000E-15
tolwfr11 0.00000000E+00
tolwfr12 1.00000000E-18
tolwfr13 0.00000000E+00
tolwfr14 0.00000000E+00
tolwfr21 0.00000000E+00
tolwfr22 1.00000000E-18
tolwfr23 0.00000000E+00
tolwfr24 0.00000000E+00
tolwfr31 0.00000000E+00
tolwfr32 1.00000000E-18
tolwfr33 0.00000000E+00
tolwfr34 0.00000000E+00
tolwfr41 0.00000000E+00
tolwfr42 1.00000000E-18
tolwfr43 0.00000000E+00
tolwfr44 0.00000000E+00
tsmear 3.67493254E-03 Hartree
typat 1 2 3 3 3
ucrpa 1
ucrpa_bands11 -1 -1
ucrpa_bands12 -1 -1
ucrpa_bands13 21 25
ucrpa_bands14 -1 -1
ucrpa_bands21 -1 -1
ucrpa_bands22 -1 -1
ucrpa_bands23 21 25
ucrpa_bands24 -1 -1
ucrpa_bands31 -1 -1
ucrpa_bands32 -1 -1
ucrpa_bands33 21 25
ucrpa_bands34 -1 -1
ucrpa_bands41 -1 -1
ucrpa_bands42 -1 -1
ucrpa_bands43 21 25
ucrpa_bands44 -1 -1
usepawu11 1
usepawu12 10
usepawu13 1
usepawu14 1
usepawu21 1
usepawu22 10
usepawu23 1
usepawu24 1
usepawu31 1
usepawu32 10
usepawu33 1
usepawu34 1
usepawu41 1
usepawu42 10
usepawu43 1
usepawu44 1
useylm 1
wtk 0.12500 0.37500 0.37500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9210455615E+00 1.9210455615E+00 1.9210455615E+00
1.9210455615E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 1.9210455615E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 1.9210455615E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.6302500000E+00 3.6302500000E+00 3.6302500000E+00
3.6302500000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 3.6302500000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 3.6302500000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 5.0000000000E-01 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01
znucl 23.00000 38.00000 8.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Screened Coulomb interaction calculations: cRPA implementation and applications
- to dynamical screening and self-consistency in uranium dioxide and cerium
- B. Amadon, T. Applencourt and F. Bruneval Phys. Rev. B 89, 125110 (2014).
- Comment: Describes the cRPA implementation of the screened Coulomb interaction in PAW
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2014
-
- [2] Gamma and beta cerium: DFT+U calculations of ground-state parameters.
- B. Amadon, F. Jollet and M. Torrent, Phys. Rev. B 77, 155104 (2008).
- Comment: DFT+U calculations, usepawu/=0. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#amadon2008a
-
- [3] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [4] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [5] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [6] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- [7] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 808.2 wall= 818.0
================================================================================
Calculation completed.
.Delivered 16 WARNINGs and 0 COMMENTs to log file.
+Overall time at end (sec) : cpu= 3244.6 wall= 3272.2